

Dynegy Midwest Generation, LLC 1500 Eastport Plaza Drive Collinsville, IL 62234

December 20, 2024

Illinois Environmental Protection Agency
DWPC - Permits MC#15
Attn: 35 I.A.C. § 845.650(e) Alternative Source Demonstration Submittal
1021 North Grand Avenue East
P.O. Box 19276
Springfield, IL 62794-9276

Re: Baldwin Power Plant Bottom Ash Pond; IEPA ID # W1578510001-06

Dear Mr. LeCrone:

Dynegy Midwest Generation, LLC (DMG) is submitting this Alternative Source Demonstration (ASD) for potential exceedances observed from the Q3 2024 sampling event at the Bottom Ash Pond identified by Illinois Environmental Protection Agency (IEPA) ID No. W1578510001-06.

As originally conveyed to the agency in 2021, it has been DMG's position that an approved groundwater monitoring program is a prerequisite to detecting an exceedance, which is the trigger for an alternative source demonstration under Title 35 of the Illinois Administrative Code (35 I.A.C.) Section (§) 845.650(e). DMG submitted an operating permit application including a proposed groundwater monitoring program for the Bottom Ash Pond on October 25, 2021. The application is still under review by IEPA. However, IEPA has requested that DMG evaluate groundwater and implement a groundwater corrective action program prior to the issuance of a final operating permit.

While an actual exceedance cannot occur until IEPA issues an operating permit establishing a groundwater monitoring program (see Section 845.650 and 845.120), in response to IEPA's requests DMG evaluated the Q3 2024 groundwater samples for exceedances of the groundwater protection standards (GWPS) as described in Section 845.600 and is submitting this ASD for potential exceedances detected.

In accordance with 35 I.A.C. 845.650(e), this ASD is being submitted within 60 days from the date of determination of a potential exceedance and the ASD was placed on the facility's website within 24 hours of submittal to the agency.

One hard copy is provided with this submittal.

Sincerely,

Phil Morris, PE Senior Director, Environmental

Meldy D

Enclosures

Alternate Source Demonstration, Quarter 3 2024, Bottom Ash Pond Baldwin Power Plant, Baldwin Illinois

engineers | scientists | innovators

ALTERNATIVE SOURCE DEMONSTRATION

Baldwin Power Plant Bottom Ash Pond (Unit ID #601)

IEPA ID: W1578510001-06

35 IAC 845.650

Prepared for

Dynegy Midwest Generation, LLC

1500 Eastport Plaza Drive Collinsville, Ilinois 62234

Prepared by

Geosyntec Consultants, Inc. 500 W. Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project Number: GLP8068

December 19, 2024

Alternative Source Demonstration

Baldwin Power Plant Bottom Ash Pond

(Unit ID #601)

IEPA ID: W1578510001-06

35 IAC 845.650

Prepared for

Dynegy Midwest Generation, LLC 1500 Eastport Plaza Drive Collinsville, Illinois 62234

Prepared by

Geosyntec Consultants, Inc. 500 W. Wilson Bridge Road Worthington, OH 43085

> John Seymour, P.E. Senior Principal

License No.: 062.040562 Expires: 11/30/2025

Project Number: GLP8068

December 19, 2024

Allison Kreinberg

Senior Geochemist

TABLE OF CONTENTS

EX	ECU.	ΓΙVE SUMMARYI
1.	INT	RODUCTION1
2.	BAC	CKGROUND2
	2.1	Site Location and Description
	2.2	Description of the CCR Unit
	2.3	Geology and Hydrogeology
	2.4	Data Reporting and Data Quality4
3.		TERNATIVE SOURCE DEMONSTRATION LINES OF EVIDENCE6
	3.1	LOE #1: BAP Porewater Concentrations of Fluoride are Lower than Groundwater Concentrations
	3.2	LOE #2: MW-392 Has a Similar Geochemical Signature to Upgradient Monitoring Well MW-358
	3.3	LOE #3: Stable Lithium and Boron Isotopes Provide Further Evidence that the UA has a Geochemical Signature Distinct from BAP Porewater
	3.4	LOE #4: Fluoride Occurs Naturally in the Shale Bedrock of the Uppermost Aquifer. 10
4.	CON	NCLUSIONS12
5.	REF	TERENCES
		LIST OF TABLES
Tal	ole 1:	Boron and Lithium Isotope Analytical Results
Tal	ole 2:	Summary of Rietveld Quantitative Analysis - X-Ray Diffraction Results

LIST OF FIGURES

Figure 1: Fluoride Time Series Graph

Figure 2: Piper Diagram

Figure 3a: Principal Component Analysis – Quality of Representation of Principal

Components

Figure 3b: Contribution of Variables to First Two Principal Components

Figure 4: Principal Component Analysis Biplot

Figure 5: Dendrogram Graph from Cluster Analysis
Figure 6: Non-Metric Multidimensional Scaling Plot

Figure 7: Boron Isotope Distribution

Figure 8: Lithium Isotope Distribution

Figure 9: Isotopic Composition of Lithium and Boron

LIST OF APPENDICES

Attachment 1: Part 845 Groundwater Monitoring Network

Attachment 2: Geologic Cross Section

Attachment 3: Uppermost Aquifer Potentiometric Surface Map – July 15, 2024

Attachment 4: Boring Logs

Attachment 5: PCA Data Summary

Attachment 6: Lithium and Boron Isotope Ratio Laboratory Analytical Reports

Attachment 7: Solid Phase Anions Laboratory Analytical Report

Attachment 8: X-ray Diffraction Laboratory Analytical Report

Attachment 9: Referenced Documents

ACRONYMS AND ABBREVIATIONS

% percent

% per mille

ASD alternative source demonstration

BAP Bottom Ash Pond

bgs below ground surface
BPP Baldwin Power Plant

CCR coal combustion residuals cm/s centimeters per second

DMG Dynegy Midwest Generation, LLC

EDD electronic data deliverable

FAPS Fly Ash Pond System

GWPS groundwater protection standard

IAC Illinois Administrative Code

IPCB Illinois Pollution Control Board

IEPA Illinois Environmental Protection Agency

LOE line of evidence

mg/L milligrams per liter

mg/kg milligrams per kilogram

NAVD88 North American Vertical Datum of 1988

NMDS nonmetric multidimensional scaling

NPDES National Pollutant Discharge Elimination System

NRT Natural Resource Technology, Inc.

PC principal component

PCA principal component analysis
SEP sequential extraction procedure

XRD X-ray diffraction

EXECUTIVE SUMMARY

Groundwater samples were collected at the Baldwin Power Plant (BPP) Bottom Ash Pond (BAP) during July 2024 for the Quarter 3, 2024 compliance monitoring event (Event 6 [E006]). While they were evaluated for statistically significant exceedances of the groundwater protection standards (GWPS) as described in Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845.600, potential exceedances were identified for the following constituents and wells in the Uppermost Aquifer (UA):

- Chloride and lithium at well MW-370
- Fluoride at well MW-392
- Fluoride at well MW-393

This ASD has been prepared to provide information for the BAL BAP as a result of the identified E006 fluoride potential exceedance at MW-392.

There are four lines of evidence (LOEs) that demonstrate the BPP BAP (and the Fly Ash Pond, the other regulated CCR unit at the BPP) are not the source of the fluoride detected in well MW-392 and did not contribute to the fluoride detected in well MW-392, and that shale bedrock lithology is the source. These four lines of evidence are:

- 1. Fluoride concentrations in the BAP porewater are historically more than 10 times lower than the minimum fluoride concentrations detected at MW-392. If the BAP were the source of fluoride in groundwater, BAP porewater concentrations would be expected to be greater than the concentrations in the UA.
- 2. Compliance monitoring location MW-392 has a similar geochemical signature as upgradient monitoring well MW-358. If the BAP was the source, the geochemical signatures should be different. Moreover, a statistical evaluation (via PCA) has shown that their groundwater compositions are distinct from the porewater geochemical signature.
- 3. The stable boron and lithium isotopic ratios in groundwater at MW-370, which is screened within similar bedrock interval and lithology as compliance well MW-392, are similar to the ratio in groundwater at upgradient monitoring well MW-358. The similarity of the geochemistry in upgradient and downgradient groundwater provides further evidence indicating that the source is the natural geology.
- 4. Solid phase analysis of on-site rock cores from the uppermost aquifer (i.e., bedrock) identified fluoride within the naturally occurring minerals of the shale bedrock, thereby providing an alternative source of fluoride in groundwater. Based on a review of literature, elevated concentrations of fluoride are known to occur in groundwater within the shale-limestone bedrock (i.e., uppermost aquifer at the BAP). Consequently, the UA bedrock has been identified as the source of fluoride in the UA groundwater.

BAL BAP ASD F_Q3 2024 i December 2024

It is concluded that the alternative source of fluoride is the shale bedrock lithology, whose geochemistry influences the groundwater composition. Based on the facts and evidence included and referenced herein, a source other than the CCR surface impoundment (natural variability associated with the lithology of the aquifer) caused the fluoride levels detected at well MW-392 and the BAP did not contribute to the elevated fluoride. Therefore, assessment of corrective measures is not required for fluoride at the BAP.

1. INTRODUCTION

Geosyntec Consultants, Inc. has prepared this alternative source demonstration (ASD) on behalf of Dynegy Midwest Generation, LLC (DMG), regarding the Bottom Ash Pond (BAP) coal combustion residuals (CCR) unit at the Baldwin Power Plant (BPP) near Baldwin, Illinois. This ASD is completed pursuant to Title 35 of the Illinois Administrative Code (35 I.A.C.) Part 845 ("Standards for the Disposal of CCR in Surface Impoundments") and was completed by December 24, 2024, within 60 days of determination of the potential exceedances (October 25, 2024), as required by 35 I.A.C. Section 845.650(e). This report applies specifically to the CCR Unit referred to as the Bottom Ash Pond (BAP), identification (ID) number (No.) 601, IEPA ID No. W1578510001-06, and National Inventory of Dams ID No. IL50721.

A potential statistical exceedance of fluoride above the potential site-specific groundwater protection standard (GWPS) of 4.0 milligrams per liter (mg/L) was identified at downgradient monitoring well MW-392 following the Third Quarter 2024 (Event 6 [E006]) sampling event (Ramboll 2024a).

Potential statistical exceedances of chloride at downgradient monitoring well MW-370 and fluoride at downgradient monitoring well MW-393 were identified both for the Third Quarter 2024 [E006] sampling event and the Second Quarter 2023 [E001] sampling event (Ramboll 2023a). An ASD previously submitted to address these chloride and fluoride detections for Second Quarter 2023 [E001] (Geosyntec 2023) was accepted by the Illinois Environmental Protection Agency (IEPA) on November 28, 2023 (IEPA 2023). Additionally, a potential statistical exceedance of lithium at downgradient monitoring well MW-370 was also identified both following the Third Quarter 2024 [E006] event and following the First Quarter 2024 [E003] sampling event (Ramboll 2024b). An ASD was also submitted for the lithium potential exceedance at MW-370 (Geosyntec 2024) which was accepted by IEPA on August 8, 2024 (IEPA 2024a). Therefore, these potential exceedances are not addressed in this ASD.

While the previously submitted ASDs each sufficiently demonstrated by a preponderance of the evidence that the BAP is not the cause of or contributing to the prior detected potential exceedances and that an alternative source was responsible for the potential exceedances, this ASD provides the following additional information in response to concerns raised by IEPA:

- To address IEPA's concerns regarding providing evidence of field collection methods, analysis methods, and field and laboratory quality control and quality assurance, additional information is provided in **Section 2.4.**
- To address concerns regarding collection of solid phase samples, information is also provided in **Section 3.4** regarding solid phase sample collection.
- To address the concerns regarding alternative source data, information is provided in Sections 3.2, 3.3 and 3.4. This information, which was also provided in previous ASDs, includes solid phase analytical laboratory data from bedrock samples collected at the site

BAL BAP ASD F_Q3 2024 1 December 2024

in **Attachments 7** and **8** of this ASD submittal. These results identified the presence of fluoride and fluoride-bearing minerals (fluorapatite) in the bedrock at the site.

Under 35 I.A.C. Section 845.650(e), the owner or operator of a CCR surface impoundment may submit a demonstration that a source other than the CCR surface impoundment caused the contamination and the CCR surface impoundment did not contribute to the contamination, or that the exceedance of the groundwater protection standard resulted from error in sampling, analysis, statistical evaluation, natural variation in groundwater quality, or a change in the potentiometric surface and groundwater flow direction.

This ASD has been completed in conformance with guidance provided in the Electric Power Research Institute (EPRI) guidance for development of ASDs at CCR sites (EPRI 2017), and the Solid Waste Disposal Facility Criteria: Technical Manual (USEPA 1993). An ASD uses a multiple LOE approach to demonstrate that a potential exceedance is more likely related to the alternative source and not the regulated unit (USEPA 1993). The goal of a weight of evidence approach is to provide robust support for a causal relationship based on many smaller individual qualitative or quantitative pieces of evidence (USEPA, 2016). Critically, no individual LOE will be completely conclusive, and the final determination of a conclusion is based on the totality of the evidence provided.

Based on the facts and evidence included and referenced herein, a source other than the CCR surface impoundment (natural variability associated with the lithology of the aquifer) caused the fluoride levels detected at well MW-392 and the BAP did not contribute to the elevated fluoride. Therefore, assessment of corrective measures is not required for fluoride at the BAP.

2. BACKGROUND

2.1 Site Location and Description

The BPP is in Randolph County and St. Clair County in southwest Illinois approximately 0.5 miles west-northwest of the village of Baldwin. The BPP property is bordered by Baldwin Road to the east; the village of Baldwin to the southeast; Illinois Central Gulf railroad tracks, State Road 154, and scattered residences to the south; the Kaskaskia River to the west; and farmland to the north. CCR impoundments present at the BPP include the BAP and the closed Fly Ash Pond System (FAPS), which included the West Fly Ash Pond, East Fly Ash Pond, and Old East Fly Ash Pond.

Non-CCR impoundments present at the BPP include the Secondary Pond, Tertiary Pond, and Baldwin Lake (BPP Cooling Pond). The locations of the CCR and non-CCR impoundments are shown in **Attachment 1**. The BAP is immediately north of the FAPS, which is a closed in-place CCR unit approved for closure by the IEPA on August 16, 2016.

2.2 Description of the CCR Unit

The BPP began operation in 1970 and initially burned bituminous coal from Illinois before switching to subbituminous coal in 1999. The BAP is an unlined surface impoundment with a surface area of approximately 177 acres used to store and dispose of sluiced bottom ash from the BPP, some of which is reclaimed for beneficial reuse. The BAP is also used to temporarily store spray dry adsorption waste and to clarify plant process water, including other non-CCR station process wastewaters, which are then discharged in accordance with the station's National Pollutant Discharge Elimination System (NPDES) permit (AECOM 2016; IEPA 2016). The original construction date of the BAP is unknown but occurred sometime before 1981 based on a review of historical aerial photographs. Therefore, the unit is over 43 years old.

2.3 Geology and Hydrogeology

This section provides a summary of the site geology and hydrogeology; additional detail is provided in the Supplemental Hydrogeologic Site Characterization and Groundwater Monitoring Plan (Natural Resource Technology, Inc. [NRT] 2016) and the Hydrogeologic Site Characterization Report (Ramboll 2021).

Three hydrostratigraphic units are present at the BPP, which include the CCR, an unconsolidated Upper Unit, and a Bedrock Unit (uppermost aquifer).

- CCR: Consists primarily of bottom ash. Up to 28.2 feet of bottom ash has been observed towards the center of the BAP.
- Upper Unit (unconsolidated unit): Predominantly clay with silt and minor sand, silt layers, and occasional sand lenses, and includes lithologies identified as the Cahokia Formation, Peoria Loess, Equality Formation, and Vandalia Till. Thin sand seams present at the contact between the Upper Unit and Bedrock Unit have been identified as potential migration pathways due to higher hydraulic conductivities in comparison to those in the

surrounding clays (e.g., $\sim 10^{-4}$ centimeters per second [cm/s] in sands compared with $\sim 10^{-5}$ cm/s in clays) (Ramboll 2023a). Continuous sand seams have not been observed in the Upper Unit or immediately adjacent to the BAP. Due to the predominance of clay and only thin and intermittent sand lenses, this unit is not considered a continuous aquifer unit within the site boundary (NRT 2016; Ramboll 2021).

• Bedrock Unit: Pennsylvanian and Mississippian-aged interbedded shale and limestone continuously underlies the BPP and is considered the uppermost aquifer at the site. The top of bedrock ranges from 12.5 feet below ground surface (bgs) near the Kaskaskia River to 70 feet bgs within the East Fly Ash Pond (part of the FAPS). The Bedrock Unit is the uppermost aquifer, and ranges in thickness between 20 to 70 feet in thickness beneath the Site (Ramboll 2021).

A geologic cross-section originally included in the Hydrogeologic Site Characterization Report and locator map are provided as **Attachment 2**.

Groundwater at the site has previously been classified as Class II groundwater in accordance with 35 I.A.C. 620, based on the geometric mean hydraulic conductivity values measured in the monitoring wells screened in both the Upper Unit $(3.2 \times 10^{-5} \text{ cm/s})$ and the Bedrock Unit $(5.0 \times 10^{-6} \text{ cm/s})$ (NRT 2014).

On October 25, 2021, in accordance with 35 I.A.C. 845, DMG submitted an operating permit application identifying the groundwater monitoring network for the BAP. The proposed groundwater monitoring network consists of 15 monitoring wells: 13 downgradient monitoring wells (MW-192, MW-193, MW-356, MW-369, MW-370, MW-382, MW-392, MW-393, MW-394, OW-256, OW-257, PZ-170, and PZ-182) and two background monitoring wells (MW-304 and MW-358) (Attachment 1). Monitoring wells are screened in both the uppermost aquifer (Bedrock Unit) from approximately 350 to 404 feet and the unconsolidated unit from 388 to 414 feet (North American Vertical Datum of 1988 [NAVD88]).

The potentiometric groundwater contours and generalized groundwater flow directions at the site are shown in **Attachment 3**. Groundwater flow in bedrock is toward the northwest in the eastern and central areas of the BAP, and southwest in the east area of the FAPS. Bedrock groundwater flows toward the Secondary and Tertiary Ponds, which were created in a former surface water drainage channel. Groundwater flow directions are generally consistent across sampling events. As shown in **Attachment 3**, MW-392 is upgradient of the FAPS. Therefore, the FAPS is not anticipated to influence the fluoride concentrations at MW-392.

2.4 Data Reporting and Data Quality

Most groundwater and porewater data used in the following analyses were either submitted to IEPA with the Baldwin BAP Operating Permit Application (Burns & McDonnell 2021) or submitted quarterly to IEPA in accordance with 35 I.A.C. § 845.610(b)(3)(D) (Ramboll 2023b, 2023c, and 2024a, b, c, d, and e) and are incorporated by reference in this ASD. Data such as groundwater analytical results for monitoring wells MW-370, MW-392, and MW-393 is included and has been transmitted after each quarterly sampling event. Laboratory electronic data

deliverables (EDDs) for groundwater data which include results for the TPZ-164 porewater well from 2020 through Q3 2024 and results for porewater monitoring locations XPW-01, -02, -04, -05, and -06 from 2022 through Q3 2024 have been transmitted electronically. Documentation for solid phase analyses is attached (**Attachments 7 and 8**) and referenced in the text below. All samples and data, including for the solid phase analysis, were collected in accordance with the Sampling and Analysis Plan (Ramboll 2022a) and Quality Assurance Project Plan (Ramboll 2022b).

3. ALTERNATIVE SOURCE DEMONSTRATION LINES OF EVIDENCE

This ASD for the fluoride GWPS detected at MW-392 is based on four LOEs. These LOEs are described and supported below.

3.1 LOE #1: BAP Porewater Concentrations of Fluoride are Lower than Groundwater Concentrations.

Porewater (*i.e.*, water within the CCR material of the BAP) samples have been collected from piezometer TPZ-164 since September 2018 and at five porewater wells (XPW-01, -02, -04, -05, and -06) since their installation in October 2022. Boring logs for TPZ-164 and XPW-01, -02, -04, -05, and -06 are provided in **Attachment 4**. CCR porewater is water "collected from the interstitial water between waste particles in surface impoundments as it occurs in the field" (USEPA 2014) and represents the material potentially leached from impoundments. The CCR materials are the primary source of constituent loading to the CCR porewater. Over an extended period (e.g., months to years), the CCR porewater reaches equilibrium with the CCR materials. The concentrations within the porewater are "the most representative data available for impoundments because these data are [field-collected] concentrations of leachate" (USEPA 2014). Porewater is therefore the most appropriate source term for potential flux out of CCR impoundments.

The highest detected fluoride concentration in the porewater is consistently more than 10 times lower than the maximum fluoride concentration reported at MW-392, as shown in **Figure 1**, making it improbable that the aqueous fluoride concentration would increase after it leached from the BAP. The fluoride concentrations detected in the porewater samples are less than the lower confidence limits of fluoride concentrations reported at downgradient well MW-392 (4.01 mg/L calculated using a confidence band around a linear regression) (Ramboll 2024a), indicating that fluoride concentrations at MW-392 are not related to the BAP.

Given the generally conservative (non-reactive) nature of fluoride, its concentration is expected to remain stable or decrease along the flow path from the source due to dispersion and dilution. If the BAP were the source of fluoride in groundwater, BAP porewater concentrations would be expected to be greater than the concentrations in the groundwater.

3.2 LOE #2: MW-392 Has a Similar Geochemical Signature to Upgradient Monitoring Well MW-358.

The groundwater at MW-392 has a similar geochemical signature to the groundwater from background monitoring well MW-358, further indicating that MW-392 is not affected by the BAP. A Piper diagram, which is used for illustrating the relative concentration of major cations and anions in groundwater samples, shows that groundwater at MW-392 appears to be predominantly composed of chloride and monovalent cations, consistent with the composition of both background well MW-358 and adjacent downgradient monitoring well MW-393, at which a previous potential

fluoride exceedance was identified (**Figure 2**). The potential fluoride exceedance at MW-393 was addressed by an ASD which was accepted by IEPA (Geosyntec 2023; IEPA 2023). This groundwater composition is different from the composition of samples of BAP porewater, which tends to have greater relative contributions of alkalinity, sulfate, and divalent cations such as calcium and magnesium (**Figure 2**).

Piper diagrams typically show the relative proportions and individual concentrations (respectively) of only major cations and anions. Advanced statistical approaches such as principal component analysis (PCA) or non-metric multidimensional scaling (NMDS) use a broader suite of analytes to evaluate the similarity or dissimilarity of different samples or groups and identify analytes that are main drivers for dissimilarities (Mumford et al., 2007).

PCA is often used to simplify large datasets with multiple variables by creating new uncorrelated variables known as principal components (PCs). The PCs are linear combinations of the original variables; the first few PCs typically capture most of the variation within the dataset. Factor loadings are calculated based on the correlation between PCs and the original variables. As such, variables with notably higher positive or negative factor loadings are main drivers of similarity or dissimilarity and clustering of samples. Factor scores are calculated based on the correlation between the combined chemical composition of each sample and the PCs. Samples with similar chemical compositions show similar factor scores and tend to cluster together on a PCA biplot.

In this ASD, the dataset used for PCA included 113 samples collected between 2022 and 2024 from background wells MW-304 and MW-358, downgradient wells MW-370, MW-392 and MW-393, and the BAP porewater wells.² The downgradient locations were selected based on observed potential statistical exceedances of the GWPS, the site hydrogeology and groundwater flow direction, and the spatial distribution of well locations. PCA requires that input variables have similar scales of measurement and variances. As such, data were standardized by mean-centering and scaling to unit variance prior to performing PCA.

The fraction of total variation explained by each PC is shown in **Figure 3a**, with the first two PCs (Dimensions 1 and 2 on **Figure 3a**) accounting for approximately 69 percent (%) of the total variation in the datasets. Additionally, the quality of representation of each variable is presented in **Figure 3b**, demonstrating that for most variables, the more than 50% of the variation is captured by the first two PCs.

¹ November 2023 results from MW-358 are used for visualization in the Piper diagram, as a shift in groundwater composition was observed for samples collected at MW-358 in 2024. A review of field parameters, measured groundwater elevations, and reported concentrations indicated that background monitoring well MW-358 was potentially compromised some time following the November 2023 sampling event. Subsequent investigations by Ramboll Americas Engineering Solutions, Inc. confirmed that groundwater was entering the well casing above the well screen and the well no longer provided representative samples of the uppermost aquifer from the screened interval. Data collected from MW-358 after November 2023 is excluded from the analyses performed for this ASD.

² Analytes included in this PCA include total alkalinity, boron, pH, barium, chloride, calcium, lithium, sulfate, and fluoride. The dataset used for PCA analysis is provided with this submission as **Attachment 5**.

PCA results are often visualized using biplots, where samples are projected on to the first two PCs (i.e., factor scores), and factor loadings are represented as vectors. The closer the data points are on the graph, the greater the similarity in their chemical composition. The biplot of PCA results from this study is shown on **Figure 4**, where the background samples are plotted in orange, the downgradient samples in dark blue, and the porewater samples in gray. The factor loadings, represented as vectors on the biplot, indicate that constituents such as calcium and barium are responsible for shifting the chemical signature of samples towards the porewater cluster. In contrast, constituents such as lithium, fluoride, and chloride are the main drivers for shifting chemical composition in the direction of the downgradient and background samples cluster. These results are generally consistent with the findings of the Piper diagram (**Figure 2**), which identified a higher relative abundance of chloride in the bedrock groundwater samples compared to CCR porewater.

Furthermore, as illustrated in the biplot (**Figure 4**), the porewater samples cluster separately from the downgradient and background wells. The biplot shows no overlap between the 95% bivariate data ellipses for: (i) porewater samples from within the BAP in gray, (ii) and downgradient and background bedrock groundwater samples in blue and orange (represented by the orange ellipse). These results are generally consistent with the findings of the Piper diagram (**Figure 2**), which identified clusters of porewater samples distinct from background and downgradient locations. Furthermore, the PCA demonstrates that background and downgradient samples cluster together, indicating that the chemical composition of the downgradient samples from MW-392 is relatively similar to background and other downgradient samples.

Clustering was further explored using Ward's hierarchical clustering method, a distance measure employed in agglomerative algorithms and commonly applied in hydrogeochemical studies. The analysis was performed on a scaled and centered dataset. As illustrated in the dendrogram (**Figure 5**), this analysis supported the distinction between porewater samples within the gray box and the combined group of downgradient and background groundwater wells in the orange box.

Non-metric multidimensional scaling (NMDS) analysis of the dataset from Q1 2023 to Q3 2024 was conducted to evaluate more recent site conditions and to further compare the chemical composition of porewater, background, and select downgradient samples. Additionally, the results of NMDS analysis can be used for validation of previous findings from PCA. As some wells were installed in 2022, the 2023 and 2024 samples are likely to be more representative of equilibrium conditions after having more time to interact with the aquifer following installation. While both PCA and NMDS aim to reduce dimensionality of multivariate datasets (e.g., the geochemical composition of waters) and visualize similarities among samples to interpret the underlying patterns, their methods are distinct. PCA relies on linear transformations and captures the maximum variance within datasets through orthogonal components, whereas NMDS utilizes nonmetric rank orders to achieve a non-linear representation of the original distances between samples. Therefore, NMDS is more flexible in relation to input requirements, particularly as it does not require that datasets be normally distributed. NMDS analysis results are typically presented in two-dimensional space with arbitrary dimensions, where the distance between two samples is representative of their relative similarity.

The results of the NMDS on the BAL dataset are displayed in **Figure 6**. Qualitatively, the NMDS findings presented on **Figure 6** align closely with those from the PCA (**Figure 4**) and indicate that: (i) the porewater sample cluster (gray symbols) is separate from the downgradient (shades of blue) and background (shades of orange) samples; and (ii) the chemical compositions of the background and downgradient wells appear more similar to each other than to the composition of porewater. If BAP porewater was influencing the groundwater in downgradient wells MW-392, MW-393 and MW-370, the groundwater geochemistry would be more similar to porewater. However, they are distinct and the similarity between upgradient and downgradient groundwater instead supports the conclusion that the groundwater composition is influenced by natural lithology.

3.3 LOE #3: Stable Lithium and Boron Isotopes Provide Further Evidence that the UA has a Geochemical Signature Distinct from BAP Porewater.

Boron isotopes (^{11}B and ^{10}B) can be useful tracers in groundwater systems in sedimentary environments (United States Geological Survey, 2004). Depleted (lower; or more negative) boron isotope ratios (reported as $\delta^{11}B$, which is calculated as the ratio of $^{11}B/^{10}B$ relative to an international standard) are an indicator of CCR constituents in aqueous samples due to the depleted $\delta^{11}B$ found in source coal (Ruhl et al. 2014) and coal ash. Alternatively, sediments formed during deposition from marine environments, such as the shales identified within the uppermost aquifer at the site, can be enriched in $\delta^{11}B$ (i.e., more positive values) during deposition (Spivack et al. 1987).

Aqueous samples were collected from select locations to represent multiple lithologies and locations relevant to the BAP, as summarized in **Table 1**. These locations included TPZ-164 to represent BAP CCR porewater conditions, and upgradient well MW-358 and compliance well MW-370 to represent wells screened within the downgradient shale (including compliance wells MW-392 and MW-393 screened within similar bedrock interval and lithology). MW-370 and MW-392 in the bedrock UA generally have a consistent geochemical signature, as indicated by the outcome of the PCA described in Section 3.2. The samples were submitted to SmartGas Sciences, LLC (Columbus, Ohio) for analysis of total boron and stable boron isotopes and to Isodetect GmbH (Leipzig, Germany) for analysis of total lithium and stable lithium isotopes. The analytical laboratory reports are provided in **Attachment 6**.

If the BAP porewater were influencing the groundwater within UA, a similar isotopic distribution for boron and lithium between the porewater and groundwater would be expected. However, the boron stable isotopic signatures for the BAP CCR porewater and groundwater at MW-370 are markedly different, providing further evidence that the UA groundwater, which is similar in composition at both MW-370 and MW-392 based on the PCA analyses (summarized in Section 3.2, is dissimilar to the BAP. Porewater from TPZ-164 had the most depleted δ^{11} B value, with a reported δ^{11} B of 2.8 per mille (‰).

The BAP porewater has a boron isotopic composition consistent with the reported $\delta^{11}B$ range for Illinois basin coal-derived CCR of -8.8% to 6.3% (Ruhl et al 2014) (**Figure 7**). Upgradient well MW-358 and compliance well MW-370 both had more positive $\delta^{11}B$ values, with reported results

of 31.1‰ and 32.4‰, respectively (**Table 1**). The enrichment of $\delta^{11}B$ in these groundwater samples is inconsistent with influences from CCR. Instead, these results are consistent with elevated $\delta^{11}B$ values typically detected in shale formations, with these more positive values due to deposition in marine environments (Spivack et al., 1987; Warner et al., 2013).

Typical ranges detected for $\delta^{11}B$ in groundwater unimpacted by CCR are 4.0% to 34.0% (Buszka et al., 2007; Warner et al., 2013). MW-258, an upgradient well screened within the interbedded limestone and shale formation had a $\delta^{11}B$ value (14.2%) that was lower than what was detected at shale lithologies at MW-358 and MW-370, but still isotopically distinct from BAP porewater. This variability in $\delta^{11}B$ values within the bedrock at the Site may be attributed to differences in mineralogy or depositional environment over time.

Lithium isotopes (7 Li and 6 Li) are similarly useful tracers in groundwater and have been identified as particularly applicable for distinguishing water containing CCR constituents (Harkness et al., 2015). Lithium isotope ratios (reported as δ^7 Li, which are calculated as the ratio of 7 Li/ 6 Li relative to an international standard) can be an indicator of CCR constituents, as coals have δ^7 Li values ranging from -7.0 % to 12.8%, much lower than the ~31% commonly observed for seawater (Warner et al., 2014; Harkness et al., 2015). Release of 6 Li from exchangeable sites on clays within shale during burial and formation can significantly alter groundwater δ^7 Li values compared to expectations based on the depositional environment (Warner et al., 2014).

MW-370 groundwater also has a lithium isotope composition ($\delta^7 \text{Li} = 20.7\%$) consistent with upgradient groundwater from shale lithologies at MW-358 ($\delta^7 \text{Li} = 26.0\%$), with slight differences potentially related to variations in burial history between the screening depths at these locations. The lithium data are provided in **Table 1** and presented on **Figure 8**. The lithium isotope signature for the BAP porewater ($\delta^7 \text{Li} = 17.1\%$) is somewhat similar to the bedrock lithium signature and is not consistent with the ranges of $\delta^7 \text{Li}$ for other CCR material effluents ($\delta^7 \text{Li}$ from -6.2 to 8.7%; Harkness et al., 2015).

When examining the isotopic composition of MW-370 groundwaters using both boron and lithium isotope data in combination (**Figure 9**), it is clear that the BAP porewater is isotopically distinct for lithium and boron from all analyzed groundwaters. Together, these results provide further evidence that wells screened within the shale lithology, including at downgradient locations such as MW-392, are dissimilar to the BAP and instead are more strongly influenced by the bedrock lithology where they are screened. This is also consistent with results from both the Piper diagram (**Figure 2**) and PCA analysis (**Figure 5**).

3.4 LOE #4: Fluoride Occurs Naturally in the Shale Bedrock of the Uppermost Aquifer.

Geosyntec reviewed the results of analyses completed of solid phase samples collected from the Site to support the conclusion that statistical exceedances of the site-specific fluoride GWPS at MW-392 are associated with the limestone and shale bedrock formation. Solid phase samples were collected from the cores recovered during the installation of monitoring wells MW-358 and

MW-392 following well installation in September and October 2022, respectively. The boring logs for MW-392 and MW-358 are provided in **Attachment 4**. The samples were shipped under chain-of-custody protocol to SGS Canada Inc. for analysis of total anions, total Kjeldahl nitrogen (TKN) and radium-226. The samples were also analyzed via X-ray diffraction (XRD) to identify minerals in the solid samples.

Solid phase analysis of total anions identified reportable concentrations of fluoride within the bedrock of the uppermost aquifer at the Site – i.e., it is a naturally occurring inorganic substance within the mineral matrix of the bedrock (**Attachment 7**). The presence of fluoride within the solid phase of the UA (bedrock) contributes to higher concentrations and naturally occurring fluoride in the groundwater.

Solid phase analysis of bedrock from compliance location MW-392 via XRD identified fluoride-bearing minerals in the solid phase materials (**Attachment 8**). Fluorapatite [Ca5(PO4)3F], a fluoride-bearing mineral, was identified in samples collected from the shale formation at downgradient well MW-392 (**Table 2**; **Attachment 8**). The highest abundance of fluorapatite (2.7%) was identified in a sample collected at 80 to 82 feet below ground surface at downgradient well MW-392. This sample is at the same depth as the screened interval for MW-392. The presence of fluoride within the aquifer solids of the shale in the uppermost aquifer, including the presence of a fluoride-bearing mineral, provide an alternative source for fluoride in groundwater other than the BAP.

Studies have found that fluoride concentrations in groundwater are comparable to or higher than those observed at MW-392 and are often found within the Pennsylvanian and Mississippian-aged interbedded shale and limestone of the UA. A USGS summary found that water within the upper parts of the Pennsylvanian-aged aquifers is generally similar throughout the Illinois and Indiana basins (Cable et al, 1971). This groundwater is influenced by the interaction with the variable interbedded rock types present in the uppermost aquifer at the BAP and can vary from a sodium bicarbonate to a sodium chloride type within a few feet of change in depth (Lloyd and Lyke 1995). Similarly, Lloyd and Lyke (1995) noted that "the fluoride content of the water [in Pennsylvanian-aged aquifers] is great enough to mottle the teeth of persons who drink it on a continual basis," with concentrations reported as high as 15 mg/L. These studies suggest that contact with Pennsylvanian-aged bedrock can result in natural variability in the reported fluoride concentrations in groundwater at ranges consistent with those detected at the site.

4. CONCLUSIONS

It has been demonstrated that the fluoride detected at MW-392 is not caused by a release from the BAP CCR unit, but instead is attributed to the influence of the shale bedrock lithology on groundwater composition. The following summarizes the four LOEs used to support this demonstration:

- 1. Fluoride concentrations in the BAP porewater are historically more than 10 times lower than the minimum fluoride concentrations detected at MW-392. If the BAP were the source of fluoride in groundwater, BAP porewater concentrations would be expected to be greater than the concentrations in the UA.
- 2. Compliance monitoring location MW-392 has a similar geochemical signature as upgradient monitoring well MW-358 If the BAP was the source, the geochemical signatures should be different. Moreover, a statistical evaluation (via PCA) has shown that their groundwater compositions are distinct from the porewater geochemical signature.
- 3. The stable boron and lithium isotopic ratios in groundwater at MW-370, which is screened within similar bedrock interval and lithology as compliance well MW-392, are similar to the ratio in groundwater at upgradient monitoring well MW-358. The similarity of the geochemistry in upgradient and downgradient groundwater provides further evidence that the likely source is the natural geology.
- 4. Solid phase analysis of rock cores from the UA (i.e., bedrock) identified fluoride within the naturally occurring minerals of the shale bedrock, thereby providing an alternative source of fluoride in groundwater. Based on a review of literature, elevated concentrations of fluoride are known to occur in groundwater within the shale-limestone bedrock (i.e., UA at the BAP). Consequently, the UA bedrock is likely the source of fluoride in the UA groundwater.

It is concluded that the alternative source of fluoride is the shale bedrock lithology, whose geochemistry influences the groundwater composition. This information serves as the written ASD prepared in accordance with 35 I.A.C. § 845.650(e). Based on the facts and evidence included and referenced herein, a source other than the CCR surface impoundment (natural variability associated with the lithology of the aquifer) caused the elevated fluoride observed at well MW-392 and the CCR surface impoundment did not contribute to the elevated fluoride. Therefore, implementation of corrective measures is not required for fluoride at the BAP CCR unit.

5. REFERENCES

Data presented in documents referenced in this ASD are considered incorporated by reference and may be found in **Attachment 9** or at publicly accessible internet addresses provided following each reference below.

- AECOM. 2016. RE: History of Construction, USEPA Final Rule, 40 C.F.R. § 257.73(c), Baldwin Energy Complex, Baldwin, Illinois. October. https://www.luminant.com/documents/ccr/Illinois/Baldwin/2016/History%20of%20Construction.pdf
- Burns & McDonnell. 2021. *Initial Operating Permit, Baldwin Power Plant Bottom Ash Pond.*October. luminant.com/documents/ccr/il-ccr/Baldwin/2021/2021 10 30 Baldwin BAP Op
 Permit App W1578510001-06.pdf
- Buszka, P.M., Fitzpatrick, J., Watson, L.R., and Kay, R.T. 2007. Evaluation of ground-water and boron sources by use of boron stable-isotope ratios, tritium, and selected water-chemistry constituents near Beverly Shores, northwestern Indiana, 2004. U.S. Geological Survey Scientific Investigations Report 2007–5166. https://pubs.usgs.gov/sir/2007/5166/pdf/sir2007-5166 web.pdf
- Cable, L. W., F. A. Watkins, Jr., T. M. Robison. 1971. "Hydrogeology of the principal aquifers in Vigo and Clay Counties, Indiana." *Indiana Department of Natural Resources Bulletin 34*. https://www.in.gov/dnr/water/files/531 all.pdf
- EPRI. 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. Electric Power Research Institute, Palo Alto, CA. 3002010920. https://www.epri.com/research/products/000000003002010920
- Geosyntec. 2023. Alternative Source Demonstration Baldwin Power Plant Bottom Ash Pond (Unit ID # 601). Geosyntec Consultants, Inc. October. https://www.luminant.com/documents/ccr/il-ccr/Baldwin/2023/2023%2010%2027%20Baldwin%20BAP%20845.650%20ASD-W1578510001-06.pdf
- Geosyntec. 2024. Alternative Source Demonstration Baldwin Power Plant Bottom Ash Pond (Unit ID # 601). Geosyntec Consultants, Inc. July. https://www.luminant.com/documents/ccr/il-ccr/Baldwin/2024/2024%2007%2009%20Baldwin%20BAP%20845.650%20ASD-W1578510001-06.pdf
- Harkness, J S, L S Ruhl, R Millow, W Kloppman, J C Hower, H Hsu-Kim, A Vengosh. 2015.
 "Lithium isotope fingerprints in coal and coal combustion residuals from the United States."
 Procedia Earth and Planetary Science. 13, 134-137.
 https://www.researchgate.net/publication/283185225_Lithium_Isotope_Fingerprints_in_Coalland Coallow Combustion Residuals from the United States

- IEPA. 2016. "Dynegy Midwest Generation, Inc. Baldwin Energy Complex: Baldwin Fly Ash Pond System Closure NPDES Permit No. IL000043." Letter from William Buscher (Illinois Environmental Protection Agency) to Rick Diericx (Dynegy Operating Company). August 16.
- IEPA. 2023. "Baldwin Power Plant Bottom Ash Pond; W1578510001-06 Alternative Source Demonstration (ASD) Submittal." Letter from Michael Summers, P.G. (Illinois Environmental Protection Agency) to Phil Morris (Illinois Power Generating Company). November 28.
- IEPA. 2024a. "Baldwin Power Plant Bottom Ash Pond; W1578510001-06 Alternative Source Demonstration (ASD) Submittal." Letter from Darin LeCrone, P.E. (Illinois Environmental Protection Agency) to Phil Morris (Illinois Power Generating Company). August 8.
- IEPA. 2024b. "Baldwin Power Plant Bottom Ash Pond; W1578510001-06 Alternative Source Demonstration (ASD) Submittal." Letter from Darin LeCrone, P.E. (Illinois Environmental Protection Agency) to Phil Morris (Illinois Power Generating Company). October 3.
- Lloyd, O. B., and W. L. Lyke. 1995. *Ground Water Atlas of the United States Illinois, Indiana, Kentucky, Ohio, Tennessee*. HA-730K. United States Geological Survey. https://pubs.usgs.gov/ha/ha730/ch_k/index.html
- Mumford, K.G., MacGregor, J.F., Dickson, S.E. and Frappa, R.H., 2007. "Multivariate analysis of ground water and soil data from a waste disposal site." *Groundwater Monitoring & Remediation*, 27(1), pp.92-102. https://ngwa.onlinelibrary.wiley.com/doi/abs/10.1111/j.1745-6592.2006.00127.x
- NRT. 2014. Groundwater Quality Assessment and Phase II Hydrogeologic Investigation, Baldwin Ash Pond System, Baldwin, Illinois. Natural Resource Technology, Inc. Prepared for Dynegy Midwest Generation, LLC. June 11.
- NRT. 2016. Supplemental Hydrogeologic Site Characterization and Groundwater Monitoring Plan. Baldwin Fly Ash Pond System. Baldwin Energy Complex, Baldwin, IL. Natural Resource Technology, Inc.
- Ramboll. 2021. *Hydrogeologic Site Characterization Report. Baldwin Bottom Ash Pond. Baldwin Power Plant. Baldwin, Illinois*. Ramboll Americas Engineering Solutions, Inc. October. (Attachment N of Burns & McDonnell, 2021): https://www.luminant.com/documents/ccr/ilccr/Baldwin/2021/2021%2010%2030%20Baldwin%20BAP%20Op%20Permit%20App%20W1578510001-06.pdf
- Ramboll. 2022a. *Multi-Site Sampling and Analysis Plan*. Ramboll Americas Engineering Solutions, Inc. December. https://www.luminant.com/documents/ccr/il-ccr/Baldwin/2023/Multi-Site%20Sampling%20Analysis%20Plan-Baldwin-W1578510001-01,02,03,06.pdf
- Ramboll. 2022b. *Multi-Site Quality Assurance Project Plan*. Ramboll Americas Engineering Solutions, Inc. December. https://www.luminant.com/documents/ccr/il-

- ccr/Baldwin/2023/Multi-site%20Quality%20Assurance%20Project%20Plan-Baldwin-W1578510001-01,02,03,06.pdf
- Ramboll. 2023a. 40 C.F.R. § 257.95(g)(3)(ii): Alternative Source Demonstration. Baldwin Power Plant. Baldwin Bottom Ash Pond, CCR Unit 601. Ramboll Americas Engineering Solutions, Inc. April.
- Ramboll. 2023b. 35 I.A.C. § 845.610(b)(3)(D) Groundwater Monitoring Data and Detected Exceedances 2023 Quarter 2. Bottom Ash Pond, Baldwin Power Plant, Baldwin, Illinois.

 Ramboll Americas Engineering Solutions, Inc. August. https://www.luminant.com/documents/ccr/il-ccr/Baldwin/2023/2023-Baldwin%20BAP%202nd%20quarter%2035%20IAC%20845%20GW%20report-Baldwin-Bottom%20Ash%20Pond-W1578510001-06.pdf
- Ramboll. 2023c. 35 I.A.C. § 845.610(b)(3)(D) Groundwater Monitoring Data and Detected Exceedances Quarter 3, 2023. Bottom Ash Pond, Baldwin Power Plant, Baldwin, Illinois.

 Ramboll Americas Engineering Solutions, Inc. August.

 https://www.luminant.com/documents/ccr/il-ccr/Baldwin/2023/2023-Baldwin%20BAP%203rd%20quarter%2035%20IAC%20845%20GW%20report-Baldwin-Bottom%20Ash%20Pond-W1578510001-06.pdf

- Ramboll. 2024c. 35 I.A.C. § 845.610(b)(3)(D) Groundwater Monitoring Data and Detected Exceedances Quarter 4, 2023. Bottom Ash Pond, Baldwin Power Plant, Baldwin, Illinois.

 Ramboll Americas Engineering Solutions, Inc. February.

 https://www.luminant.com/documents/ccr/il-ccr/Baldwin/2023/2023-Baldwin/20BAP%202023%204th%20quarter%2035%20IAC%20845%20GW%20report-Baldwin-Bottom%20Ash%20Pond-W1578510001-06.pdf
- Ramboll. 2024d. 35 I.A.C. § 845.610(b)(3)(D) Groundwater Monitoring Data and Detected Exceedances Quarter 2, 2024. Bottom Ash Pond, Baldwin Power Plant, Baldwin, Illinois.

 Ramboll Americas Engineering Solutions, Inc. July.

 https://www.luminant.com/documents/ccr/il-ccr/Baldwin/2024/2024-Baldwin%20BAP%202024%202nd%20quarter%2035%20IAC%20845%20GW%20report-Baldwin-Bottom%20Ash%20Pond-W1578510001-06.pdf

- Ruhl, L. S., G. S. Dwyer, H. Hsu-Kim, J. C. Hower, and A. Vengosh. 2014. "Boron and Strontium Isotopic Characterization of Coal Combustion Residuals: Validation of New Environmental Tracers." *Environ. Sci. Technol.* 48:14790–14798. https://dukespace.lib.duke.edu/items/e4a204eb-738d-4aba-bd21-a1cc37eccbe5
- Spivack, A. J., M. R. Palmer, and J. M. Edmond. 1987. "The Sedimentary Cycle of the Boron Isotopes." *Geochem. Cosmochim. Acta.* 51(7):1939–1949. https://www.sciencedirect.com/science/article/abs/pii/0016703787901839
- USEPA. 2014. "Human and Ecological Risk Assessment of Coal Combustion Residuals (2050-AE81)". United States Environmental Protection Agency. December. https://www.regulations.gov/document/EPA-HQ-OLEM-2021-0281-0006
- USEPA. 2016. Weight of Evidence in Ecological Assessment. EPA/100/R-16/001. United States Environmental Protection Agency. December. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100SFXR.txt
- USEPA. 1993. Solid Waste Disposal Facility Criteria: Technical Manual EPA530-R-93-017. Solid Waste and Emergency Response (5305). United States Environmental Protection Agency. November. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1003F0V.txt
- United States Geological Survey. 2004. "Resources on Isotopes. Periodic Table Boron." *Isotopes Tracers Project*. United States Geological Survey. Accessed December 18, 2024. https://www.rcamnl.wr.usgs.gov/isoig/period/b iig.html.
- Warner, N. R., T. M. Kresse, P. D. Hays, A. Down, J. D. Karr, R. B. Jackson, and A. Vengosh. 2013. "Geochemical and Isotopic Variations in Shallow Groundwater in Areas of the Fayetteville Shale Development, North-Central Arkansas." *Applied Geochemistry* 35:207–220. https://www.sciencedirect.com/science/article/pii/S0883292713001133?via%3Dihub
- Warner, N. R., T.H. Darrah, R.B. Jackson, R. Millot, W. Kloppmann, and A. Vengosh. 2014. "New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas Operations." *Environmental Science & Technology*, 48, 12552 12560. https://pubs.acs.org/doi/10.1021/es5032135

TABLES

Table 1 - Boron and Lithium Isotope Analytical Results Baldwin Power Plant - Bottom Ash Pond

Sample ID	Sample Location	Sample Description	Total Boron (µg/L)	δ ¹¹ Β (‰)	+/- (2SE)	Total Lithium (µg/L)	δ ⁷ Li (‰)	+/- (2SE)
20230206 TPZ-164	TPZ-164	Porewater	1116	2.8	1.2	28	17.1	0.75
20230206 Cooling Pond	Cooling Pond	Surface Water	240	5.7	1.2	3.1	35.2	0.74
20230206 MW-370	MW-370	Downgradient Shale	2061	32.4	1.2	227	20.7	0.73
20230206 PZ-170	PZ-170	Downgradient PMP	326	43.2	1.2	44	17.1	0.73
20230206 MW-158R	MW-158R	Background PMP	86	18.0	1.2	23	31.5	0.54
20230207 MW-358	MW-358	Background Deep Shale	1778	31.1	1.2	185	26.0	0.7
20230207 MW-258	MW-258	Background Shale	1248	14.2	1.2			

Notes:

%: parts per thousand (per mille)

 $\mu g/L \colon micrograms \ per \ liter$

--: Sample not analyzed

PMP: potential migration pathway

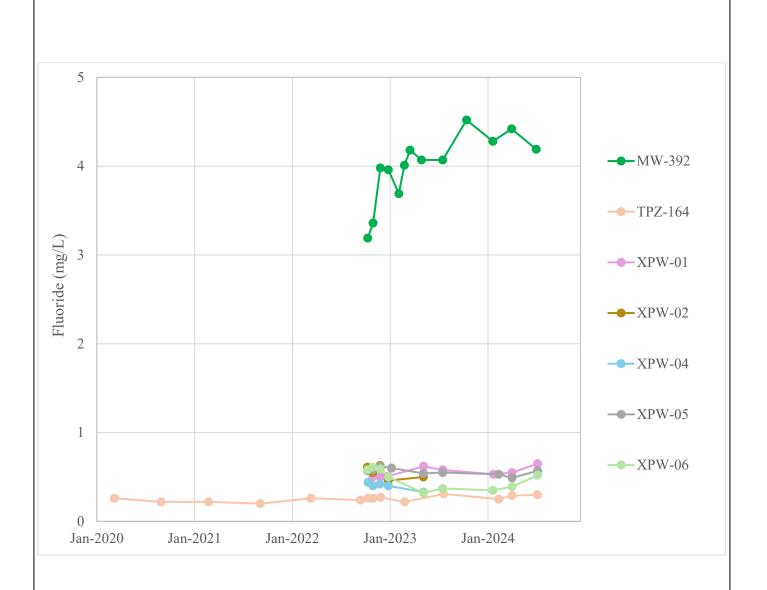
SE: standard error

Table 2 - Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results Baldwin Power Plant

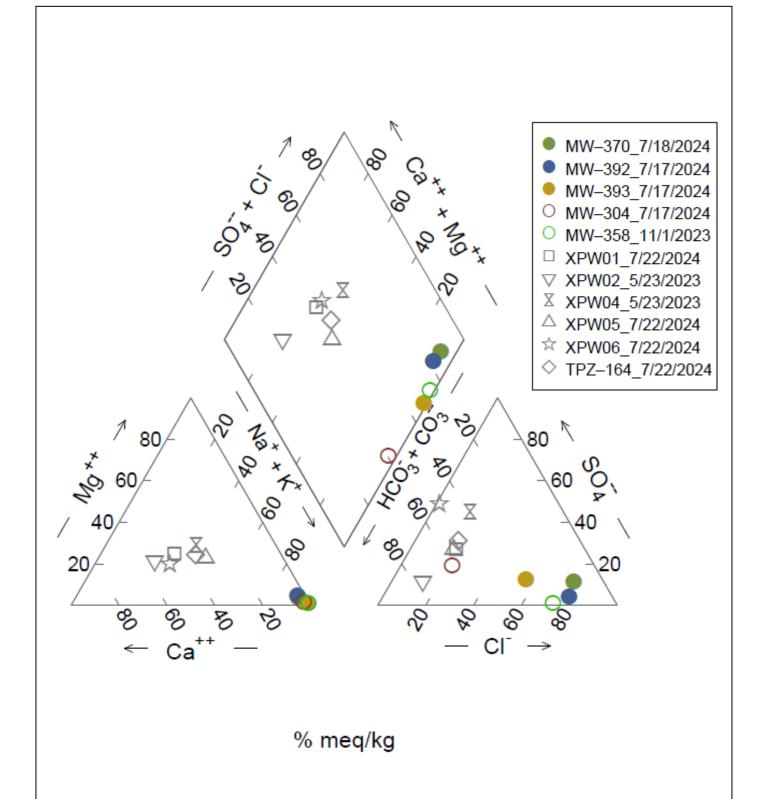
	MW-358 (47-49)	MW-358 (86-88)	MW-392 (32-33.5)	MW-392 (66-68)	MW-392 (80-82)		
	Upgradient	Upgradient	Downgradient	Downgradient	Downgradient		
Boring Log Description			Shallow Shale	Deeper Shale Body	Clay with increasing sand content	Shale	Shale transitioning to limestone
Mineral/Compound	Formula	Mineral Type	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)
Quartz	SiO_2	Silicate	29.2	30.7	53.5	22.7	29.8
Muscovite	$KAl_2(AlSi_3O_{10})(OH)_2$	Mica	18.8	19.7	13.1	15.9	13.1
Albite	NaAlSi ₃ O ₈	Feldspar	0.4	2.5	8.5	0.6	0.6
Microcline	KAlSi ₃ O ₈	Feldspar	8.6	5.9	6.8	5.1	1.0
Diaspore	aAlO.OH	Oxyhydroxide	-	-	-	2.8	-
Magnetite	Fe_3O_4	Oxide	0.5	0.3		0.1	1.4
Anatase	TiO ₂	Oxide	0.8	1.8	-	1.0	0.8
Calcite	CaCO ₃	Carbonate	0.5	1.0	-	14.9	28.1
Fluorapatite	Ca ₅ (PO ₄) ₃ F	Phosphate	-	-		0.2	2.7
Ankerite	CaFe(CO ₃) ₂	Carbonate	-	-		0.8	-
		Clay Minerals					
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄	Kaolin	4.8	15.0	7.5	3.6	5.5
Montmorillonite	(Na,Ca) _{0.3} (Al,Mg) ₂ Si ₄ O ₁₀ (OH) ₂ •10H ₂ O	Smectite	6.8	4.8	0.0	5.8	3.5
Nontronite	Fe ₂ (Al,Si) ₄ O ₁₀ (OH) ₂ Na _{0.3} (H ₂ O) ₄	Smectite	4.6	4.3		3.3	4.2
Illite/Montmorillonite	$KAl_4(Si,Al)_8O_{10}(OH)_4 \bullet 4H_2O$	Mixed Layer I/S	8.8	2.7		7.1	3.6
Illite	K(Al,Mg,Fe) ₂ (Si,Al) ₄ O ₁₀ (OH) ₂	Illite	15.0	9.2		10.4	4.1
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈	Chlorite	1.3	2	7.0	6.1	1.6
	Clay Minerals Total		41	38	15	36	23
Clays + Muscovite Total			60	58	28	52	36

Notes

Only samples collected within the shale bedrock are shown. Additional sample data is provided in Attachment 8.


Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample

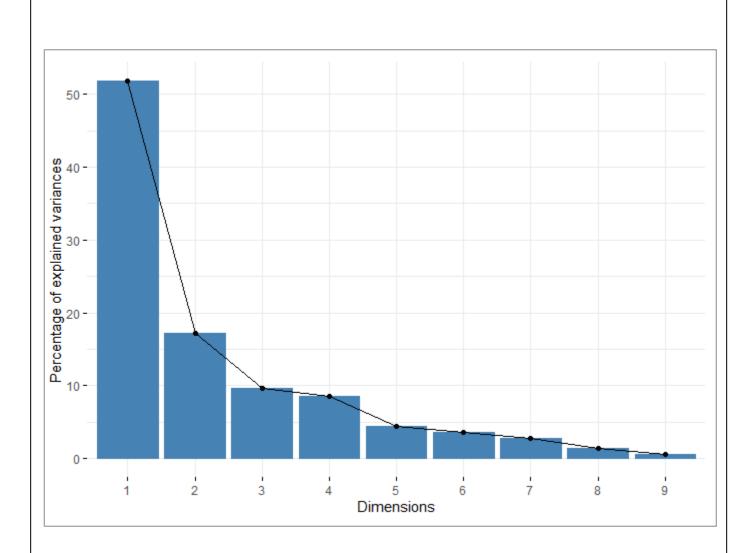
The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.


Sample depths are shown in feet below ground surface (ft bgs).

wt %: percentage by weight

FIGURES

Notes: mg/L: milligrams per liter	Fluoride Time Series Graph Baldwin Power Plant				
	Geosy	ntec Dultants	Figure 1		
	Columbus, Ohio	December 2024			

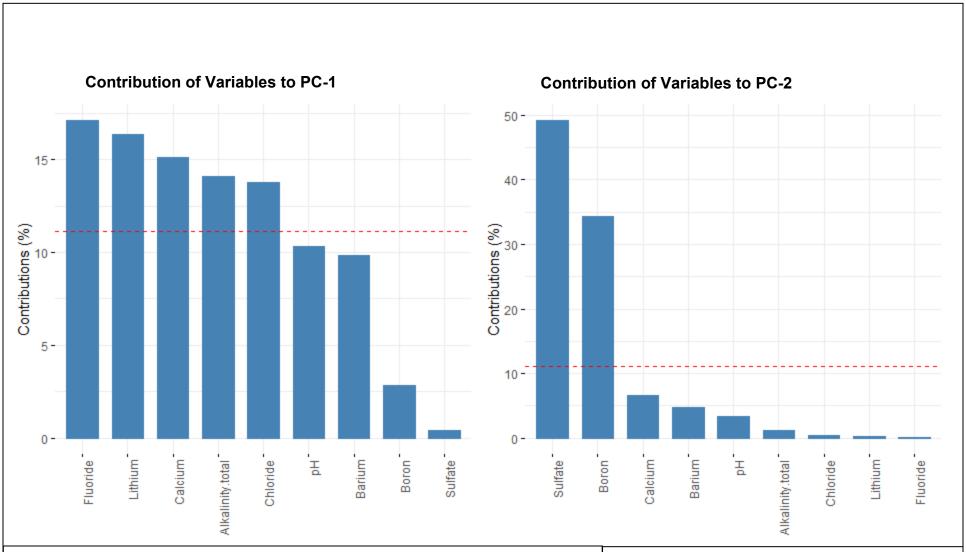


- 1. Downgradient wells MW-370, MW-392 and MW-393 are shown with solid circle symbology. Background wells MW-304 and MW-358 are shown with hollow circle symbology. BAL BAP source water (i.e., XPW01-02, XPW04-06, and TPZ-164) are shown with hollow grey symbology.
- 2. % meq/kg: percent milliequivalents per kilogram

Piper Diagram

Baldwin Power Plant - Bottom Ash Pond

Geosyi	ntec Dultants	Figure 2
Columbus, Ohio	December 2024	


1. Samples collected between 2022 and 2024 from background wells MW-304 and MW-358, downgradient wells MW-370, MW-392 and MW-393, and porewater wells TPZ-164, XPW-01, XPW-02, XPW-04, XPW-05, and XPW-06 were included in the evaluation.

Principal Component Analysis - Quality of Representation of Principal Components Baldwin Power Plant – Bottom Ash Pond

Geosyntec consultants

Figure 3a

Columbus, Ohio

1. The dashed red line represents the anticipated value for uniform contribution. The constituents with a contribution exceeding the reference line are considered significant in its contribution to each PC (principal component).

Contribution of Variables to First Two Principal Components

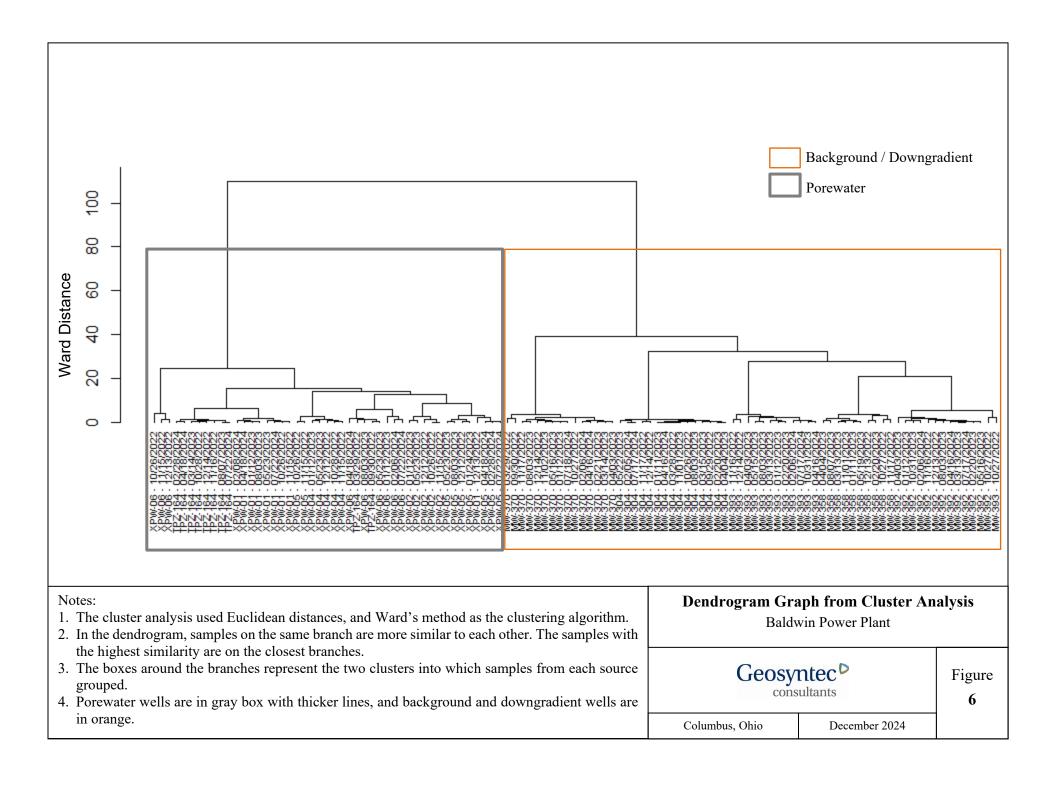
Baldwin Power Plant – Bottom Ash Pond

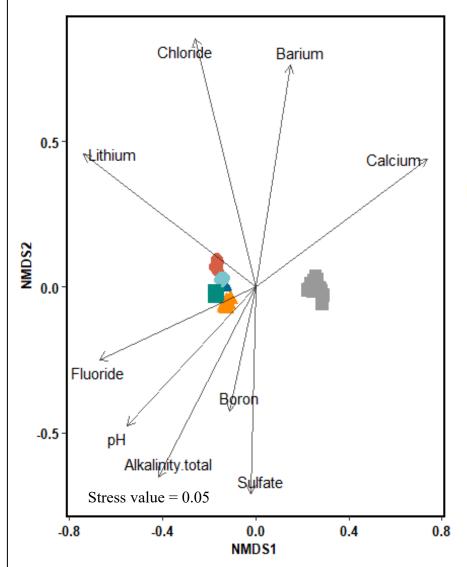
Geosyntec ^D	
consultants	

Figure **3b**

Columbus, Ohio

- 1. The 95% data ellipse for each hydrostratigraphic unit is shown. Gray for porewater, and orange for background and downgradient groups.
- 2. The arrows signify the correlations between the constituents and the principal components.
- 3. PCA Principal Component Analysis.
- 4. Dim Dimension.


Principal Component Analysis Biplot


Baldwin Power Plant – Bottom Ash Pond

Geosyntec [▶]	
consultants	

Figure

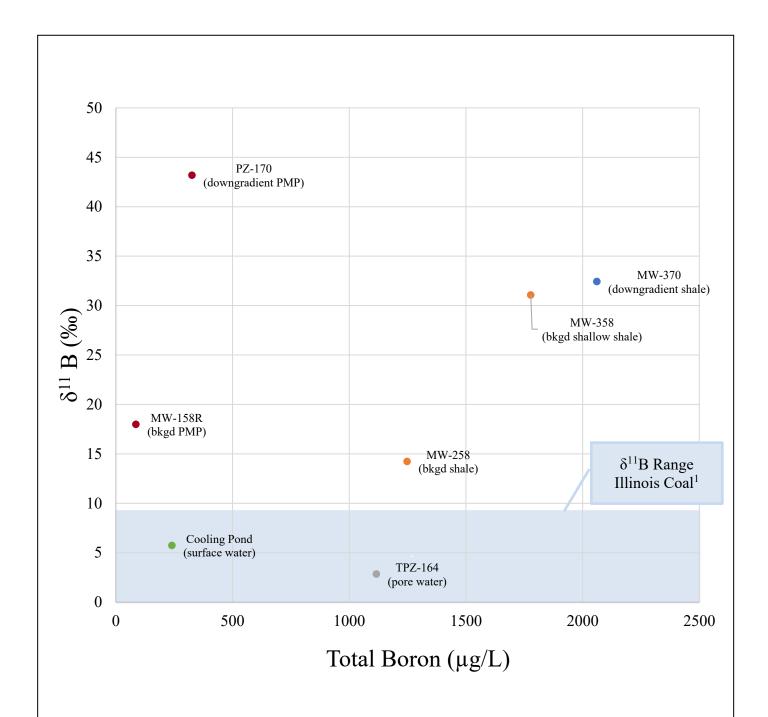
Columbus, Ohio

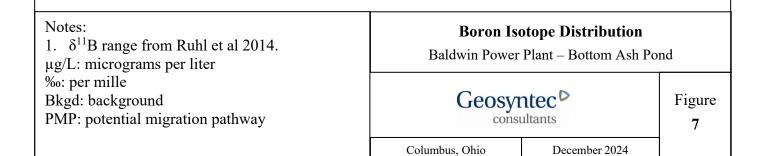
Designation

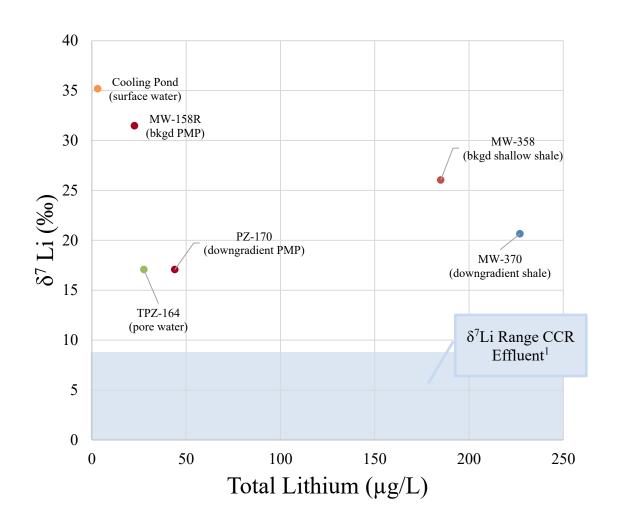
- Background (MW-304)
- Background (MW-358)
- ▲ Downgradient (MW-370)
- Downgradient (MW-392)
- Downgradient (MW-393)
- Porewater

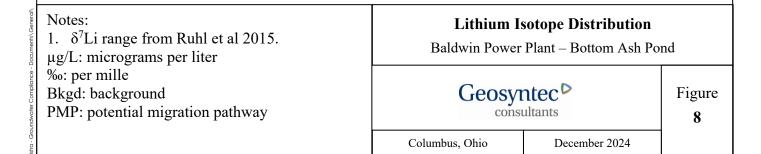
Notes:

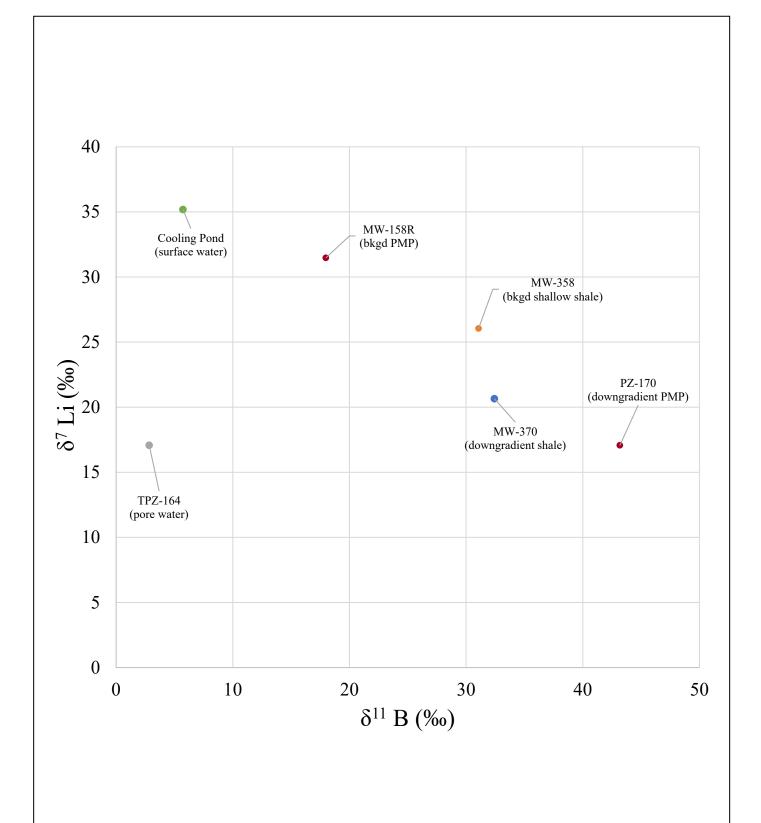
- 1. NMDS: Non-metric Multidimensional Scaling.
- 2. The arrows represent the correlation between the constituents and the NMDS axes.
- 3. The stress value represents the goodness of fit of the NMDS ordination in reduced dimensions to the observed dissimilarity. The stress value (0.05) from the analysis indicates an excellent fit.

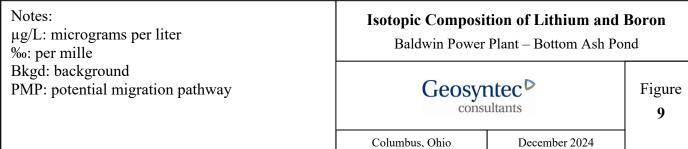

Non-Metric Multidimensional Scaling Plot

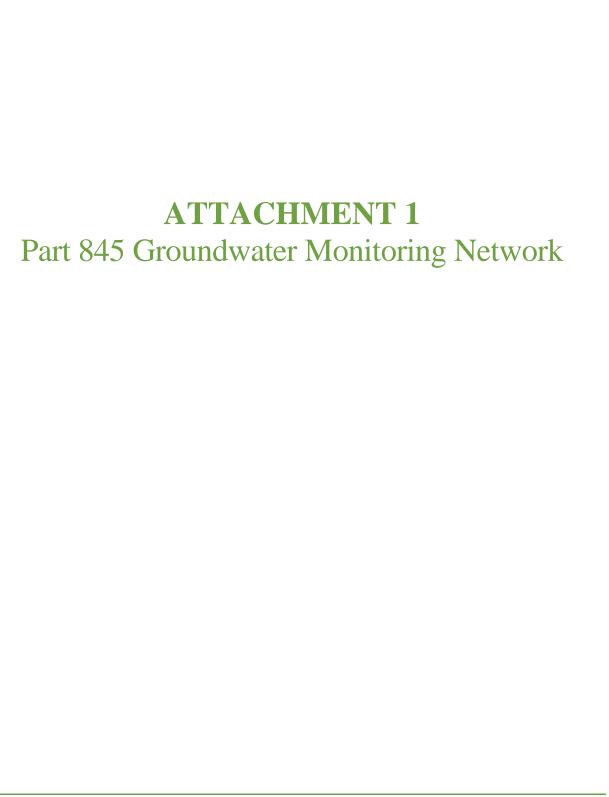

Baldwin Power Plant – Bottom Ash Pond




Figure 6


Columbus, Ohio






BACKGROUND WELL
COMPLIANCE WELL
PORE WATER WELL

REGULATED UNIT (SUBJECT UNIT)
FLY ASH POND SYSTEM
SITE FEATURE
CAPPED AREA
PROPERTY BOUNDARY

35 IAC § 845.600 GROUNDWATER MONITORING SYSTEM

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

ATTACHMENT 2 Geologic Cross Section

PORE WATER WELL

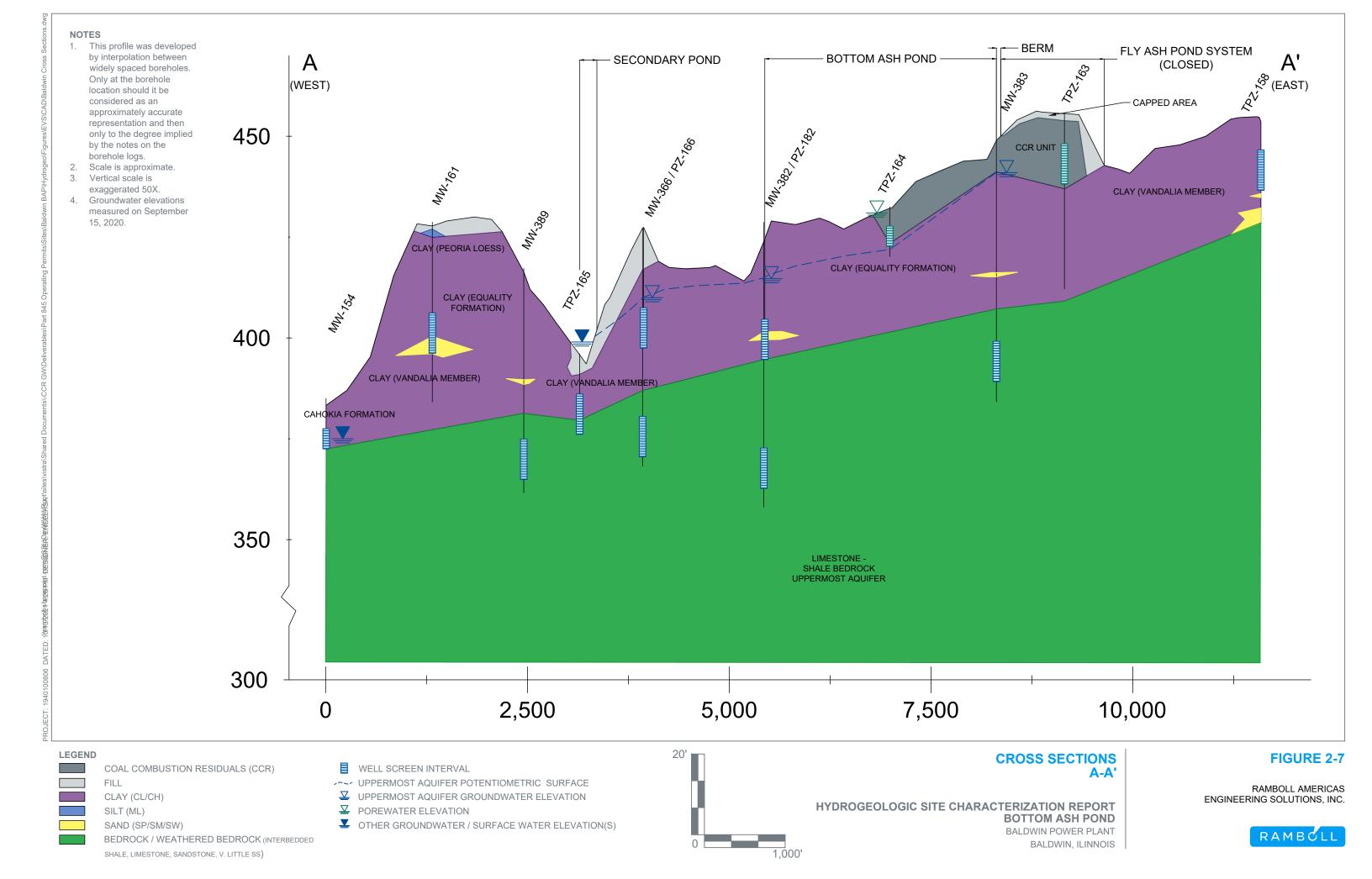
CCR SOURCEWATER SAMPLE

CROSS SECTION TRANSECT

POND SYSTEM (CLOSED)

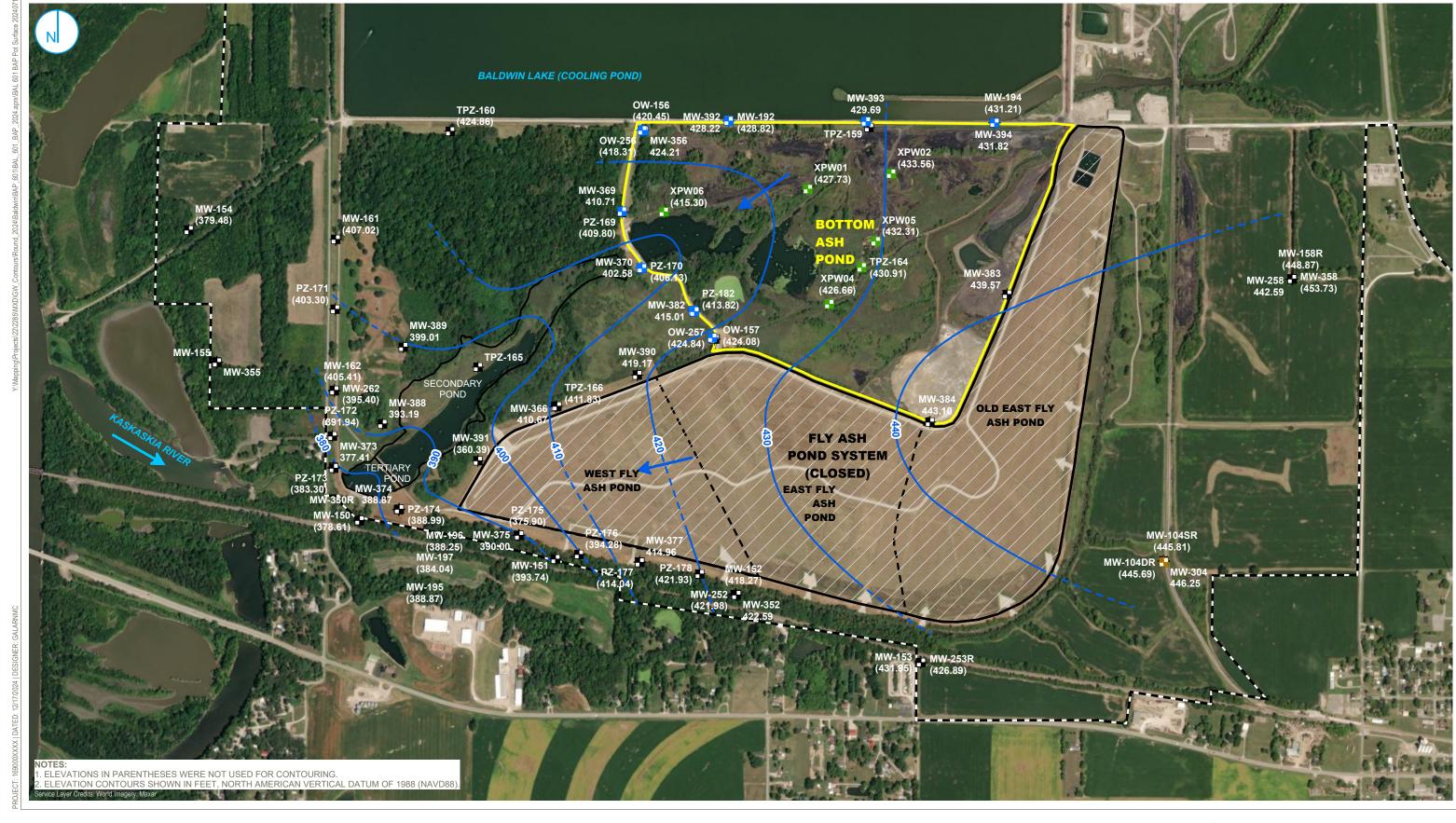
SITE FEATURE

LIMITS OF FINAL COVER


PROPERTY BOUNDARY

ALTERNATE SOURCE DEMONSTRATION BOTTOM ASH POND BALDWIN POWER PLANT

BALDWIN, ILLINOIS


RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

Uppermost Aquifer Potentiometric Surface Map
– July 15, 2024

COMPLIANCE MONITORING WELL

BACKGROUND MONITORING WELL

MONITORING WELL

PORE WATER WELL

GROUNDWATER ELEVATION CONTOUR (10-FT CONTOUR INTERVAL, NAVD88)

INFERRED GROUNDWATER **ELEVATION CONTOUR**

→ GROUNDWATER FLOW DIRECTION

REGULATED UNIT (SUBJECT UNIT) FLY ASH POND SYSTEM (CLOSED)

SITE FEATURE CAPPED AREA

PROPERTY BOUNDARY

POTENTIOMETRIC SURFACE MAP **JULY 15, 2024**

2024 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT **BOTTOM ASH POND BALDWIN POWER PLANT** BALDWIN, ILLINOIS

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

ATTACHMENT 4 Boring Logs

											Pag		of	5		
Facilit	y/Proje dwin l			. †		License/	Permit	/Moni	toring l	Numb	er	Boring	Numb MW			
				of crew chief (first, last) and Firm		Date Dri	lling S	tarted		D	ate Drill	ing Co			Dril	ling Method
•	ke We	•		, ,			J					J	1			S
Cas	cade]	Drilli	ng				10/5					10/8/2	2022			onic
					Well Name W358	Final Sta					ice Eleva		AMD			Diameter .0 inches
Local	Grid O	rigin	☐ (e:	stimated: \(\sigma\) or Boring Location		1	et (NA				3.59 F				0	.0 menes
				<u> </u>	/ W		t38		1' 42.9	9882']N		□ E
	1/4	of	1	*	, R		g <u>-89</u>)°5	<u>0'</u> <u>57.</u>				et [S		Feet W
Facilit	y ID			County Randolph		tate L		Civil Balo		City/ c	r Villag	e				
San	nple		1	Kandoipii	1	LL	<u> </u>	Daic	WIII	ء ا	. 1	Soil	Prop	erties		
	<u> </u>			Soil/Rock Descri	ntion					PID 10.6 eV Lamp			Пор			_
	.tt. &	unts	Feet	And Geologic Orig	•					e S	sive (tsf)					ts
ber 「ype	th A	S,	h In	Each Major U	=		CS	hic	ram	10.6	pres	sture ent	ب <u>ت</u> ظ	icity		men
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	J			SO	Graphic I og	Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	180		-	0 - 3.8' SILT: ML, very dark gray		0YR	_			\	0 02					CS= Core
CS	97		E	3/2), organic material (0-10%), r	noist to wet.											Sample
			- 1							X						Measured
			E													Rock Quality
			-2	2.1' dry.			ML									Designation (RQD) was
			E													modified
			_3													due to drilling
			E				L									methods, modified
			- 4	3.8 - 8.9' CLAYEY SILT: ML/CL 7/2), very dark grayish brown (1	0YR 3/2) and	i										RQD equals the sum of
			_	yellowish brown (10YR 5/8) mot	tling (20-30%	6), dry.										recovered
			- 5													core sections
			E													greater than 4 inches in
			-6													length
			Ē				ML/CL									divided by total core
			- 7													recovery.
			Ė													
			-8													
			F													
			<u>_</u> 9	8.9 - 13' SILTY CLAY WITH SA			<u> </u>									
			-	grayish brown (10YR 5/2), stron and very dark brown (10YR 2/2)	g brown (7.5` mottling (20-	YR 5/6) -30%),										
			-10	organic material (0-10%), low to medium plasticity, stiff.												
			F	modium piasuolty, suii.		(CL/ML)									
			-11													
			-													
			-12													
I herel	by certi	fy that	the inf	formation on this form is true and co	orrect to the b	est of my	y know	ledge								
Signat	ure	5		hr	Firm Ramb									(414)		
	- 1			-/-	234 W	Florida S	Street,	5th Fl	oor, Mi	ilwauk	ee, WI	53204	Fax:	(414)	837-3	608

234 W Florida Street, 5th Floor, Milwaukee, WI 53204 Fax: (414)837-3608

Template: RAMBOLL_IL_BORING LOG - Project: 845_BALDWIN_2022.GPJ

				Boring Number MW358								Pag	ge 2	of	5
Sar	nple								dun		Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			E		(CL/ML)										
			-13 -14 -14 -15	13 - 17.8' SILTY CLAY: CL/ML, grayish brown (10YR 5/2), strong brown (7.5YR 5/6) and very dark brown (10YR 2/2) mottling (20-30%), low toughness, medium to high plasticity, stiff to very stiff.	(CL/WIL)										
2 CS	60 60		-16 -17	16.1' mottling discontinues.	CL/ML										
3 CS	48 36			17.8 - 21' SILTY CLAY WITH SAND: (CL/ML)S, brown (10YR 5/3), strong brown (7.5YR 5/6) and gray (10YR 6/1) mottling (20-30%), gravel (5-15%), no dilatancy, high toughness, low to medium plasticity, hard, moist. 21 - 26.5' SHALE: BDX (SH), dark gray (GLEY 1	(CL/ML)	\$									
4 CORE	36 32		-22 -23 -24 -25 -26	4/N), weathered, thin bedding, moderately fractured.	BDX (SH)										RUN #4: Modified RQD = (21/32) = 66%
5 CORE	36 29		-27 -28 -29	26.5 - 27.5' LIMESTONE: BDX (LS), dark gray (5Y 4/1), shaley, fossiliferous, very strong. 27.5 - 31.3' SHALE: BDX (SH), grayish black (N2), weathered, highly decomposed to residual soil, wet to moist.	BDX (LS)										RUN #5: Modified RQD = (0/29) = 0%
6 CORE	72 60		30	29.3' thinly bedded, moderately decomposed. 30' slightly decomposed to competent, moderately fractured. 31.3 - 32' COAL: COAL, black (N1).	BDX (SH)										RUN #6: Modified RQD = (45/60) = 75%
-	1		-32												1

				Boring Number MW358									ge 3		5
San	nple							amp	٠ 📙		Soil	Prop	erties		_
	Length Att. & Recovered (in)	unts	Feet	Soil/Rock Description And Geologic Origin For				Diagram PID 10.6 eV Lamp	Sive	Strength (tsf)					ts:
Number and Type	gth A	Blow Counts	Depth In Feet	Each Major Unit	CS	Graphic Log	Well	10.6	nores	ngth	Moisture Content	nid it	Plasticity Index	9	RQD/ Comments
Nur	Len	Blo	Dep		S D	Grap Log	We.	PID PID	ű	Stre	Mo	Liquid Limit	Plastic Index	P 200	RQ]
			<u>-</u>	32 - 33' SHALE : BDX (SH), grayish black (N2), slightly decomposed to competent, moderately fractured, wet to moist.	BDX (SH)										
			_33	33 - 36' SHALEY LIMESTONE: BDX (LS/SH),	(011)										
			34	medium gray (N5), weathered, shaley, higly decomposed, slightly fractured.											
			_		BDX (LS/SH	H									
			_35		(13/311										
			- -36												
7 CORE	72 71		-	36 - 40.8' SHALEY LIMESTONE : to SHALE : BDX (LS/SH), interbedded shale.											RUN #7: Modified
			_37			H									RQD = (67/71) = 94%
															3470
			-		BDX (LS/SH										
			_39												
			E -40												
			-41	40.8 - 42' LIMESTONE : BDX (LS), medium light gray (N6), strong to moderately fractured, slightly	BDX										
			-42	decomposed, narrow apertures.	(LS)										
8 CORE	96 85			42 - 58.9' SHALE : BDX (SH), medium gray (N5) to medium dark gray (N4), weathered, weak, thinly											RUN #8: Modified
			-43	bedded, moderately to highly fractured.											RQD = (81/85) = 94%
			- 44												
			45												
			- -46												
			<u> </u>												
			-47		BDX (SH)										
			-48	47.5' dark grayish brown (10YR 4/2), pale olive (5Y 6/4) discoloration, more competent.											
			49												
	00		50												DI INI "2
9 CORE	60 60			50.2' weak to moderate.											RUN #9: Modified RQD =
			_51	50.8' olive gray (5Y 5/2).											(52/60) = 87%
			1 '	ı	1	I	1	1	1		1	1	I	1	ı

				Boring Number MW358							Pag		of	5
Sar	nple							dun		Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u> </u>			-	42 - 58.9' SHALE: BDX (SH), medium gray (N5)				Д	O S	<u> </u>		H H		
10 COR E	60 58		53 54 55	to medium dark gray (N4), weathered, weak, thinly bedded, moderately to highly fractured. (continued) 52.2' dark grayish green (5GY 4/2). 54.1' medium dark gray (N4) to medium gray (N5), weak, highly decomposed, no visible bedding, dry.	BDX									RUN #10: Modified
			56 57	55.7' dark grayish green (5GY 4/2). 57.2' light brownish gray (10YR 6/2), thinly bedded, laminated.	(SH)									RQD = (42/58) = 72%
11 CORE	36 31		-58 -59 -60 -61 -62	58.2' medium dark gray (N4), strong, intensely fractured, thinly bedded. 58.9 - 64' LIMESTONE : BDX (LS), medium gray (N5), very strong, moderately fractured, visible laminations.	BDX (LS)									RUN #11: Modified RQD = (8/31) = 26%
12 CORE	36 36		-63 -64	64 - 75.3' SHALE : BDX (SH), medium dark gray										RUN #12: Modified RQD = (31/36) = 86%
13 CORE	48 48		65 66 67	(N4) to medium gray (N5), strong, thinly bedded to laminated, moderately fractured. 64.3' grayish green (5GY 5/2), weathered, weak, decomposed.										RUN #13: Modified RQD = (43/48) = 90%
14 CORE	60 58		-68 -69 -70 -71	69.3' medium dark gray (N4), weathered, moderate strength.	BDX (SH)									RUN# 14: Modified RQD = (57/58) = 99%

				Boring Number MW358							Pag	e 5	of	5
Sar	nple							dun		Soil	Prope	rties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
15 CORE				64 - 75.3' SHALE : BDX (SH), medium dark gray (N4) to medium gray (N5), strong, thinly bedded to laminated, moderately fractured. <i>(continued)</i> 75.3 - 77.1' LIMESTONE : BDX (LS), gray (5Y 6/1), fossiliferous, very strong. 77.1 - 78.2' SHALE : BDX (SH), medium dark gray (N4), weathered, weak to moderate strength, moderately decomposed. 78.2 - 84.8' LIMESTONE : BDX (LS), medium dark gray (N4) to medium gray (N5), shaley, fossiliferous, very strong, moderately fractured, laminations (0-5%).	BDX (SH) BDX (LS) BDX (LS)									RUN #15: Modified RQD = Not Recorded RQD = (23/51) = 45%
17 CORE	60 60			84.8 - 90' SHALE : BDX (SH), dark gray (N3), weathered, weak to moderate strength, moderately decomposed, moderately fractured, thin bedding. 90' End of Boring.	BDX (SH)									RUN #17: Modified RQD = (28/60) = 47%

													Pag		of	5
	ty/Proje					License/	Permit	/Monito	oring N	Vumbe	r	Boring				
	dwin]					D . D	1111 0			15	. 5 11		MW		- 15 11	
	_	•	Name	of crew chief (first, last) and Firm		Date Dri	Illing S	tarted		Da	te Drill	ing Co	mplete	1	Drill	ling Method
	ke We		ng				9/9/	2022				9/26/2	2022		Sc	onic
				Common Well		Final Sta	atic Wa	iter Lev	el	Surfac	e Eleva	ation		Во		Diameter
				MW392		Fe	et (NA	AVD8	8)	434	1.07 F			88)	6	.0 inches
				stimated: \square) or Boring Location \triangleright 0 N, 2,382,717.92 E E/W		La	t 38	8° <u>11</u>	' 57.	.132"	Local	Grid Lo		-		_
State	1/4							9° 52				Fe]N]S		☐ E Feet ☐ W
Facilit		01	1	County T N, R	S	tate	<u> </u>	Civil T	own/C	ity/ or	Village		Ci _] 3		reet w
	,			Randolph]	IL		Baldy		,	Č					
San	nple									du		Soil	Prope	erties		
			,,	Soil/Rock Description						Lan						
0	od (i	unts	Fee	And Geologic Origin Fo	or					eV	sive (tsf				ı	ts:
ber Sype	th A	ပိ	h In	Each Major Unit			CS	hic	ram	9.01	pres	ture	<u>.</u>	icity		men /
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				n S (Graphic Log	Well Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	120	Щ		0 - 1.2' FILL, WELL-GRADED GRAV	EL WIT	Н	1	PÕŢ			S C	0		P		CS= Core
cs	46		Ė	CLAY: GW-GC, pinkish gray (7.5YR 6	6/2), an	gular,	(FILL) GW-G0	5000							ı	Sample
			-1	moist.						3					ı	Measured
			E	1.2 - 16' FILL, LEAN CLAY: CL, light	brown										ı	Rock
			-2	(7.5YR 6/4), sand (0-5%), no dilatanc medium plasticity, moist.	y, iow i	O									ı	Quality Designation
			<u> </u>												ı	(RQD) was
			Ε,												ı	modified due to
			_3												ı	drilling
			E												ı	methods, modified
			_4												ı	RQD equals
			_												ı	the sum of recovered
			- 5												ı	core
			F												ı	sections greater than
			F _												ı	4 inches in
			- 6				/=\								ı	length divided by
			_				(FILL) CL								ı	total core
			- 7												ı	recovery.
			Ė												ı	
			-8												ı	
			F												ı	
			_ 9												ı	
			L ´												ı	
			_												ı	
2 CS	120		-10												ı	
CS	62		F												ı	
			-11												ı	
			E												ı	
			- 12												ı	
I here	by certi	fy that	the inf	formation on this form is true and correct	to the l	best of m	y know	ledge.			1					<u> </u>
Signat	-				Raml		-						Tel·	(414)	837-30	607
			_	-922		Florida S	Street,	5th Floo	or, Mil	wauke	e, WI 5	53204		(414)		

234 W Florida Street, 5th Floor, Milwaukee, WI 53204 Fax: (414)837-3608

Template: RAMBOLL_IL_BORING LOG - Project: 845_BALDWIN_2022.GPJ

				Boring Number MW392									ge 2	of	5
Sar	nple								dun		Soil	Prop	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
3 CS	120 33		13 14 15 16 17 18 19 21 21 22 23 24 25 26	1.2 - 16' FILL, LEAN CLAY: CL, light brown (7.5YR 6/4), sand (0-5%), no dilatancy, low to medium plasticity, moist. (continued) 16 - 20' LEAN CLAY: CL, light brown (7.5YR 6/4), sand (0-5%), no dilatancy, low to medium plasticity, moist. 20 - 33' LEAN CLAY: CL, pinkish gray (7.5YR 6/2), sand (0-5%), medium to high plasticity, stiff, moist.	(FILL)										
4 CS	120 104		-29 -30 -31 -32	30' increasing sand and gravel content.											

				Boring Number MW392									ge 3	of	5
San	nple								dun		Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Well	Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
ي ش	120 108		-33 -34 -35 -36 -37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -47	35 - 36.5' SANDY SILT WITH GRAVEL: s(ML)g, light yellowish brown (10YR 6/4), dry. 36.5 - 39' CLAYEY SILT: ML/CL, gray (7.5YR 5/1), sand (5-10%), coal (0-5%), gravel (0-5%), dry. 39 - 40' SILTY CLAY: CL/ML, sand (0-5%), low to medium plasticity, stiff. 40 - 48' SILT WITH SAND: (ML)s, light brownish gray (10YR 6/2), dry.	CL (\$W-SM s(ML)g										
6 CS	84 81		-50 -51 -52	48 - 52 ' SILT: ML, gray (2.5Y 5/1), sand (0-5%), dry.	ML										

				Boring Number MW392								e 4	of	5
Sar	nple			Soil/Rock Description				PID 10.6 eV Lamp			Prope	rties		
. Q	Att. & red (in	stunc	ı Feet	And Geologic Origin For				6 eV]	ssive 1 (tsf)	ပ		>		nts
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	SCS	Graphic Log	ell	D 10.	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Z E	l I	B	<u> </u>	52 - 57' SHALE : BDX (SH), dark gray (5Y 4/1),	D	G L	≱ Q	[H	Ω <u>Ω</u>	Σŭ	r r	P II	Ъ	<u> </u>
			- -53	highly weathered, hard, dry.										
			-	53' very dark gray (7.5YR 3/1).										
			<u>-</u> 54		BDV									
			_ 55		BDX (SH)									
			_											
			_56 _											
7	60		_57	57 - 57.5' LIMESTONE: BDX (LS), gray (5Y 6/1),										RUN #7:
7 CORE	4		-	slightly fractured. 57.5 - 70' SHALE : BDX (SH), dark gray (5Y 4/1).	BDX (LS)									Modified RQD = 0%
			<u>-58</u>	weathered, soft, moderately fractured to highly fractured limestone beds (0-5%).										(No Solid Recovery > 4")
			-59											4)
			60											
			- 00											
			-61											
	00		-62											DUN #0
8 CORE	96 78													RUN #8: Modified RQD =
			-63											(28/78) = 36%
			-64		BDX (SH)									
			-											
			-65											
			-66											
			E -67	66.3' - 67.2' highly fractured, very soft, wet.										
- 1			<u> </u>											
			-68											
			-69											
- 1			E											
9 CORE	120 62		70	70 - 74.4' LIMESTONE : BDX (LS), gray (5Y 6/1), moderately to intensely fractured, moderately wide										RUN #9: Modified
			71	apertures.	BDX (LS)									RQD = (28/78) = 36%
- 1			72											30%
-	1		1/2		I	1	Ι	1	1	l		- 1		I

				Boring Number MW392								ge 5	of	5
San	nple							dun		Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
10 COR#	48 48		-73 -74 -75 -76 -77 -78 -79 -80 -81 -82 -83 -84	70 - 74.4' LIMESTONE: BDX (LS), gray (5Y 6/1), moderately to intensely fractured, moderately wide apertures. (continued) 74.4 - 81.8' SHALE: BDX (SH), medium dark gray (N4) to dark gray (N3), slightly weathered, moderately fractured, thinly bedded. 81.8 - 84' LIMESTONE: BDX (LS), medium light gray (N6), shaley, fossiliferous, moderately fractured, thinly bedded. 83.2' medium gray (N5). 84' End of Boring.	BDX (LS)									RUN #10: Modified RQD = (28/48) = 58%

													Pag		of	5
	ty/Proje			4		License/	Permit	/Monito	oring l	Numb	er	Boring				
	dwin]			of crew chief (first, last) and Firm		Date Dri	lling S	tarted		D	ate Drill	ling Co	MW		Dril	ling Method
	ke We	•	rvanic	or erew emer (mst, last) and I mm		Date Di	illing 5	tarted			ate Dili	ing Co	трисс	u		ing wethou
	cade		ng				9/9/	2022				10/4/2	2022		So	onic
				Common V		Final Sta	itic Wa	iter Lev	el		ce Eleva					Diameter
					/393	Fe	et (NA	AVD8	8)	43	4.59 F				6	.0 inches
				stimated:) or Boring Location N, 2,383,944.49 E	n ⊠ ′®	La	t 38	8° 11	' 57	.027"	Local	Grid Lo				
State					•		g -89		45.:			Ea]N]S		East DW
Facili	1/4 ty ID	01	1	/4 of Section , T N,		tate	<u> </u>	Civil T			 r Village		et			Feet W
	,			Randolph		L		Bald		,	Ü					
San	nple									du		Soil	Prop	erties		
	T .		,,	Soil/Rock Descrip	otion					PID 10.6 eV Lamp						
•	kt. &	unts	Fee	And Geologic Orig						e	sive (tsf)					ts:
ber Sype	th A	, Co	h In	Each Major Un			CS	hic	ram	9.01	pres gth	ture ent	.e _	icity		men
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	,			n s o	Graphic Log	Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	120	I		0 - 1' FILL, WELL-GRADED GR	AVEL: GW,			1 × 0	VA R	 	0 01	20		H H	<u> </u>	CS= Core
CS	86		-	pinkish gray (7.5YR 6/2), angular			(FILL) GW	10 Co								Sample
			-1	1 - 20' FILL, LEAN CLAY: CL, br	own (7.5YR	6/4)		27		\triangleleft						Measured
			-	sand (0-5%), no dilatancy, low to	medium pla	sticity,										Rock
			-2	moist.												Quality Designation
			F													(RQĎ) was
																modified due to
																drilling
			L													methods, modified
			- 4													RQD equals
			F													the sum of recovered
			_5													core
																sections greater than
			-6													4 inches in
			<u> </u>				(FILL)									length divided by
			F _				CL									total core
			E /													recovery.
			L													
			-8													
			-													
			- 9													
			_													
			-10													
2 CS	120 120			10' sand (0-5%), iron concretion	s (0-5%).											
	0		<u> </u>													
			-11													
			 													
			-12					//								
		fy that	the inf	formation on this form is true and co			y know	ledge.								
Signa	ture	=		fr	Firm Ramb		7	5.1 P!	3.6		****	72001		(414)		
			1		234 W	Florida S	street,	oth Flo	or, Mı	ıwauk	ee, WI	5204	гах:	(414)	03/-3	000

234 W Florida Street, 5th Floor, Milwaukee, WI 53204 Fax: (414)837-3608

Template: RAMBOLL_IL_BORING LOG - Project: 845_BALDWIN_2022.GPJ

				Boring Number MW393	Page 2 of 5 Soil Properties Soil Properties								5		
San	nple							dui	_		Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram PID 10.6 eV Lamp	Commercia	Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
S S S	120 120		-13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -24 -25 -26 -27 -28	1 - 20' FILL, LEAN CLAY: CL, brown (7.5YR 6/4), sand (0-5%), no dilatancy, low to medium plasticity, moist. (continued) 18' medium to high plasticity. 20 - 24' LEAN CLAY: CL, light brown (7.5YR 6/4), mottling, sand (0-5%), medium to high plasticity, cohesive, moist. 24 - 27' CLAYEY SAND: SC, gray (10YR 6/1), fine to medium sand, wet.	(FILL) CL										
4 CS	120 105		30 31	30' coal fragments (0-5%). 31 - 40' SILTY CLAY: CL/ML, dark gray (7.5Y 4/1), organic material (0-5%), gravel (0-5%), stiff to	CL /ht										
11				very stiff, moist.	CL/ML										

				Boring Number MW393											ge 3	of	5
Sar	nple									amp		So	il :	Prope	erties		
	t. & I (in)	nts	eet	Soil/Rock Description						šV Ľ	ive tsf)						
ser ype	h At /ered	Cou	In	And Geologic Origin For Each Major Unit	S	ic			am	9.0 e	ressi gth (1	ure	ınt	ਚ	city		nents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Lach Major Chit	USC	Graphic	go	Well	Diagr	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture	Conte	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1			-	31 - 40' SILTY CLAY: CL/ML, dark gray (7.5Y 4/1), organic material (0-5%), gravel (0-5%), stiff to very stiff, moist. <i>(continued)</i>		Ž		Í			0 57		J				
			_ 33	very stiff, moist. <i>(continued)</i>													
			- 33														
			Ē														
			_35														
			-36		CL/ML	-											
			_ _37														
			-														
			-38														
			-														
			-39														
	100		-40	40 5000 7 11 (0.5)(50)													
5 CS	120 120		-	40 - 50' SILT: ML, grayish brown (2.5Y 5/2), very stiff to hard, platy, dry.													
			-41														
			<u> </u>														
			-42														
			_ 43														
			44														
			Ē														
			-45		ML												
			- -46														
			_														
			-47														
			<u> </u>														
			 48														
			-49														
			Ē														
6 CS	120		50	50 - 55' SILT: ML, dark gray (7.5YR 4/1), sand (0-5%), very stiff to hard, dry.		+	₩										
CS	92		<u> </u>	(0-5%), very stiff to hard, dry.													
			-51 -		ML												
			_ 52														
	. '			•	•		'		'		•				•		•

				Boring Number MW393								Pag	e 4	of	5
Saı	nple								amp		Soil	Prope	erties		-
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
7 CORE	120 60		-53 -54 -55 -56 -57 -58 -60 -61 -62 -63 -64 -65 -66	50 - 55' SILT : ML, dark gray (7.5YR 4/1), sand (0-5%), very stiff to hard, dry. <i>(continued)</i> 55 - 57' CLAYEY SILT : ML/CL, gray (10YR 6/1), sand (0-5%), gravel (0-5%), medium plasticity, moist. 57 - 60' LIMESTONE : BDX (LS), gray (10YR 6/1), rock flour and angular chips (<2").	ML/CL BDX (LS) BDX (SH)										RUN #7: Modified RQD = (31/60) = 52%
8 CORE	42 40		-69 -70 -71 -72	70 - 73.5' LIMESTONE : BDX (LS), medium dark gray (N4), weathered, shaley, thinly bedded, moderately fractured.	BDX (LS)										RUN #8: Modified RQD = (32/40) = 80%

				Boring Number MW393								ge 5	of	5
San	nple							du		Soil	Prope	erties		
	(ii)	ts	et	Soil/Rock Description				V La	š Œ					
r pe	Att.	,oun	In Fe	And Geologic Origin For	N	ပ	 E	.6 e	essiv h (ts	re t		ty		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	S C S	Graphic Log	Well Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
and Nu	Leı	BIG	De		n n	Grap Log	Well	PII	Str	ĭ S	Li Li	Pla Ind	P 2	S
				70 - 73.5' LIMESTONE: BDX (LS), medium dark gray (N4), weathered, shaley, thinly bedded, moderately fractured. <i>(continued)</i> 72' medium gray (N5).	BDX (LS)									
9 CORE	78 40		74	73.5 - 85' SHALE : BDX (SH), medium gray (N5), weathered, moderately to slightly fractured, thinly laminated.										RUN #9: Modified RQD = (30/40) =
			75											75%
			76 											
			- 78											
			79 		BDX (SH)									
10 CORE	60 45		- 80											RUN #10: Modified RQD =
			81 											(34/45) = 76%
			-82 - - -83											
			- 84	83.5' more competent.										
			- - 85	85' End of Boring.										
				65 Eliu di Bullilg.										

													Pag		of	5
	ty/Proje			.		License/	Permit	Monito	oring N	Numbei		Boring	Numb MW			
	dwin]			of crew chief (first, last) and Firm		Date Dri	lling S	tarted		Da	te Drill	ing Cor			Dril	ling Method
	ke Wo	•		21 313		<i>D D</i>							присс			
	scade		ng					2022				10/5/2	2022			onic
						Final Sta				Surfac						Diameter
Local	Grid O	rigin		stimated:) or Boring Location	W394	Fee	et (NA	VD8	8)			eet (N. Grid Lo		88)	6	.0 inches
					/(W)	La	t38	° <u>11</u>	<u>' 56.8</u>	3911"	Local	JIIG LO]N		□ E
	1/4				, R	Long	g <u>-89</u>	°51	<u>'</u> 31.	1756"		Fee				Feet W
Facili	ty ID			County		ate		Civil T		City/ or	Village	;				
		I		Randolph	I	L		Baldy	vin		1	~ '1				
Sai	nple									PID 10.6 eV Lamp		Soil	Prope	erties		
	Length Att. & Recovered (in)	ıts	eet	Soil/Rock Descri	-					N C	ve sf)					
er /pe	Att ered	Cour	In F	And Geologic Orig			N	ic	E).6 e	ressi th (t	ıre 1t	_	ity		ents
Number and Type	Length Att. Recovered (Blow Counts	Depth In Feet	Each Major U	nıt		SC	Graphic Log	Well Diagram) D 10	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
2 g	72	B	Ā	0 - 2.6' FILL, WELL-GRADED 0	DAVEL WIT	Н		L G	N K		2 2	Σŭ	2 2	Pl	Ь	ದ ರ CS= Core
cs	67			CLAY: GW-GC, brown (10YR 4/												Sample
			-1				(FILL)									Measured
			E				GW-GC									Rock
			-2													Quality Designation
			E					600								(RQD) was modified
			_3	2.6 - 20' LEAN CLAY: CL, brow reddish brown bottling (20%), sa	n (10YR 5/3), ınd (0-5%). lo	w to					4					due to
				medium plasticity, very stiff to ha	ard, moist.						4					drilling methods,
			<u>-</u> 4													modified RQD equals
																the sum of
			_ _5								١,					recovered core
			Ē								4					sections greater than
			_ _6													4 inches in
2 CS	120 120		Ė Š													length divided by
			_ 								2.5					total core recovery.
			þ ′				CL									10001017.
											3.5					
			- "													
			_9								2					
				9.2' brown (7.5YR 5/3), medium	to high plast	icity.										
			- 10	,		•					2					
			-10													
			-								3					
			 11													
			- -12								2.25					
Ihere	hy certi	fy that	l	formation on this form is true and co	orrect to the h	est of m	z know	ledge				<u> </u>				
Signa	-	iy mat	uic IIII	ormation on this form is true allu co	Firm Ramb		KIIOW	reage.					Та1.	(414)	927 2	507
2	-	-		- gr		Florida S	Street, :	5th Floo	or, Mi	lwauke	e, WI 5	3204		(414)		

234 W Florida Street, 5th Floor, Milwaukee, WI 53204 Fax: (414)837-3608

Template: RAMBOLL_IL_BORING LOG - Project: 845_BALDWIN_2022.GPJ

				Boring Number MW394								ge 2	of	5
Sar	nple							Diagram PID 10.6 eV Lamp		Soil	Prope	erties		
	Length Att. & Recovered (in)	ıts	eet	Soil/Rock Description				ľ	e ve					
r pe	Att	Çour	In F	And Geologic Origin For	N N	ွ		m B	essi:	le f		ity		ents
Number and Type	Length Att. & Recovered (in	Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic I og	Well	Diagram PID 10.6	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u>z a</u>	Le	Bl	Ď	2.C. 2011 FAN OLAV. OL. hranne (10VD F/2)	Þ	5 5	i ≱ i		ပို့ နိ	≱ပိ	<u> </u>	Pla	Ъ	≥ 3 2 3
3 CS	120 120		-13 14 15 16 17 18	2.6 - 20' LEAN CLAY: CL, brown (10YR 5/3), reddish brown bottling (20%), sand (0-5%), low to medium plasticity, very stiff to hard, moist. <i>(continued)</i> 14' low to medium plasticity. 16.5' increasing sand and gravel content, gray (GLEY 1 5/1) iron concretions (50%).	CL				2.25					
4 CS	120 112		20 21 22 23 24 25 26 27 28 29 30 31	20 - 22.1' SILTY SAND: SM, yellowish brown (10YR 5/6), fine sand, clay (0-5%), moist. 22.1 - 36.8' LEAN CLAY: CL, dark yellowish brown (10YR 4/4), greenish gray (GLEY 1 5/10Y) and yellowish brown (10YR 5/6) mottling, sand (0-5%), medium to high plasticity, hard, moist.	SM				4.5 4.5 4.5 4.5 4.5 4.5 4.5					

				Boring Number MW394								ge 3	of	5
Sar	nple							dur		Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
5 CS	120 113			22.1 - 36.8' LEAN CLAY: CL, dark yellowish brown (10YR 4/4), greenish gray (GLEY 1 5/10Y) and yellowish brown (10YR 5/6) mottling, sand (0-5%), medium to high plasticity, hard, moist. <i>(continued)</i> 34.4' olive yellow (5Y 6/6), low to medium plasticity.	CL				3.75 4.25 4.5					
			-37 -38 -39 -40 -41	36.8 - 48' Weathered SHALE Bedrock : BDX (SH), pale olive (5Y 6/3), weathered, argillaceous, fissile, moist. 40' olive gray (5Y 5/2).										
6 CS	96 96		-43 44 45 46 47	48 - 58' LIMESTONE: to SHALE: BDX (LS), olive	BDX (SH)									
			-49 -50 -51 -52	gray (5Y 4/2), interbedded limestone and shale, fissile. 50' - 50.2' limestone, very strong.	BDX (LS)									

				Boring Number MW394							Pag		of	5
Sar	nple							dun		Soil	Prope	rties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
7 CS	48 48		53 54 55 56	48 - 58' LIMESTONE : to SHALE : BDX (LS), olive gray (5Y 4/2), interbedded limestone and shale, fissile. <i>(continued)</i> 53.7' - 53.9' limestone, very strong. 54' - 55.6' dark gray (10YR 4/1) to gray (10YR 5/1), more competent. 55.6' gray (10YR 6/1) to dark gray (10YR 4/1), more competent.	BDX (LS)									
8 CORE	18 14		-58 - -59	58 - 59.7' LIMESTONE: BDX (LS), medium gray (N5), shaley, laminated, moderately fractured.	BDX (LS)									RUN #8: Modified RQD = (4/14) = 29%
9 CORE	60 60		-60 -61 -62 -63	59.7 - 68' SHALE : BDX (SH), medium dark gray (N4), weathered, very weak to weak, thinly bedded, moderately fractured.										RUN #9: Modified RQD = (48/60) = 80%
10 CORE	57 56		-64 -65 -66	64.5 - 67.2' highly decomposed, weathered, wet.	BDX (SH)									RUN #10: Modified RQD = Not Recorded
11 CORE	68 68		-68 -69 -70	68 - 68.4' LIMESTONE: BDX (LS), light olive gray (57 6/2) to olive gray (5/2). 68.4 - 70.8' SHALE: BDX (SH), medium dark gray (N4), weathered, very weak to weak, thinly bedded, moderately fractured.	BDX (LS) BDX (SH)									RUN #11: Modified RQD = (42/68) = 62%
			—71 — —72	70.8 - 71' LIMESTONE : BDX (LS), dark gray (N3), shaley. 71 - 77.6' SHALE : BDX (SH), dark gray (N3),	BDX (LS)								I	

				Boring Number MW394								e 5	of	5
Sar	nple							dun		Soil	Prope	rties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
12 CORE				strong, thinly bedded, moderately fractured. 71 - 77.6' SHALE: BDX (SH), dark gray (N3), strong, thinly bedded, moderately fractured. (continued)	BDX (SH)									RUN #12: Modified RQD = (44/59) = 75%
			-78 -79 -80	77.6 - 80' LIMESTONE: BDX (LS), medium gray (N5), shaley, weak, moderately fractured.	BDX (LS)									
13 CORE	60 48			80 - 85' SHALE: BDX (SH), medium dark gray (N4), weathered, weak, thinly bedded, moderately fractured, moist to wet.	BDX (SH)									RUN #13: Modified RQD = (40/48) = 83%

SOIL BORING LOG INFORMATION

Facility	/Drojo	ot Non	20					License/	Dormit	/Moni	torin	a Nun	obor		Porine	Paş Numb		of	4	
-	-		y Con	nnlev				License/	ı Cıllill	INIOIII	ioi III;	givull	IUCI		DOLLING		er 7-370			
					chief (first.	last) and Fi	m	Date Dri	lling S	tarted			Dat	te Drilli	ng Coi	npleted			ing Met	hod
	k Bae				,	,			8						8	1			1/4 HS	
	dog I		ng						11/20	0/201	15			1	1/24	2015		- 1	d rotai	
						Con	nmon Well Name	Final Sta	tic Wa	ter Le	evel	Si	urface	e Eleva	tion		Во		Diamete	
							MW-370	Fe	et (Na	AVD	88)					AVD8	38)	8	.3 inch	ies
Local C							ocation 🖂	1.	ıt38	20	11' 4	44.170	າວ "	Local (Grid Lo	cation				
State I					2,381,93		E/W										N			□ E
Facility	1/4	of]	/4 of Se	County	, T	N, R	Lon State	g <u>-89</u>			10.80		Village	Fe	eet _	S		Feet	□ W
raciiity	/ ID				Randol	lnh		Illinois		l	dwii	-	7 OI V	village						
Sam	nle				Kando	ipii		IIIIIOIS		Dan	uwn	<u> </u>			Soil	Prope	erties			
San	_					0 11/10 1 1									3011	Ттор	lics			
	Length Att. & Recovered (in)	nts	eet			Soil/Rock I	=							ve sf)						
je sr	n At ered	Cou	In F		A	_	c Origin For		S	့		됩		essi th (t	r ie	١	ity			ents
Number and Type	ngth cov	Blow Counts	Depth In Feet			Each Ma	jor Unit		SC	Graphic	= ام	Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/	m m
an N	Le Re	Ble	De						Ď	ġ,	Log	Ä		Str	≱ိ ပိ	<u> </u>	Pla	P 2	RC	<u>ပိ</u>
			-	0-2	' SILTY C	LAY CL/ML													0-28' B Drilled	
			- .																log PZ	-170
			-1						CL/MI	-									for soil descrip	
			E																ucscrip	Juori.
			_2	<u></u>	 ' Shelby T	ube Sample					ш									
			L		· · · · · · · · · · · · · · · · · · ·	ase camp.														
			_3																	
			F																	
			F,																	
			E-4	4 - 8	SILTY C	LAY CL/ML														
			E																	
			_5																	
			-																	
			-6						CL/ML											
			F						CL/IVIL											
			F ₃																	
			-																	
			-8	- - - 1	0' SILTY	CLAY to LE	AN CLAY: CL/M	 L.												
			F																	
			<u>_9</u>						CL/MI											
			F						CLANIC											
			F ₁₀																	
				10 -	12' LEAN	CLAY: CL.														
			-																	
			-11						CL											
			F																	
			12	<u> </u>	<u></u>		<u> </u>		<u>L</u>	//	4									
I hereb	y certif	fy that	the info	rmation	on this fo	rm is true an	d correct to the be	st of my kı	nowled	ge.					_					
Signatu	-	11			1011		Firm Natu				nol	ogv				Tel	: (414)	837-36	507	
	100	//	_ /	n /	////					1		- 67					\ /			

234 W. Florida St., Fifth Floor, Milwaukee, WI 53204 Fax: (414) 837-3608

Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

Boring Number MW-370 Page 2 of 4 Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Comments Number and Type Moisture Diagram Plasticity SCS Graphic Content Liquid Each Major Unit Limit Index 200 Well Log 12 - 14' Shelby Tube Sample. 13 14 - 24' **SILTY CLAY** CL/ML. 15 - 19 CL/ML -21 22 24 - 26' Shelby Tube Sample. -26 26 - 28' **SILTY CLAY** CL/ML. 27 CL/ML 28 - 28.4' **LEAN CLAY:** CL, yellowish brown (10YR 5/4), trace angular limestone gravel, soft, medium plasticity, moist. 1 SS 10 CL 10 BDX 60 29 Core 1, 28.4 - 28.9' **SHALE**: BDX (SH), gray, highly (SH)COR 18.5 RQD=51% decomposed, very weak. 28.9 - 38.1' SHALEY LIMESTONE: BDX (LS/SH), light gray to gray, intensely fractured (extremely narrow to moderately narrow apertures), medium to BDX thickly bedded, microcrystalline, moderately (LS/SH decomposed, very strong. -31

Boring Number MW-370 Page 3 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Blow Counts Depth In Feet Compressive Strength (tsf) And Geologic Origin For Comments Number and Type Moisture Plasticity Graphic Diagram Content Liquid Each Major Unit SC Index 200 Well Log 28.9 - 38.1' SHALEY LIMESTONE: BDX (LS/SH), light gray to gray, intensely fractured (extremely narrow to moderately narrow apertures), medium to 33 thickly bedded, microcrystalline, moderately decomposed, very strong. (continued) 33.9' - 38.1' gray, greenish gray in fractures, trace fossils, moderately to highly decomposed, slightly to 51.5 34 Core 2. CORI RQD=0% moderately disintegrated, clay in shoe with a hard, reddish brown inclusion. 35 BDX 36 36' - 37.9' vertical fracture. 37 38.1 - 44' SHALE: BDX (SH), bluish gray, 24 3 Core 3 COR 25 intensely fractured (extremely narrow to narrow RQD=40% apertures), highly decomposed, weak. - 39 40 24 Core 4, COR 11 RQD=0% 40.6' - 40.8 shaley limestone layer, light gray to BDX gray, microcrystalline, moderately decomposed, 36 very strong. 41.1' - 43.2 gray, moderately to highly Core 5. (SH) COR 32 RQD=78% decomposed. 44 - 45.7' SHALEY LIMESTONE: BDX (LS/SH), Core 6, 28 light gray to gray, intensely fractured (extremely RQD=29% narrow to narrow apertures), thin to medium BDX bedded, microcrystalline, slightly decomposed, clay cement in apertures, very strong. Core 7, 45 45' shale layer, bluish gray, moderately fractured COR RQD=65% 27 (extremely narrow to narrow apertures), highly 46 decomposed, weak. 45.7 - 52.2' SHALE: BDX (SH), bluish gray, moderately fractured (tight to narrow), highly decomposed, weak. RDX (SH) 24 Core 8. COR 30 RQD=78% -51 Core 9, COR RQD=0% 24

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-370 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Number and Type Comments Moisture Diagram Plasticity Content Graphic SCS Liquid Each Major Unit Limit Index 200 Well Log 52' clay cement. 52.2 - 61.7' SHALEY LIMESTONE: BDX (LS/SH), light gray to gray, intensely fractured (very narrow to narrow), thin to medium bedded, microcrystalline, 53 10 COR slightly decomposed, cemented clay in apertures, Core 10, 24 very strong.
52.7' - 53' clayey sand in aperture.
53' - 53.1 shale bed, bluish gray, fossiliferous, 36 RQD=0% moderately fractured (very narrow to narrow), highly decomposed, weak. 55 53.1' white to bluish gray, gray in the fractures (extremely narrow to moderately narrow apertures), thinly to medium bedded, slightly to moderately 11 CORI Core 11, 24 disintegrated. 30 RQD=18% 55.7' moderately disintegrated. BDX (LS/SH 58 12 COR Core 12, 30 58.1' highly decomposed. 27 RQD=39% -59 13 CORI 36 Core 13, RQD=89% 61.7 - 65.3' **LIMESTONE**: BDX (LS). BDX (LS) 65.3 - 66' Overdrilled for Well Installation. 66 66' End of Boring. Bedrock corehole reamed 6" in diameter to 66' for well installation.

SOIL BORING LOG INFORMATION

Facilit	y/Projec	t Nan	ne		License/	Permit/	Monito	oring N	Number		Boring	Numb		OI		
Bal	dwin E	nerg	y Com					J				PZ-				
	-	-	Name o	f crew chief (first, last) and Firm	Date Dri	illing St	arted		Da	te Drilli	ng Cor	npleted			ing Me	
	d Dutt		_			7/20	/2016	_			7/20/	2015			ollow s	tem
Bul	ldog D	riiir	ıg	Common Well Name	Final Sta		/2015		Surfac	e Elevat	7/29/2	2015	Bo		ger Diamet	er
				PZ-170		et (NA				8.58 F		AVD			.3 incl	
	Grid Or			stimated:) or Boring Location	'.			1' 44		Local C						
State				9 N, 2,381,944.92 E E/W		at38							N			\square E
Facilit	1/4	of	1	/4 of Section , T N, R	Lon State				.6752"	Village	Fe	et _	S		Feet	□W
raciii	y ID				Illinois		Bald		Jity/ Oi	village						
Sar	nple			randorph	111111015		Durc				Soil	Prop	erties			
	-			Soil/Rock Description												
a)	Att. ded (i	unts	Depth In Feet	And Geologic Origin For						ssive (tsf)						ıts
lber Typ(gth ∕	°C v	h In	Each Major Unit		CS	hic		<u> </u>	pres	sture tent	e, id	ticity x	0		ımer
Number and Type	Length Att. & Recovered (in)	Blow Counts	Dept			SO	Graphic Log	Well	7. gg.	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/	Con
1	24	4 5 6	-	0 - 2' SILTY CLAY CL/ML, yellowish brown	(10YR			M	8							
ss	8	6 9	- ,	5/6), trace brown (10YR 5/3) and very dark bi (10YR 2/2) mottling, silt (15-25%), trace roots	rown s, grass,											
/			- 1	gravel, and coarse sand, cohesive, nonplastic plasticity, hard (>4.5 tsf), dry.	c to low	CL/ML			Ĭ							
L			_2			L										
2 ST	24 21		 	2 - 4' Shelby Tube Sample.											ST2: 2	
0.			_3												500lbs	of
			E												pressu	ire.
	0.4	2	<u>-</u> 4		<u></u>	<u> </u>		▊┃								
3 SS	24 15	2 3 5 7	E	4 - 8' SILTY CLAY CL/ML, yellowish brown (5/6), trace brown (10YR 5/3) and very dark bit	rown											
I X		7	_5	(10YR 2/2) mottling, silt (5-15%), trace very fi and gravel, low plasticity, very stiff to hard (2.	ine sand											
1/			E	tsf), dry.	.0 - 4.0											
4	24	3	<u>-</u> 6	6' - 7.4' trace gray (10YR 5/1) mottling.		CL/ML										
ss	17	3 5 8 8	F	o 7.1 daee gray (10111 o 71) meaning.												
ΙX		_	- 7													
<i>\</i>			E													
5	24	3	-8	8 - 10' SILTY CLAY to LEAN CLAY: CL/ML	-,											
ss	17	4 6 6	E	yellowish brown (10YR 5/6), trace brown (10\) and very dark brown (10YR 2/2) mottling, silt	•											
IΛ			<u>-9</u>	(5-15%), trace very fine sand and gravel, silt decreases with depth, clay content increases	content	CL/ML										
L			10	depth, medium plasticity, very stiff (3.25 tsf), of		L										
6 SS	24 20	3 4 5 5	- 10	10 - 12' LEAN CLAY: CL, brown (5YR 4/3), very dark brown (10YR 2/2) mottling, trace sil												
		5	-11	content increasing with depth, medium to high												
/			F ''	plasticity, stiff (1.75-2.0 tsf).		CL										
_ L			E -12			L									ST7: 2	
7 ST	24 24		E	12 - 14' Shelby Tube Sample.											250lbs	of
			-13								L				pressu	<u>. </u>
I here	y certif	ỳ that	the info	rmation on this form is true and correct to the be	est of my k	knowled	lge.			•						
Signat	ure	1	1	Firm Natur	ral Reso	urce T	echno	ology					(414)			
	<u> </u>	m	W/		V. Florida			r, Milv	vaukee				(414)			TTD 0= :
								Temp	olate: IL	LINOIS E	ORING	i LOG -	Project:	BALD	win GII	vT.GPJ

Sample

Number and Type

SS

SS

10

SS

11

SS

12

SS

13

ST

14

15

SS

16

SS

Length Att. & Recovered (in)

24

21

24

24

24

20

24

20.5

24

24

24

22

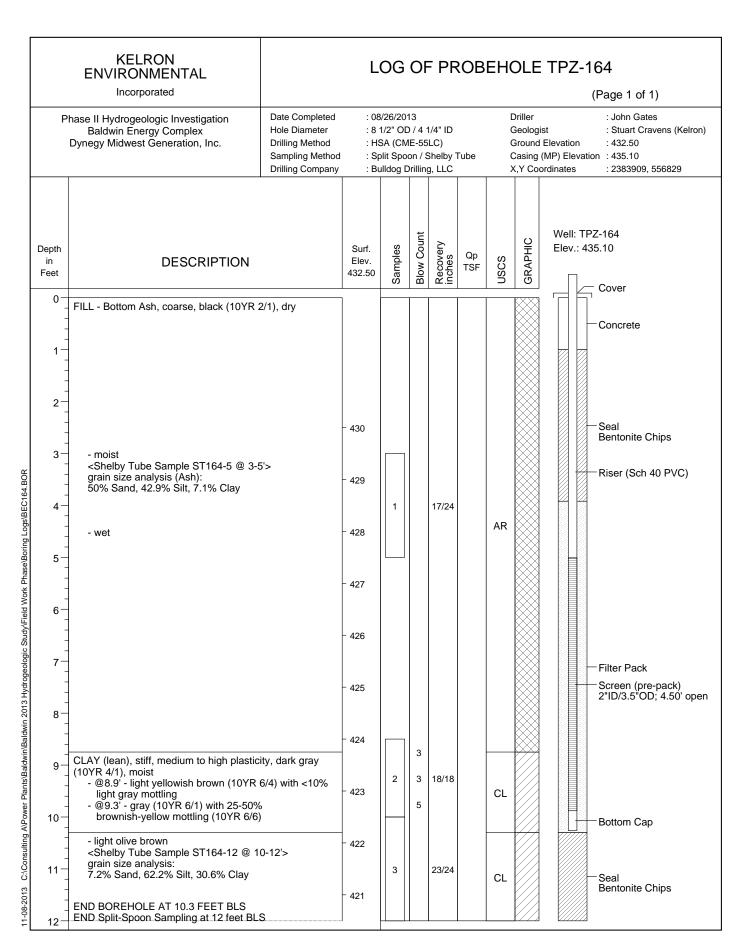
24

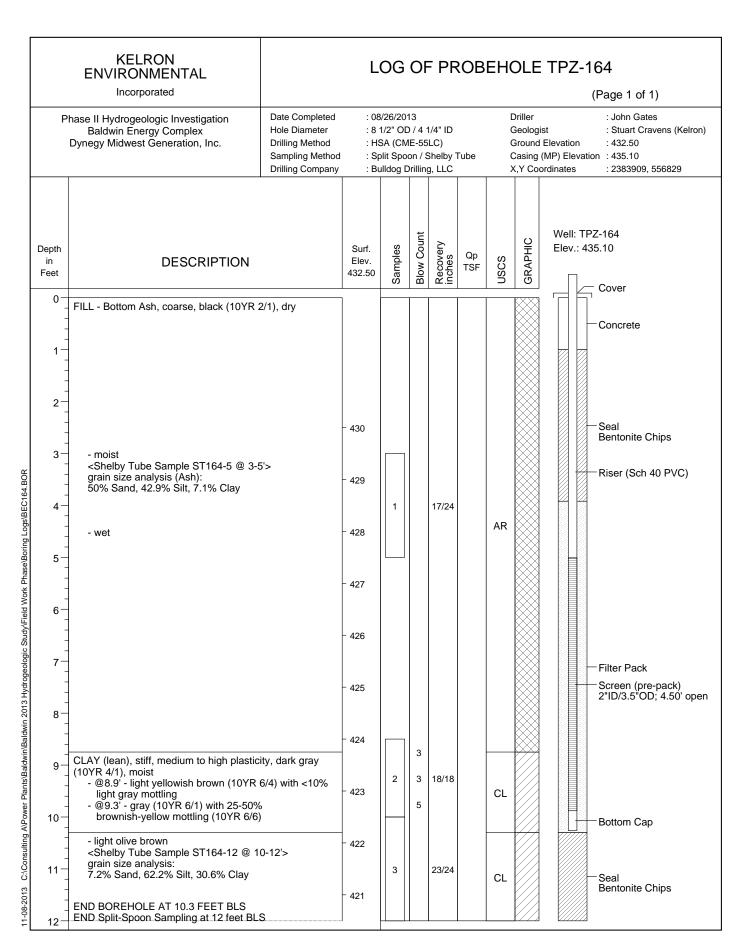
22

17

13

11 30 50 for 5"


Blow Counts


Boring Number PZ-170 Page 2 of Soil Properties Soil/Rock Description In Feet Compressive Strength (tsf) And Geologic Origin For Comments Moisture Diagram Plasticity Graphic Liquid Depth] Each Major Unit USCLimit P 200 Well Log 12 - 14' Shelby Tube Sample. (continued) 14 14 - 24' SILTY CLAY CL/ML, yellowish brown (10YR 5/6), trace brown (10YR 5/3) and very dark brown (10YR 2/2) mottling, silt (10-20%), trace 15 gravel, cohesive, low plasticity, stiff to very stiff (1.0-3.0 tsf), dry to moist. 14.9' - 15.3' very dark brown (10YR 2/2) mottling. 16 16' - 18.5' increaed very dark brown (10YR 2/2) mottling (5-15%), very fine sand (0-10%), trace fine gravel, subangular, cohesive, low to medium -17 plasticity, dry to moist. 16.8' - 17.1' very dark brown (10YR 2/2) mottling. 18 18' - 20' silt (15-25%), very fine sand (0-10%), trace fine gravel, medium plasticity, moist. 19 CL/ML 19' layer of gravel (2" thick, subangular to subrounded). 20 19.8' very soft (0.25 tsf). 20' - 24' subangular to subrounded gravel, low plasticity, dry to moist. 20.8' increased gravel content (10-15%). 21.2' decrease in gravel content (5-15%). 22 23 24 24 - 26' Shelby Tube Sample. ST13: 24" push at 650lbs of -25 pressure. 26 - 28.2' SILTY CLAY CL/ML, yellowish brown (10YR 5/6), trace brown (10YR 5/3) and very dark brown (10YR 2/2) mottling, silt (10-30%), very fine sand (0-15%), trace fine subangular to subrounded 27 CL/ML gravel, gravel decreases with depth to no gravel, trace <1mm thick very fine sand seams, cohesive, low to medium plasticity, plasticity increasing with depth, very stiff to hard (2.0->4.5 tsf), moist, 28 decreasing silt and sand content with depth. 29 28.2 - 30' **LEAN CLAY:** CL, very dark gray (2.5Y CL 3/1), trace silt, cohesive, medium to high plasticity, hard (>4.5 tsf), dry 30 28.5' black (2.5Y 2.5/1) 28.9' greenish gray (GLEY 1 6/1). BDX 30 - 31.1' SHALE: to LEAN CLAY: BDX (SH), (SH) greenish gray (GLEY 1 6/1), trace silt, cohesive, -31 Hollow Stem medium to high plasticity, dry, shale (residual soil to Auger highly decomposed, very weak, fissile). Refusal at 31.1' End of Boring. 31.1 ft bgs on Shale Bedrock.

Facility/Project Name	Local Grid Location of We	ell		Well Name	
Baldwin Energy Complex	ft. □ N. Local Grid Origin □ (6	ft.	□ E. □ W.		
Facility License, Permit or Monitoring No.	Local Grid Origin (6	estimated:) or W	Vell Location	NOV. 270	
Facility ID	Lat. 38° 11' 44.1			MW-370 Date Well Installed	
racinty iD	St. Plane556,826.50		_ ft. E. E/W		
Type of Well	Section Location of Waste	/Source	□Е	Well Installed By: (Person's Name an	d Firm)
mw	1/4 of 1/4 or1/4 or	f Sec, T	N, R 🗆 W		
Distance from Waste/ State	Location of Well Relative u ☐ Upgradient	to Waste/Source s ☐ Sidegradient	Gov. Lot Number	Mark Baetje	
Source ft. Illinois	1.0	_		Bulldog Drilling	
A. Protective pipe, top elevation	ft. (NAVD 88)		1. Cap and lock?	⊠ Yes	□ No
	20.85 ft. (NAVD88)		2. Protective cover pi		4.0
• •			a. Inside diameter:	_	4.0 in. 5.0 ft.
C. Land surface elevation 41	8.67 ft. (NAVD88)		b. Length:c. Material:	Steel	
D. Surface seal, bottom 417.7 ft. (NAV	/D88 <u>) or^{1.0}</u> ft. 1.0	15.215.21 14.216.21	c. Material.	Other	
12. USCS classification of soil near screen:	6/2/0/CO		d. Additional prote	ection?	□ No
	V □ SP □		If yes, describe:	Three steel bollards	-
SM □ SC □ ML □ MH □ Cl Bedrock ⊠	CH 🗆		3. Surface seal:	Bentonite	
	es ⊠ No			Concrete	
_				Other well casing and protective pipe:	
14. Drilling method used: Rotar Hollow Stem Auge	·		+. Material between v	Rentonite	M
	er 🗆			Sand Other	
			5. Annular space seal	l: a. Granular/Chipped Bentonite	
	ir 🗆			ud weight Bentonite-sand slurry	
Drilling Mud □ 0 3 Non	e 🗆		cLbs/gal m	ud weight Bentonite slurry	
16. Drilling additives used? ☐ Ye	es 🛛 No			ite Bentonite-cement grout	\boxtimes
10. Drining additives used.	5 2110			volume added for any of the above	
Describe			f. How installed:	Tremie Tremie pumped	
17. Source of water (attach analysis, if required):			Gravity	
Village of Baldwin		X X X X	6. Bentonite seal:	a. Bentonite granules	
		 		$3/8$ in. \square 1/2 in. Bentonite chips	
E. Bentonite seal, top 389.7 ft. (NAV	D88) or 29.0 ft.		c	Other	
			7. Fine sand material	: Manufacturer, product name & mesh	size
F. Fine sand, top ft. (NAV	D88) or ft.	7	a	2	_
367.7 6 3242	7000 510 s	KA KA \	b. Volume added		1
G. Filter pack, top367./ ft. (NAV	D88) or 51.0 ft.	1 1 / 1		 d: Manufacturer, product name & mesinin Corporation, FILTERSIL 	n size
H. Screen joint, top 365.7 ft. (NAV	D88) or 53.0 ft.		ab. Volume added	•	_
in detection, top	200,000		9. Well casing:	Flush threaded PVC schedule 40	\boxtimes
I. Well bottom 355.7 ft. (NAV	D88) or 63.0 ft.		Č	Flush threaded PVC schedule 80	
				Other	
J. Filter pack, bottom 355.2 ft. (NAV	D88) or 63.5 ft.	10). Screen material:	Schedule 40 PVC	
352.7	maa 660 a		a. Screen Type:	Factory cut	
K. Borehole, bottom 352.7 ft. (NAV	D88 <u>) or 66.0</u> ft.			Continuous slot	
L. Borehole, diameter6.0 in.			h Manufacturer	Other	
L. Botenoie, diameter in.			c. Slot size:		0.010 in.
M. O.D. well casing 2.38 in.			d. Slotted length:	_	10.0 ft.
<u> </u>		11	1. Backfill material (1	below filter pack): None	
N. I.D. well casing <u>2.07</u> in.			2.1' of bentonite chip	os, 0.4' of bedrock drill cuttings Other	\boxtimes
T1 1 (C d + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +					
I hereby certify that the information on this form	Ε'		-malaa	Date Modified: 2/26/2016 Tel: (414) 837-3607	
Signature Brad Ruber	INAL	ural Resource Tech W. Florida Street, Floor		E (44.1) 00E 0.000	
	234	1 1011011 511001, 1 1001	5, 14111 Wadkee, 441 5.		

													Pag		of	2
	ty/Proje					License/	Permit	/Monite	oring N	lumber	•	Boring				
	dwin l					Data Dai	11: C	441		ID-	4 D.:11	ing Coi	XPV		D.:11	: M.d 1
	-	-	Name	of crew chief (first, last) and Firm		Date Dri	lling S	tarted		Da	te Drill	ing Coi	mpieteo	1	Dnii	ing Method
	en Lit scade l		ng				9/23	/2022				9/23/2	2022		Sc	onic
			8	Common Well N	lame	Final Sta				Surfac	e Eleva			Bo		Diameter
				XPW01		Fee	et (NA	AVD8	8)	435	5.12 Fe	eet (N.	AVD	38)	6	0 inches
				stimated:) or Boring Location		Ι.	20	00 11	1.51.0	907"	Local (Grid Lo	cation			
State	Plane	557,	530.3	8 N, 2,383,427.03 E			t38		51.0]N		□ E
	1/4	of	1	/4 of Section , T N, R			g <u>-89</u>	<u>° 51</u>	52.1			Fee	et 🗆	ß		Feet W
Facili	ty ID			County		tate		Civil T		ity/ or	Village	•				
				Randolph	I.	L		Bald	win		1					<u> </u>
Sar	nple									PID 10.6 eV Lamp		Soil	Prope	erties		
	æ (iii)	S	t e	Soil/Rock Description						/ La	e (
. 0	Att.	Junc	l Fe	And Geologic Origin For					_	5 eV	ssiv (ts	ω.		>		nts
lber Typ	gth,	v C	h Ir	Each Major Unit			CS	hic	ran	10.	pre ngth	stur	<u> </u>	icit	0	me /
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				N S	Graphic Log	Well Diagram	Įά	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	120	I	-	0 - 0.5' FILL, ASH (Coal): SM, black (1	0YR 2	2/1),	(FILL)	<u> </u>	VA R	-	0 01	20		1		CS= Core
CS	45		F	\mid_{\sqcap} silt to sand-sized ash, organic material	(5-10%	%), _	SM									Sample
			-1	\loose, wet. 0.5 - 1.5' FILL, SILTY CLAY: CL/ML, n			(FILL) CL/ML				1					
			F	high plasticity, stiff.	Culuii	- TiO	CL/IVIL				1					
			_2	1.5 - 3.2' FILL, ASH (Coal): SM, black	(10YR	2/1),										
			E	silt to sand-sized ash, wet.			(FILL)									
							SM									
			_3				L									
			F	3.2 - 4.1' FILL, SILTY CLAY: CL/ML, g 5/1), medium plasticity, soft, moist.	ray (10	JYR	(FILL) CL/ML				0.5					
			-4	L			CL/ML				0.0					
			F	4.1 - 11' FILL, ASH (Coal): SM, black (silt to sand-sized ash, wet.	(10YR	2/1),										
			_ 5	Silt to Saliu-Sized asil, wet.												
			E													
			E	5.4' very dark gray.						1						
			-6													
			_													
			<u>-</u> 7						li:Шi:							
			F				(FILL)									
			F ₀				(FILL) SM									
			-8													
			F													
			- 9													
			E													
L			-10													
2 CS	48 30		- 10													
CS	30		_													
			-11	11 - 11.9' FILL, ASH (Coal): SW-SM, b	olack (*	10YR	(FILL)									
			F	2/1), silt to sand-sized ash, wet.	•		SW-SM			1						
1			-12	<u> </u>			<u> </u>	7111								
I here	by certi	fy that	the inf	formation on this form is true and correct t	o the b	est of my	y know	ledge.								
Signa	ture	-	-9.	Firm	Ramb	oll	7	5.1 T	3.611	1	1777 -	22004		(414)		

234 W Florida Street, 5th Floor, Milwaukee, WI 53204 Fax: (414)837-3608

Template: RAMBOLL_IL_BORING LOG - Project: 845_BALDWIN_2022.GPJ

Boring Number XPW01 Page 2 of 2 Sample Soil Properties PID 10.6 eV Lamp Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts RQD/ Comments And Geologic Origin For Number and Type Moisture Content Plasticity Index Diagram USCS Graphic Liquid Limit Each Major Unit P 200 Well 11.9 - 14' **SILTY CLAY:** CL/ML, dark grayish brown (10YR 4/2), yellowish brown to gray (10YR 5/1) mottling (10-20%), medium to high plasticity, very stiff, moist. *(continued)* 2.75 CL/ML 3 -14 14' End of Boring.

												Pag		of	2
	ty/Proje				License/	Permit	/Monit	oring N	lumb	er	_	Numb			
	dwin I			of crew chief (first, last) and Firm	Data Dui	111:m ~ C	tomad.		D	oto Duilli		XPV		D.::11	in a Mathad
	g Drille en Lit	-	Name	of crew chief (first, fast) and firm	Date Dri	illing S	tarted		ען	ate Drill	ing Coi	mpieteo	1	Drill	ing Method
	en Lit scade l		ng			9/24	/2022	ļ		(9/24/2	2022		Sc	onic
				Common Well Name	Final Sta				Surfa	ce Eleva			Во		Diameter
				XPW02	Fe	et (NA	AVD8	(8)	43	4.86 Fe			38)	6	0 inches
				stimated:) or Boring Location (N. 2.294.171.76 F	10	ıt 38	3° 11	1' 52.4	167"	Local C	Grid Lo				
State				6 N, 2,384,171.76 E E/W	_ I			1' 42.7			_] N		_ Е
Facili	1/4	of	1	1/4 of Section , T N, R	tate Long	g <u>-0</u> 2	Civil T	Cown/C	ity/o	 r Village	Fe	et _	S		Feet W
1 aciii	ty ID				IL		Bald		ity/ O	i village	,				
Sar	nple			Tumbolph 1					dı		Soil	Prope	erties		
				Soil/Rock Description					Lan						
	tt. & d (ii	unts	Feel	And Geologic Origin For					e	sive (tsf)					23
ber Sype	th A	Ō	ı In	Each Major Unit		CS	hic	.am	9.01	gth	ture	ا ت	city		nen.
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			OS O	Graphic Log	Well Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1 1	120	_щ		0 - 9.5' FILL, ASH (Coal): SM, greenish blac	:k	٦_			<u> </u>		Z 0	1 1	F	_д_	CS=Core
CS	120		-	(GLEY 1 2.5/1), silt to sand-sized ash, gravel (0-5%), loose, moist.											Sample
			-1	(0-570), 1003e, 111013t.											
			L												
			-2												
			E												
			_3												
			-												
			_												
			<u> </u>			(FILL) SM			1						
			- 5			OW									
			-6												
			Ė												
			- 7												
			-8												
			-												
			_ 9												
			<u> </u>												
			L	9.5 - 11' FILL, ASH (Coal): SW-SM, reddish (2.5YR 2.5/1), silt to sand-sized ash, silt (5-1	black										
2 CS	48		-10	moist to wet.	J 70),	(FILL) SW-SN									
CS	48		<u> </u>			J., 51									
			11 	11 - 14' SILTY CLAY: CL/ML, dark greenish	gray										
			E	(GLEY 1 4/1), medium to high plasticity, stiff stiff, moist.	to very	CL/ML				1.25					
			-12				//11		•						
I here	bv certi	fy that	the inf	formation on this form is true and correct to the b	best of m	v know	ledge.								

Firm Ramboll

234 W Florida Street, 5th Floor, Milwaukee, WI 53204 Fax: (414)837-3608

Template: RAMBOLL_IL_BORING LOG - Project: 845_BALDWIN_2022.GPJ

Tel: (414)837-3607

			Boring Number XPW02							Pag	ge 2	of 2	2
Sample							dw		Soil	Prope	erties		
& in)	S	t l	Soil/Rock Description				PID 10.6 eV Lamp	e (
e Att.	ount	ı Fe	And Geologic Origin For			_	6 eV	ssiv ı (tsf	မ		>		nts
Number and Type Length Att. & Recovered (in	Blow Counts	Depth In Feet	Each Major Unit	CS	phic	l gran	10.0	ngth	sture	pi ti	ticit	0)/ Ime
Number and Type Length Att. & Recovered (in)	Blov	Dep		N S	Graphic Log	Well Diagram	PID	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
		E	11 - 14' SILTY CLAY: CL/ML, dark greenish gray										
		<u> </u>	(GLEY 1 4/1), medium to high plasticity, stiff to very stiff, moist. <i>(continued)</i>					2.5					
		-13	13' yellowish brown (10YR 5/4).	CL/ML									
		E						2					
"		-14	14' End of Boring.										

Facilit	ty/Proje	ct Nan	ne		Lice	ense/Pe	ermit/	/Monito	ring N	umbe	r	Boring	Paş Numb		OI		
	dwin l												XPV				
•	_	-	Name	of crew chief (first, last) and Firm	Date	e Drilli	ing S	tarted		Da	te Drill	ing Co	mplete	d	Dril	ling Met	hod
	ke We cade l		nσ			Q	0/24	/2022				9/24/2	2022		Sc	onic	
Cus	icade 1		115	Common Well Name	e Fina			ter Leve	el [5	Surfac	e Eleva		2022	Bo		Diamete	er
				XPW04		Feet	(NA	AVD88	3)).59 Fe				6	.0 inch	es
				stimated:) or Boring Location 1 N 2 292 619 45 F		Lat _	38	° 11	40.9	132"	Local (Grid Lo					
State	Plane 1/4	-		1 N, 2,383,618.45 E E/W /4 of Section , T N, R		Long _	-89		49.7			Fe]N]S		Feet	□ E □ W
Facilit		01		County	State			Civil To			Village		.ct _	<u>.</u>		rect	
				Randolph	IL			Baldv	vin								
San	nple									dur		Soil	Propo	erties			
	& (in)	ts.	t se	Soil/Rock Description						PID 10.6 eV Lamp	f)						
r e	Att.	uno,	n Fe	And Geologic Origin For			S		я	.6 e	essiv h (ts	l e t		ty			Suc
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit			SCS	Graphic Log	Well Diagram) 10	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	00	RQD/	Ĕ
Nu and		BIG	De				S D	Grap Log	Well	PII	Str	žΰ	Liquic Limit	Plastic Index	P 200	RQ	3
1 CS	120 85		F	0 - 6' FILL, ASH (Coal): SM, black (10YR 2 very dark gray (10YR 3/1), silt to sand-size	2/1) to do ash.				Ĭ							CS=Co Sample	
			_ 1	clay (5-15%), gravel (0-5%), wood (0-5%),	moist.				4 14								
			<u> </u>														
			$\stackrel{\vdash}{-}_2$														
			L														
			F ,			(F	FILL)										
			_3			`;	SM										
			-														
			<u></u> 4														
			_														
			- 5														
			E														
			-6	6 - 16.5' FILL, ASH (Coal): SW, black (10)	/R 2/1)),											
			E	sand-sized ash, silt (10-20%), clay (0-5%), wet.	loose,	,											
			-7														
			E														
			-8														
			-														
			<u>_</u> 9				FILL) SW		目								
			_														
2 H	60		-10														
2 CS	60		E														
			- 11														
			E														
			- -12														
I herel	by certi	fy that	the inf	ormation on this form is true and correct to the	e best o	of my k	know	ledge.									
Signat	uro			Firm p									Tel:	(414)	837-3	507	
	2	_	-9.			rida Str	eet 4	5th Floo	r Mils	vanke	e WI 5	3204		(414)			

Template: RAMBOLL_IL_BORING LOG - Project: 845_BALDWIN_2022.GPJ

				Boring Number XPW04								ge 2	of	2
Sar	nple							dun		Soil	Prope	erties		
	& (in)	ts	set	Soil/Rock Description				v La	e £					
r pe	Att.	onn	In Fe	And Geologic Origin For	S	\ o	Е	.6 e	essiv h (ts	re t		ty		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	S C S	Graphic Log	well Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
N Su	Le _I Re	Blc	De		5 D	Grap Log	Well Diagr	PII	Co	⊻్ర	ĒĔ	Pla Ind	P 2	RC Co
			_	6 - 16.5' FILL, ASH (Coal): SW, black (10YR 2/1), sand-sized ash, silt (10-20%), clay (0-5%), loose,										
			- -13	wet. (continued)										
			- 14		(FILL)									
					SW		目							
<u>,</u>			- 15	451 into the adult of a life and a										
3 CS	60 50.4			15' interbedded silty clay.										
			- -16											
				16.5 - 20' SILTY CLAY: CL/ML, greenish gray										
			- 17	(GLEY 1 6/1), yellowish brown mottling (10%), sand					2.75					
			E	(0-5%), medium to high plasticity, very stiff, moist.					2.75					
			18						3.25					
			_		CL/ML				0.20					
			-19						3.5					
			_											
L			-20	20' End of Boring.										

												Pag		of	2
	y/Proje dwin I				License/	Permit	/Monito	oring N	Vumb	er	Boring	Numb XPV			
				of crew chief (first, last) and Firm	Date Dri	illing S	tarted		D	ate Drill	ing Co			Dril	ling Method
	ke We	•		01 01011 (11101, 11101) 11110 1 11111			tur to u			2111					
	cade l		ng			9/24	/2022				9/24/2	2022		Sc	onic
				Common Well Name	Final Sta					ce Eleva					Diameter
· ·	0:10			XPW05	Fe	et (NA	AVD8	8)	43	4.12 F				6	.0 inches
				stimated: \square) or Boring Location \boxtimes 5 N, 2,384,034.20 E	La	ıt <u>38</u>	8° <u>11</u>	<u>'</u> 46.4	401"	Local	oria Lo				
State	1/4			/4 of Section , T N, R	Lon	g <u>-89</u>	o° 51	44.5	5179"		Fe]N]S		☐ E Feet ☐ W
Facili		<u> </u>			State	5 <u> </u>	Civil T			r Village					1 000 11
				Randolph	IL		Baldy	win							
Sar	nple								du		Soil	Prop	erties		
	(E).	S	et	Soil/Rock Description					PID 10.6 eV Lamp	9 G					
_ e	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And Geologic Origin For				ے ا	6 eV	ssiv 1 (ts	. ب		<u> </u>		nts
nbe Tyf	gth	× C	th I	Each Major Unit		CS	Graphic Log	II grar	10.	npre	Moisture Content	uid ii	Plasticity Index	00	D/ Dime
Number and Type		Blo	Deg			n S	Grap Log	Well Diagram	PIE	Compressive Strength (tsf)	Cor	Liquid Limit	Plastic Index	P 200	RQD/ Comments
1 CS	120 55		_	0 - 21.9' ASH (Coal): (SW)g, black (10YR 2/ very dark gray (10YR 3/1), sand-sized ash, s	/1) to				}						
0.5	33		١.	(5-15%), clay (0-5%), organic material (0-5%	6),										
			<u> </u>	loose, moist.											
			E												
			-2												
			E												
			_3												
			F												
			- 4												
			_												
			-5												
			E												
			-6			(0)40									
			F °			(SW)g									
			E /												
			-												
			-8												
			E												
			- 9												
			F												
2	120		-10												
2 CS	88		E												
			-11												
			E												
			_ 12												
I here	by certi	fy that		ormation on this form is true and correct to the	best of m	y know	ledge.	I	1		1	1			<u> </u>
Signa			- 4	Firm Ram								Tel	(414)	837-30	507
	~		-/-		/ Florida 9	Stroot	5th Flor	or Mil	want	ee WI 5	3204		(414)		

234 W Florida Street, 5th Floor, Milwaukee, WI 53204 Fax: (414)837-3608

Template: RAMBOLL_IL_BORING LOG - Project: 845_BALDWIN_2022.GPJ

				Boring Number XPW05								ge 2	of	2
Sar	nple							dui		Soil	Prope	erties		_
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
3 CS	120 120		13 14 15 16 17 18 19 20	0 - 21.9' ASH (Coal): (SW)g, black (10YR 2/1) to very dark gray (10YR 3/1), sand-sized ash, silt (5-15%), clay (0-5%), organic material (0-5%), loose, moist. (continued) 15' saturated.	(SW)g									
			22 23 24	21.9 - 24.5' ASH (Coal): ML, dark gray (10YR 4/1) to dark grayish brown (10YR 4/2), silt-sized ash, clay (5-15%), sand (0-5%), non-plastic, wet.	ML									
			25 26 27 28	24.5 - 28.2' ASH (Coal): (SW)g, black (10YR 2/1), sand-sized ash, silt (5-15%), loose, wet.	(SW)g									
			-29 -30	28.2 - 30' SILTY CLAY : CL/ML, gray (10YR 5/1), light yellowish brown (10YR 6/4) mottling, sand (0-5%), very stiff to hard, medium plasticity, moist. 30' End of Boring.	CL/ML				3.5					

Page 1 of 2

	ty/Proje .dwin l			t		License/	Permit	/Monito	ring Ni	ımber		Boring	Numl XP V	er V 06		
				of crew chief (first, last) and Firm		Date Dri	lling S	tarted		Date	Drilli	ing Co	mplete		Dril	ling Method
	len Lit scade l		ng					/2022				9/22/2	2022			onic
						Final Sta				urface			AND			Diameter .0 inches
Local	Grid O	rigin	☐ (es	stimated: \(\sigma\) or Boring Locati	PW06			AVD88		I i			AVD		0	.0 inches
					:/W	La	t38	8° <u>11</u>	49.08	<u> 314"</u>				ΙN		□ E
	1/4	of	1		I, R		g <u>-89</u>	<u>° 52</u>	8.23					s		Feet W
Facili	ty ID			County		tate		Civil To		ty/ or V	illage	;				
Cor	1a			Randolph		IL		Baldy	Vin			Coil	Duon	autiaa		
Sai	mple			0.1100 1.70	•					PID 10.6 eV Lamp			Prop	erties		
	Length Att. & Recovered (in)	ınts	Depth In Feet	Soil/Rock Descri	-					I Ae	Compressive Strength (tsf)					
Number and Type	h At ereα	Blow Counts	In	And Geologic Ori	_		S	ic.	am	0.6	ress gth (ure		city		RQD/ Comments
umb Id T	ecov	low	epth	Each Major U	IIIt		SC	Graphic Log	Well Diagram		omp reng	Moisture Content	Liquid Limit	Plasticity Index	200	
2 k 1	72	B		0 - 5' FILL, ASH (Coal): SM, bla	ock (10VR 2/	1) to	Þ	נט		<u>P</u>	<u>ა</u>	ΣŬ	77	교표	Ь	CS=Core
cs	72		E	very dark grayish brown (10YR	3/2), silt to											Sample
			-1	sand-sized ash, angular gravel (5-15%), loose, moist.	(5-15%), clay	′										
			E	, , , ,												
			_2													
			F				(FILL)									
							SM									
			- '													
			-													
			- 4													
			-5	5 - 5.4' FILL, ASH (Coal): CL/M	L, dark greer	nish	(FILL) CL/ML									
			_	gray (GLEY 1 4/1), medium plas 5.4 - 9.9' FILL, ASH (Coal) : SM		/ R 2/1)	OLYNIL									
2 CS	120		-6	silt to sand-sized ash, clay (5-15	5%), loose, m	oist.										
CS	120		Ē						目							
			- 7	7 - 9.9' interbedded silty clay.												
			F	, ,			(FILL) SM									
			<u>-</u> 8				SIVI									
			-													
			<u>-</u> 9													
			E						目							
			-10	9.9 - 16' SILTY CLAY: CL/ML, ç	reenish arav	,										
			Ė	(GLEY 1 6/1), sand (0-5%), orga	anic material	(0-5%),										
			- 11	medium to high plasticity, very s 10.5' light olive brown (2.5Y 5/3	stiff, moist. 3), yellowish b	orown	CL/ML									
			F	to reddish brown mottling (50%)			CL/IVIL									
	[_ 12													
I here	hy certi	fy that		ormation on this form is true and c	orrect to the l	nest of my	v knou	rledge					1	1		
Signa					Firm Ramb		, KIIOW	10050.					Те1	: (414)	927 2	507
<i>C</i>	2	_	-4.			Florida S	Street,	5th Floo	or, Milv	vaukee,	WI 5	3204		· (414) · (414)		

			Boring Number XPW06							Pag	ge 2	of	2
Sample							du		Soil	Prope	erties		
e Att. & ed (in)	ounts	ı Feet	Soil/Rock Description And Geologic Origin For			_	5 eV Laı	ssive (tsf)	n)		y		nts
Number and Type Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	USCS	Graphic Log	Well Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Num and Len Len Rec	BIO	leQ	9.9 - 16' SILTY CLAY: CL/ML, greenish gray (GLEY 1 6/1), sand (0-5%), organic material (0-5%), medium to high plasticity, very stiff, moist. (continued) 13.7' dark greenish gray (GLEY 1 4/1), reddish brown mottling (10%).	CL/ML									RQ Cor

Facility/Project Name	Local Grid Location of	f Well	□ E.	Well Name
Baldwin Power Plant	ft. 🗀	$\begin{array}{c c} N. & \underline{\hspace{1cm}} ft. \\ S. & \underline{\hspace{1cm}} ft. \end{array}$ (estimated: \Box) or V	□ E. · □ W.	
Facility License, Permit or Monitoring No.	Local Grid Origin	(estimated:) or V	Well Location	VDV/01
Facility ID		51.1" Long. <u>-89°</u>		XPW01 Date Well Installed
racinty iD		ft. N,2,383,427		
Type of Well	Section Location of W	aste/Source	ПЕ	Well Installed By: (Person's Name and Firm) Arlen Little
Type of Well	1/4 of1/	4 of Sec, T	_N, R	Arlan Little
Distance from Waste/ State	Location of Well Relat u Upgradient	tive to Waste/Source s Sidegradient	Gov. Lot Number	Arlen Little
Source ft. IL		n □ Not Known		Cascade Drilling
A. Protective pipe, top elevation 4.	38.45 ft. (NAV D88)		1. Cap and lock?	⊠ Yes □ No
B. Well casing, top elevation4.	37.66 ft. (NAVD88)		2. Protective cover p	oipe:
• •			a. Inside diameter	:
	35.12 ft. (NAVD88)		b. Length:c. Material:	Steel 🗵
D. Surface seal, bottom434.1_ ft. (NA	VD8 <u>8) o^{‡.0} ft</u> . . 		e. Material.	Other
12. USCS classification of soil near screen:	2/10		d. Additional prot	ection? ☐ Yes ☒ No
	W⊠ SP □	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	If yes, describe	:
$SM \boxtimes SC \square ML \square MH \square C$ Bedrock \square	L 🗆 CH 🗆		3. Surface seal:	Bentonite
13. Sieve analysis attached?	os ⊠No			Concrete 🗵
				Other
14. Drilling method used: Rota Hollow Stem Aug	•		4. Material between	well casing and protective pipe: Bentonite □
- · · · · · · · · · · · · · · · · · · ·	er 🛛			Other
				al: a. Granular/Chipped Bentonite ⊠
15. Drilling fluid used: Water □ 0 2 A	ir 🗆			and weight Bentonite-sand slurry
Drilling Mud □ 0 3 Nor	ne 🗵			nud weight Bentonite slurry
16 Delline eddicione and 49	N N-		d% Benton	
16. Drilling additives used?	es 🗵 No			volume added for any of the above
Describe			f. How installed	
17. Source of water (attach analysis, if requir				Tremie pumped ☐ Gravity ☒
	·		6. Bentonite seal:	· ·
		/		a. Bentonite granules □ 3/8 in. □ 1/2 in. Bentonite chips ⊠
E. Bentonite seal, top 434.1 ft. (NAV	/D88) or 1.0 ft.			Other
E. Bentomte seat, top 1t. (141	1			1: Manufacturer, product name & mesh size
F. Fine sand, top 431.1 ft. (NAV	/D8 <u>8) or 4.0</u> ft. \		a	
			b. Volume added	·
G. Filter pack, top 430.1 ft. (NAV	VD8 <u>8) or 5.0</u> ft.		Filter pack materi	al: Manufacturer, product name & mesh size
429.1	70 .		a	Filtersil
H. Screen joint, top 428.1 ft. (NAV	/D8 <u>8) or 7.0</u> ft. —		b. Volume added	
I. Well bottom 423.1 ft. (NAV	VD88) or 12.0 ft. \		9. Well casing:	Flush threaded PVC schedule 40 ⊠ Flush threaded PVC schedule 80 □
1. Well bottom It. (NA)	(D8 <u>8) 0(12.0</u> II.			Other
J. Filter pack, bottom 421.1 ft. (NAV	VD8 <u>8) or 14.0</u> ft.		0. Screen material:	C 1 1 1 40 DVC
			a. Screen Type:	Factory cut
K. Borehole, bottom 421.1 ft. (NAV	/D8 <u>8) or 14.0</u> ft. <		71	Continuous slot □
				Other
L. Borehole, diameter6.0 in.		VIIIIX		
2.29			c. Slot size:	0.010 in. 5.0 ft.
M. O.D. well casing $\frac{2.38}{}$ in.		1	d. Slotted length:1. Backfill material	
N. I.D. well casing 2.07 in.		1	1. Dackiiii ilialeriai	Other
N. I.D. well casing <u>2.07</u> in.				Outer L
I hereby certify that the information on this fo	rm is true and correct to	the best of my knowleds	ge.	Date Modified: 12/16/2022
	Firm F	Ramboll		Tel: (414)837-3607
Signature		34 W Florida Street, 5th I	Floor, Milwaukee, W	7I 53204 Fax: (414)837-3608

Facility/Project Name	Local Grid Location		E.	Well Name
Baldwin Power Plant	ft.	\square N. \square S. \square (estimated: \square) or	ft. W.	
Facility License, Permit or Monitoring No.	Local Grid Origin [(estimated:) or	Well Location	VDWO
Facility ID	1	52.4" Long. <u>-89°</u>		XPW02 Date Well Installed
racinty iD		8 ft. N, 2,384,172	ft. E. E/W	
Type of Well	Section Location of		□Е	Well Installed By: (Person's Name and Firm)
Type of Well	1/4 of	1/4 of Sec, T	N, R \[\W	7
Distance from Waste/ State	Location of Well Re u Upgradient	lative to Waste/Source s Sidegradient	Gov. Lot Number	Arlen Little
Source ft. IL		nt n □ Not Known		Cascade Drilling
A. Protective pipe, top elevation 4.	38.60 ft. (NAV D88)		- 1. Cap and lock?	⊠ Yes □ No
B. Well casing, top elevation4.	37.92 ft. (NAVD88)		2. Protective cover	pipe:
C 1	· · · · · · · · · · · · · · · · · · ·		a. Inside diameteb. Length:	r:
	34.86 ft. (NAVD88)		c. Material:	Steel 🗵
D. Surface seal, bottom 433.9 ft. (NA	VD8 <u>8) ol.0</u> ft. 🎇			Other
12. USCS classification of soil near screen:			d. Additional pro	tection? □ Yes ⊠ No
	W⊠ SP □		If yes, describ	e:
$SM \boxtimes SC \square ML \square MH \square C$ Bedrock \square	L 🗆 CH 🗆		3. Surface seal:	Bentonite
13. Sieve analysis attached?	as MNo			Concrete 🖂
				Other
14. Drilling method used: Rota Hollow Stem Aug	•		4. Material between	n well casing and protective pipe: Bentonite □
- · · · · · · · · · · · · · · · · · · ·	er 🛛			Other
	_		- 5 Annular space se	al: a. Granular/Chipped Bentonite ⊠
15. Drilling fluid used: Water □ 0 2 A	ir 🗆			nud weight Bentonite-sand slurry □
Drilling Mud □ 0 3 Nor	ne 🗵			nud weight Bentonite slurry □
16. Drilling additives used? ☐ You	as M No		d% Bento	e e e e e e e e e e e e e e e e e e e
10. Drining additives used?	es 🖾 No			volume added for any of the above
Describe			f. How installed	
17. Source of water (attach analysis, if requir	ed):			Tremie pumped ☐ Gravity ☒
			6. Bentonite seal:	•
			1	3/8 in. □ 1/2 in. Bentonite chips ⊠
E. Bentonite seal, top433.9 ft. (NAV	/D88) or 1.0 ft.			Other \square
			7. Fine sand materia	al: Manufacturer, product name & mesh size
F. Fine sand, top <u>430.9</u> ft. (NAV	/D8 <u>8) or 4.0</u> ft. \		a	
			b. Volume added	
G. Filter pack, top 429.9 ft. (NAV	$VD88$) or 5.0 ft. \sim		8. Filter pack mater	ial: Manufacturer, product name & mesh size
428.0 6 0444	1000 60 c		a	Filtersil
H. Screen joint, top 428.9 ft. (NAV	/D8 <u>8) or 6.0</u> ft. —		b. Volume added	Flush threaded PVC schedule $40 \boxtimes$
I. Well bottom <u>423.9</u> ft. (NAV	VD88) or 11.0 ft. <		9. Well casing:	Flush threaded PVC schedule 80
1. Wen bottom 1t. (17/1	1t. <			Other
J. Filter pack, bottom 422.9 ft. (NAV	VD88) or 12.0 ft.		10. Screen material:	C 1 1 1 40 DVC
•			a. Screen Type:	Factory cut ⊠
K. Borehole, bottom 420.9 ft. (NAV	√D8 <u>8) or 14.0</u> ft. <			Continuous slot □
				Other
L. Borehole, diameter6.0 in.		V/////X		0.010
M. O.D. well casing 2.38 in			c. Slot size:d. Slotted length	
M. O.D. well casing 2.38 in.			11. Backfill material	
N. I.D. well casing <u>2.07</u> in.				bentonite chips Other
men caoing				
I hereby certify that the information on this for		to the best of my knowled	dge.	Date Modified: 12/16/2022
Signature	Firm	Ramboll		Tel: (414)837-3607
		234 W Florida Street, 5th	Floor, Milwaukee, V	WI 53204 Fax: (414)837-3608

Facility/Project Name	Local Grid Location	on of Well		□ E.	Well Name	
Baldwin Power Plant	Local Grid Origin	t. S. —	ft.	□ E. □ W.		
Facility License, Permit or Monitoring No.					X/DXX/0.4	
Facility ID	Lat. <u>38°</u> <u>11</u>		ng. <u>-89°</u> _		XPW04 Date Well Installed	
racinty ID		503 ft. N, _				
Type of Well	Section Location of	of Waste/Source		□Е	10/05/2022 Well Installed By: (Person's Na Arlen Little	ame and Firm)
Type of Well	1/4 of	1/4 of Sec	, T	N, R \(\overline{\text{W}} \)	Arlan Little	
Distance from Waste/ State	Location of Well I u Upgradien		/Source degradient	Gov. Lot Number	Arlen Little	
Source ft. IL		lient n □ N	_		Cascade Drilling	
	34.91 ft. (NAVD8			. Cap and lock?		Yes □ No
	34.58 ft. (NAVD8	·	2	2. Protective cover p		4.0
C 1	•	´	, ,	a. Inside diameter	:	4.0 in. 5.0 ft.
C. Land surface elevation 4.	30.59 ft. (NAVD8	(8)		b. Length:	C	ft.
D. Surface seal, bottom 429.6 ft. (NA	VD8 <u>8) ol.0</u> ft. <	210 210	16.26.21	c. Material:		ther \square
12. USCS classification of soil near screen:		7 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2		d. Additional prot		Yes ⊠ No
	W⊠ SP □	<u> </u>	X	-	:	
$SM \boxtimes SC \square ML \square MH \square C$	L 🗆 CH 🗆		• \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3. Surface seal:	Bento	nite 🗆
Bedrock □			 	o. Surrace sear:	Conc	rete 🛛
13. Sieve analysis attached?	es ⊠ No				Ot	
14. Drilling method used: Rota	•		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. Material between	well casing and protective pipe:	
Hollow Stem Aug Sonic Oth					Bento:	nite 🗆
Oth	er 🗵		& _			
15. Drilling fluid used: Water □ 0 2 A	ir 🗆				al: a. Granular/Chipped Bento	
Drilling Mud					and weight Bentonite-sand shaud weight Bentonite shaud weight	
_			XI X	d% Benton	=	-
16. Drilling additives used? ☐ Ye	es ⊠ No		XI .		volume added for any of the abo	
D 1				f. How installed:	Tre	mie 🗆
Describe					Tremie pum	
17. Source of water (attach analysis, if requir	<i>5</i> u).					vity 🛛
			6	6. Bentonite seal:	E	
129.6 6 0141	man 10 c		\		3/8 in. □ 1/2 in. Bentonite cl	
E. Bentonite seal, top 429.6 ft. (NAV	/D8 <u>8) or 1.0</u> It.	\	₿ / 7		l: Manufacturer, product name &	
F. Fine sand, top426.1_ ft. (NAV	VD88) or 4.5 ft.	$\setminus \setminus \boxtimes $	\ / / '	a	ii iiaiiaiaataiai, product iiaiia	2 1110011 01110
1. The said, top 1t. (171	1t.		\ / /	b. Volume added	ft ³	
G. Filter pack, top 425.1 ft. (NAV	VD8 <u>8) or 5.5</u> ft.		8 / 8	3. Filter pack materi	al: Manufacturer, product name	& mesh size
				a	Filtersil	
H. Screen joint, top 424.1 ft. (NAV	VD8 <u>8) or 6.5</u> ft.			b. Volume added		
414.1	16.5		9	Well casing:	Flush threaded PVC schedul	
I. Well bottom 414.1 ft. (NAV	VD8 <u>8) or 16.5</u> ft.		(1) (4)		Flush threaded PVC schedul	
J. Filter pack, bottom 413.1 ft. (NA)	VD8 <u>8) or 17.5</u> ft.		10		C 1 1 1 40 DVC	ther \square
J. Filter pack, bottom II. (NA)	/D8 <u>8) 0F17.5</u> II.		\ 10	 Screen material: . a. Screen Type: 	Factory	——
K. Borehole, bottom 410.6 ft. (NAV	VD8 <u>8) or 20.0</u> ft.	\ \ <i>\\\\\</i>		a. Screen Type.	Continuous	
11. 201 0 11010, 00110111	100					ther
L. Borehole, diameter6.0 in.		V/////	X.	b. Manufacturer		
				c. Slot size:		in.
M. O.D. well casing 2.38 in.				d. Slotted length:		10.0_ ft.
2.07			`11	. Backfill material		one 🗆
N. I.D. well casing 2.07 in.					Ol	ther 🛛
I hereby certify that the information on this fo	erm is true and assess	act to the best of	ny knowlodac		Date Modified: 12/16/2022	,
	Firn		ny knowieuge	··	Tel: (414)837-3607	
Signature		Kamoon	Street. 5th F	loor, Milwaukee. W	7I 53204 Fax: (414)837-3608	
			,	,, , , , ,		

Facility/Project Name	Local Grid Location of Well		Well Name
Baldwin Power Plant	ft. □ N.	ft. □ E.	
Facility License, Permit or Monitoring No.	Local Grid Origin (estimated:	□) or Well Location	
	Lat. 38° 11' 46.4" Long	g. -89° $51'$ $44.5''$ or	XPW05
Facility ID	St. Plane557,063 ft. N,	2,384,034 ft. E. E.(W)	Date Well Installed
	Section Location of Waste/Source		09/24/2022
Type of Well	1/4 of 1/4 of Sec	□E T NB □W	Well Installed By: (Person's Name and Firm)
	Location of Well Relative to Waste/S	Source Gov. Lot Number	Arlen Little
Distance from Waste/ State	u □ Upgradient s □ Sic	legradient	
Source ft. IL	d □ Downgradient n □ No		Cascade Drilling
A. Protective pipe, top elevation4	37.57 ft. (NAVD88)	1. Cap and lock?	⊠ Yes □ No
B. Well casing, top elevation4	37.27 ft. (NAVD88)	2. Protective cover p a. Inside diameter	
	34.12 ft. (NAVD88)	b. Length:	5.0 ft.
D. Surface seal, bottom 433.1 ft. (NA		c. Material:	Steel ⊠
	VD88) от ч		Other 🗆
12. USCS classification of soil near screen:		d. Additional prot	ection?
	W⊠ SP □	If yes, describe	
Bedrock		3. Surface seal:	Bentonite
13. Sieve analysis attached? ☐ Y	es ⊠ No		Concrete 🖾
·		4 Material Instances	Other
	ry 🗆	4. Material between	well casing and protective pipe: Bentonite □
Hollow Stem Aug Sonic Oth	er 🖂		Other
Oth	er 🛭 🔛 🕷		
15. Drilling fluid used: Water □ 0 2 A	ir 🗆 🗎 🐰		l: a. Granular/Chipped Bentonite ⊠
Drilling Mud	I XXI XX		and weight Bentonite-sand slurry
		,	uud weight Bentonite slurry □
16. Drilling additives used? ☐ Y	es ⊠ No	d% Benton	•
		4	volume added for any of the above
Describe		f. How installed:	
17. Source of water (attach analysis, if requir	ed):		Tremie pumped ☐ Gravity ☒
			·
	■■■	6. Bentonite seal:	a. Bentonite granules
122.1 6 0247	man 10 s		8/8 in. □ 1/2 in. Bentonite chips ⊠ Other □
E. Bentonite seal, top 433.1 ft. (NA)	/D8 <u>8) or 1.0</u> ft.	a /	l: Manufacturer, product name & mesh size
E Fine cond ton 418.1 ft (NA)	VD88) or 16.0 ft.		i. Wandracturer, product name & mesh size
F. Fine sand, top 418.1 ft. (NA)	VD6A) III.	a b. Volume added	ft ³
G. Filter pack, top 417.1 ft. (NA)	VD8 <u>8) or 17.0</u> ft.	8. Filter pack materi	al: Manufacturer, product name & mesh size
		a	Filtersil
H. Screen joint, top 416.1 ft. (NA)	/D8 <u>8) or 18.0</u> ft.		ft ³
		9. Well casing:	Flush threaded PVC schedule 40 ⊠
I. Well bottom 406.1 ft. (NA)	/D8 <u>8) or 28.0</u> ft. <		Flush threaded PVC schedule 80 □
			Other
J. Filter pack, bottom 405.1 ft. (NA)	/D8 <u>8) or ^{29.0}</u> ft.	10. Screen material:	Schedule 40 PVC
		a. Screen Type:	Factory cut ⊠
K. Borehole, bottom 404.1 ft. (NA)	/D8 <u>8) or 30.0</u> ft.		Continuous slot □
			Other
L. Borehole, diameter6.0 in.		b. Manufacturer	
		c. Slot size:	in.
M. O.D. well casing 2.38 in.		d. Slotted length:	
		11. Backfill material	
N. I.D. well casing <u>2.07</u> in.		3/8"	bentonite chips Other ⊠
I hereby certify that the information on this fo		y knowledge.	Date Modified: 12/16/2022
Signature	Firm Ramboll		Tel: (414)837-3607
z gre	234 W Florida	Street, 5th Floor, Milwaukee, W	TI 53204 Fax: (414)837-3608

Facility/Project Name	Local Grid Locati	on of Well		□ E.	Well Name	
Baldwin Power Plant	Local Grid Origin	t. S	ft.	□ E. □ W.		
Facility License, Permit or Monitoring No.					VDWO	
Facility ID	Lat38°1		_		XPW06 Date Well Installed	<u>) </u>
racinty iD		324 ft. N, _	2,382,140	_ ft. E. E/W		
Type of Well	Section Location			ПЕ	Well Installed By: (Person's	Name and Firm)
Type of Well	1/4 of	1/4 of Sec	, T	. N, R \(\subseteq \text{ W}	A 1 T1	
Distance from Waste/ State	Location of Well u Upgradie	Relative to waste	/Source idegradient	Gov. Lot Number	Arlen Little	<u> </u>
Source ft. IL		dient n □ N	-		Cascade Drill	ing
A. Protective pipe, top elevation 4	18.06 ft. (NAVD		1	. Cap and lock?		⊠ Yes □ No
B. Well casing, top elevation4	17.72 ft. (NAVD8	(88)	2	2. Protective cover p		40 :
C 1	•	·		a. Inside diameterb. Length:	:	4.0 in. 5.0 ft.
	18.06 ft. (NAVD	(3.5)		c. Material:		Steel 🛛
D. Surface seal, bottom 417.1 ft. (NA	VD8 <u>8) oł.0</u> ft. <		16.26.21			Other
12. USCS classification of soil near screen:		WAS TO VE	Wit Wit Wit	d. Additional prot	ection?	□ Yes ⊠ No
	W □ SP □			If yes, describe	:	
$SM \boxtimes SC \square ML \square MH \square C$ Bedrock \square	L 🗆 CH 🗆		3	3. Surface seal:		entonite 🗆
13. Sieve analysis attached?	es ⊠ No					oncrete 🛛
14. Drilling method used: Rota			× \		well casing and protective pi	
Hollow Stem Aug	•		`	r. Material between		entonite 🛛
- · · · · · · · · · · · · · · · · · · ·	er 🗵			be	ntonite chips	
			5	i. Annular space sea	al: a. Granular/Chipped Be	entonite ⊠
15. Drilling fluid used: Water □ 0 2 A					nud weight Bentonite-san	
Drilling Mud □ 0 3 Nor	ne 🛛		്	cLbs/gal m	and weight Bentonite	e slurry 🗆
16. Drilling additives used? ☐ Ye	es ⊠ No		XI XI	d% Benton		•
To: Diming additives used:	2 110		××1		volume added for any of the	
Describe				f. How installed		Tremie □ pumped □
17. Source of water (attach analysis, if requir	ed):					Gravity ⊠
			×	6. Bentonite seal:		
	-		\ / \		$3/8$ in. \square 1/2 in. Bentonit	
E. Bentonite seal, top 417.1 ft. (NAV	VD8 <u>8) or 1.0</u> ft.		፠ /	c		Other
			× / _7	7. Fine sand materia	l: Manufacturer, product nar	ne & mesh size
F. Fine sand, top 415.1 ft. (NAV	VD8 <u>8) or 3.0</u> ft.		\otimes / /	a	2	
414.1	10 .) / .	b. Volume added		0 1 .
G. Filter pack, top 414.1 ft. (NAV	VD8 <u>8) or 4.0</u> ft.		8	3. Filter pack materi	 al: Manufacturer, product na Filtersil 	me & mesh size
H. Screen joint, top 413.1 ft. (NAV	VD8 <u>8) or 5.0</u> ft.			a b. Volume added	2	
Tr. Screen joint, top	V Do <u>a) or 333</u> It.		9	D. Well casing:	Flush threaded PVC sche	dule 40 🕅
I. Well bottom 408.1_ ft. (NAV	VD8 <u>8) or 10.0</u> ft.			. Well cushig.	Flush threaded PVC sche	
`	,					Other \square
J. Filter pack, bottom 406.1 ft. (NAV	VD8 <u>8) or 12.0</u> ft.		10). Screen material:	Schedule 40 PVC	
				a. Screen Type:	Fact	tory cut
K. Borehole, bottom 402.1 ft. (NAS	VD8 <u>8) or 16.0</u> ft.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Continuo	ous slot
60				1. Managaran		Other
L. Borehole, diameter6.0 in.				c. Slot size:		in.
M. O.D. well casing 2.38 in.				d. Slotted length:		5.0 ft.
W. O.D. well cashing			11	. Backfill material		None
N. I.D. well casing <u>2.07</u> in.					bentonite chips	Other 🗵
I hereby certify that the information on this fo			my knowledge	e	Date Modified: 12/16	
Signature	Firr	Kamoon	_		Tel: (414)837-360	
		234 W Florida	a Street, 5th F	loor, Milwaukee, W	7I 53204 Fax: (414)837-360	<u>o</u>

ATTACHMENT 5 PCA Data Summary

Well	HSU	Date	Well Type	pH (SU)	Alkalinity, total (mg/L)	Barium (mg/L)	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	Lithium (mg/L)	Sulfat (mg/l
NW-304	BU	03/28/2022	Background	7.78	843	0.0194	1.71	14.5	161	1.76	0.0829	198
W-304	BU	09/29/2022	Background	7.72	836	0.0183	1.75	10.2	174	1.70	0.0861	199
W-304 W-304	BU	10/26/2022	Background Background	7.89 7.87	825 818	0.0186	1.76 1.91	10.8 9.48	175 175	1.72	0.0869	193
W-304 W-304	BU	12/14/2022	Background	7.82	833	0.0209	2.16	10	181	1.82	0.0635	216
W-304	BU	01/11/2023	Background	7.83	844	0.0173	1.68	8.5	185	1.68	0.0819	209
W-304	BU	02/20/2023	Background	7.75	854	0.0216	1.75	10.7	186	1.67	0.0818	228
W-304	BU	03/15/2023	Background	7.77	814	0.0206	1.89	10.6	173	1.67	0.094	208
NW-304	BU	04/04/2023	Background	7.75	853	0.0324	1.69	8.9	168	1.81	0.0808	210
NW-304 NW-304	BU	08/03/2023	Background Background	7.51 7.92	836 838	0.0199	1.7	9.63	162 160	1.72	0.0603 0.0779	208
AW-304	BU	11/01/2023	Background	7.81	855	0.0201	1.7	12	166	1.91	0.0807	191
MW-304	BU	02/05/2024	Background	7.70	818	0.0295	1.5	12.4	155	1.77	0.0763	185
MW-304	BU	04/16/2024	Background	7.81	805	0.0199	1.7	13.0	161	1.69	0.0823	19
W-304	BU	07/17/2024	Background	7.70	805	0.0175	1.5	10.0	169	1.69	0.075	20
AW-358 AW-358	BU BU	10/27/2022	Background Background	7.93 7.83	633 758	0.0933	1.1	12.8	688 992	2.43	0.0621	108
MW-358	BU	12/13/2022	Background	8.45	859	0.172	1.67	18.6	1120	2.1	0.0696	71
W-358	BU	01/11/2023	Background	7.59	841	0.165	1.38	14.0	1200	2.73	0.0957	34
MW-358	BU	02/20/2023	Background	8.38	847	0.201	1.42	13.2	1330	2.87	0.102	16
AW-358	BU	03/13/2023	Background	7.73	856 851	0.166	1.51	10.9	1340	3.07	0.115	8
AW-358 AW-358	BU	05/19/2023	Background Background	7.71 7.62	835	0.261	1.45 1.6	11.4	1370 1300	3.13	0.105 0.0778	31 10
MW-358	BU	08/07/2023	Background	8	843	0.235	1.6	9.9	1290	3.36	0.0961	9
MW-358	BU	11/01/2023	Background	7.89	840	0.162	1.38	11.3	1310	3.59	0.0921	11
MW-370	BU	03/29/2022	Downgradient	7.55	391	0.024	1.61	34.2	1470	3.15	0.223	270
W-370	BU	09/30/2022	Downgradient	7.64	403	0.0589	2.7	51.4	1520	2.98	0.210	273
۸W-370 ۸W-370	BU	10/27/2022	Downgradient Downgradient	6.88 7.79	389 388	0.038	1.84	39.6 36.8	1320 1450	3.11	0.14 0.110	250
W-370 W-370	BU	12/14/2022	Downgradient Downgradient	7.79	394	0.0292	2.34	36.8 44.7	1430	3.06	0.110	263
AW-370	BU	01/12/2023	Downgradient	7.50	393	0.0272	1.75	38.4	1470	3.07	0.133	25
AW-370	BU	02/21/2023	Downgradient	7.46	389	0.0303	1.95	40.6	1570	2.86	0.146	273
AW-370	BU	03/14/2023	Downgradient	7.45	402	0.0291	1.9	39.5	1340	2.96	0.16	251
NW-370 NW-370	BU	04/03/2023 05/16/2023	Downgradient Downgradient	7.53 7.47	386 399	0.031	2.06 1.9	37 37.0	1280 1360	3.16 3.07	0.158 0.120	25:
MW-370	BU	08/03/2023	Downgradient	7.47	399	0.0321	1.73	41.4	1310	3.07	0.120	24:
AW-370	BU	11/02/2023	Downgradient	7.61	413	0.0285	1.98	41.1	1420	3.7	0.124	27
MW-370	BU	02/06/2024	Downgradient	7.39	410	0.0417	1.7	40.1	1460	3.28	0.169	25
W-370	BU	04/16/2024	Downgradient	7.59	393	0.0415	1.76	39.5	1460	3.33	0.17	24
NW-370 NW-392	BU	07/18/2024 10/27/2022	Downgradient Downgradient	7.51 6.98	383 446	0.032	1.83	42.8 22.1	1320 334	3.13 3.19	0.14 0.0474	25- 14 ⁹
NW-392 NW-392	BU	11/16/2022	Downgradient Downgradient	7.98	388	0.029	1.72	27.2	648	3.19	0.0474	83
NW-392	BU	12/13/2022	Downgradient	7.70	381	0.0462	2.33	30	918	3.98	0.0646	50
۸W-392	BU	01/12/2023	Downgradient	7.63	413	0.042	1.66	47.1	888	3.96	0.076	47
AW-392	BU	02/20/2023	Downgradient	7.60	370	0.0399	1.97	30.4	909	3.69	0.0799	68
λW-392 λW-392	BU	03/13/2023	Downgradient Downgradient	7.67	381 379	0.0397	1.92 2.7	28.1 30.5	896 834	4.01 4.18	0.0767 0.117	57 61
AW-392	BU	05/16/2023	Downgradient	7.54	372	0.0414	1.92	25.6	827	4.07	0.0675	63
NW-392	BU	08/03/2023	Downgradient	7.86	359	0.0407	1.82	26.0	878	4.07	0.0733	55
NW-392	BU	10/31/2023	Downgradient	7.65	384	0.0615	1.91	50.8	871	4.52	0.114	66
AW-392	BU	02/06/2024	Downgradient	7.64	378	0.0551	1.74	25.3	863	4.28	0.108	59
λW-392 λW-392	BU BU	04/16/2024 07/17/2024	Downgradient Downgradient	7.67 7.66	371 355	0.0521	1.86	25.0 23	868 875	4.42 4.19	0.0746 0.0779	42 60
MW-392	BU	10/27/2022	Downgradient	7.45	641	0.04	1.83	9	436	5.86	0.0779	28
NW-393	BU	11/16/2022	Downgradient	8.11	672	0.0284	1.53	11	475	5.95	0.0722	280
AW-393	BU	12/14/2022	Downgradient	8.64	666	0.0246	2.04	10.9	445	5.79	0.0603	26
W-393	BU	01/12/2023	Downgradient	7.89 7.95	812 822	0.0288	1.61	15	633 640	8.02 7.66	0.0807	233
NW-393 NW-393	BU	02/20/2023	Downgradient Downgradient	7.95 8.03	822 859	0.0304	1.74 1.79	10.8 7.9	640	7.66 8.21	0.0853	214 186
MW-393	BU	04/03/2023	Downgradient	8.12	833	0.0481	2.76	8.6	648	9.27	0.123	209
NW-393	BU	05/15/2023	Downgradient	8.28	914	0.0261	1.72	8.4	745	8.42	0.0442	12:
۸W-393	BU	08/03/2023	Downgradient	8.36	862	0.0269	1.66	6.0	610	7.32	0.0593	134
NW-393 NW-393	BU BU	10/31/2023 02/06/2024	Downgradient	8.19 8.12	827 831	0.06	1.59	7.9 6.4	723 741	9.63 9.27	0.0672 0.1100	18-
AW-393	BU	04/16/2024	Downgradient Downgradient	8.16	816	0.04	1.83	7.1	779	9.22	0.0714	217
AW-393	BU	07/17/2024	Downgradient	8.41	813	0.03	1.74	5.6	775	9.93	0.0767	226
PZ-164	CCR	03/29/2022	CCR	7.31	198	0.11	1.56	55.4	50	0.26	0.0167	22
PZ-164	CCR	09/30/2022	CCR	7.14	206	0.17	2.04	68.5	52	0.24	0.0243	150
PZ-164	CCR	10/28/2022	CCR	7.31	276	0.06	1.47	67.6	57	0.26	0.0140	127
PZ-164 PZ-164	CCR CCR	11/16/2022 12/14/2022	CCR CCR	7.56 7.34	250 233	0.06	1.38	62	46 55	0.26	0.0085 0.0114	123
PZ-164	CCR	03/14/2023	CCR	7.34	283	0.05	1.30	70	43	0.27	0.0114	113
PZ-164	CCR	08/07/2023	CCR	7.38	293	0.07	1.23	70	51	0.31	0.0151	109
PZ-164	CCR	02/28/2024	CCR	7.13	285	0.07	0.92	74.8	52	0.25	0.0099	13
PZ-164	CCR	04/18/2024	CCR	7.25	275	0.07	1.05	76.7	49	0.29	0.0115	118
PZ-164 (PW-01	CCR CCR	07/22/2024 10/26/2022	CCR CCR	7.39 7.03	265 203	0.08	1.15 0.93	66.9 65.4	54 21	0.30	0.0128 0.0142	120 98
XPW-01 XPW-01	CCR	11/15/2022	CCR	6.98	205	0.10	1.03	72.5	22	0.5	0.0142	10
XPW-01	CCR	12/13/2022	CCR	6.57	204	0.272	0.942	81.5	25	0.5	0.0354	120
XPW-01	CCR	01/12/2023	CCR	6.86	212	0.105	0.881	67.5	26	0.51	0.0132	11
XPW-01 XPW-01	CCR CCR	05/23/2023 08/03/2023	CCR CCR	6.75	163 218	0.0743	0.649 0.893	55.1 71.5	21	0.62	0.0083	62 82
KPW-01 KPW-01	CCR	02/08/2024	CCR	6.6	218	0.103	0.893	71.5 84.8	49	0.58	0.0117	120
XPW-01	CCR	04/18/2024	CCR	6.88	204	0.0952	0.563	70.2	46	0.55	0.0110	11
XPW-01	CCR	07/22/2024	CCR	7.18	203	0.113	0.964	60	42	0.65	0.0167	78
KPW-02	CCR	10/26/2022	CCR	7.57	427	0.205	1.18	121	33	0.61	0.0233	22
XPW-02 XPW-02	CCR CCR	11/15/2022 12/12/2022	CCR CCR	7.6 7.53	426 374	0.194 0.257	1.2 1.52	115 110	30 32	0.55	0.0194 0.023	37
XPW-02 XPW-02	CCR	01/12/2023	CCR	7.32	337	0.257	0.87	88.5	29	0.46	0.023	43
XPW-02	CCR	05/23/2023	CCR	7.05	359	0.185	1.08	101	36	0.5	0.0147	41
XPW-04	CCR	10/28/2022	CCR	8.31	222	0.161	1.28	47.9	55	0.44	0.0108	11
KPW-04	CCR	11/15/2022	CCR	8.4	226	0.171	1.15	53.2	56	0.4	0.0066	12
(PW-04 (PW-04	CCR CCR	12/12/2022 01/12/2023	CCR CCR	8.04 7.96	217 226	0.196 0.156	1.38 0.835	51.1 49.6	55 54	0.42	0.0136 0.009	120
XPW-04 XPW-04	CCR	05/23/2023	CCR	8.23	200	0.156	0.835	56.2	45	0.4	0.009	17
XPW-05	CCR	10/26/2022	CCR	7.82	180	0.104	1.02	43.9	46	0.57	0.0053	12
XPW-05	CCR	11/15/2022	CCR	7.67	180	0.12	1.16	43.5	46	0.58	0.0039	13
XPW-05	CCR	12/12/2022	CCR	7.18	212	0.19	1.25	43.6	48	0.62	0.0093	13
XPW-05	CCR	01/24/2023	CCR	7.3	192 218	0.208	1.57	40.2 45.8	48 47	0.6	0.008	12:
XPW-05 XPW-05	CCR CCR	05/23/2023	CCR CCR	7.16 7.17	218	0.212	0.928	45.8	47	0.54	0.0027 0.0054	89
XPW-05	CCR	02/28/2024	CCR	7.17	238	0.223	0.928	56.2	47	0.53	0.0034	12
XPW-05	CCR	04/18/2024	CCR	7.03	267	0.294	0.87	60.4	51	0.49	0.0061	11-
XPW-05	CCR	07/22/2024	CCR	7.21	258	0.278	0.828	54.7	49	0.57	0.0063	10
XPW-06	CCR	10/26/2022	CCR	7.22	370 372	0.274	2.29	130	25	0.58	0.0118	57.
XPW-06 XPW-06	CCR CCR	11/15/2022 12/13/2022	CCR CCR	7.27	372 371	0.198	4.64 3.86	164 174	18 18	0.61	0.0019	475 508
XPW-06	CCR	01/12/2023	CCR	7.04	278	0.246	3.38	112	10	0.59	0.0073	39:
XPW-06	CCR	05/23/2023	CCR	7.23	247	0.161	2.11	75.9	6	0.32	0.0019	171
XPW-06	CCR	08/03/2023	CCR	6.96	195	0.142	1.55	61.6	2	0.37	0.006	11
	CCR	02/06/2024	CCR	7.28	244	0.201	2.91	90.6	5	0.35	0.0057	315
XPW-06 XPW-06	CCR	04/18/2024	CCR	7.16	256	0.129	2.64	69.3	2	0.39	0.0058	103

ATTACHMENT 6

Lithium and Boron Isotope Ratio Laboratory Analytical Report

SiREM File Reference: S-9990

October 10, 2023

Analytical Results

Client: Geosyntec Consultants, Inc.

Client Project Number: GLP8063
Date Samples Received: August 24, 2023
Date Samples Analyzed: August/September 2023
IsoDetect Internal Project No: 23-71-GG

Client Sample ID	SiREM Reference ID	Isodetect Reference ID	Client Sample Date	δ ⁷ Li	2SD	Lithium Concentration
		Reference ID	Sample Date	[‰]	[‰]	ug/L
Cooling Pond - 20230821	23-14918	23-71-GG-01	21-Aug-23	35.18	0.74	3.1
MW158R - 20230822	23-14919	23-71-GG-02	22-Aug-23	31.47	0.54	22.6
PZ170-20230821	23-14920	23-71-GG-03	21-Aug-23	16.95	0.73	44.0
TPZ164-20230821	23-14921	23-71-GG-04	21-Aug-23	17.07	0.75	27.6
MW370-20230821	23-14922	23-71-GG-05	21-Aug-23	20.65	0.73	227.0
MW358-20230822	23-14923	23-71-GG-06	22-Aug-23	26.04	0.70	185.0

Comments:

Method: Compound Specific Isotope Analysis (CSIA)

-- = not applicable

2SD= standard deviation, calculated from two independent consecutive measurements

ug/L = micrograms per liter

Brooke Rapien

n.m. = not measured

Analyst: Results approved: Date:

Brooke Rapien

Laboratory Technician II

Brent G. Paulter

Chemistry Services Manager

Page 1 of 1 siremlab com

06th of October 2023

Analytical report

Ordering party: SiREM

130 Stone Rd. West Guelph, Ontario, Canada N1G 3Z2

Contact person: Ximena Druar

Brent G. Pautler, Ph.D.

Contractor: Isodetect GmbH

Deutscher Platz 5b 04103 Leipzig Germany

Person in charge: Kevin Kuntze, Ph.D.

Phone: +49 341 35535851 Mail: kuntze@isodetect.de

Anko Fischer, Ph.D. Phone: +49 341 35535855 Mail: fischer@isodetect.de

Samples received: 11.09.2023

Project ID/ Field site: S-9990

Internal Project No.: 23-71-GG

Scope on analysis: 6 x isotope ratio of Li

Dr. Anko Fischer

Analysis results

Well/sample	Lab ID	δ ⁷ Li [‰]	2SD [‰]	Li [µg/l]
Cooling Pond - 20230821	23-71-GG-01	35.18	0.74	3.1
MW158R-20230821	23-71-GG-02	31.47	0.54	22.6
PZ170-20230821	23-71-GG-03	16.95	0.73	44.0
TPT164-20230821	23-71-GG-04	17.07	0.75	27.6
MW370-20230821	23-71-GG-05	20.65	0.73	227.0
MW358-20230821	23-71-GG-06	26.04	0.70	185.0

The analyses were carried out by MC-ICP-MS using an internal standardization and external calibration with bracketing isotope standard reference materials (SRMs), for which Li delta value (δ^7 Li) was calculated against LSVEC NIST 8545 RM. The standard deviation (2SD) was calculated from two independent consecutive measurements.

Chain of Custody for CSIA of organic pollutants

Contact information					N. B. BERGE	Hay County County	Project	information		Market Control of the	
Company:	SiREM		Email:	xdruar@s	siremlab.com	Project ID:	Baldwin GW C				
Contact:	Ximena Druar			130 Stone	Road W,	Project descrip					
Phone:	519-880-5424		Address:	Guelph, C	N N1G 3Z2 Canada	Sampled by:			Company:	Geosy	ntec
Clie	ent Sample ID/	Sam	pling		Conditions	Sampling	Sample volume	BA GUERNA	CSIA	Isotope	Other Notes
Sa	ampling point	Date	Time	Matrix	(e.g. Temp., O ₂ , R _h , pH)	type ⁹	for CSIA	Fixative"	for*	ratio^	(e.g. troubles, weather
	Pond - 20230821	8/21/2023	13:20	Water		2	2x500mL V V		Total & Stat	le Li Isotor	
MW158	R-20230822	8/22/2023	13:50	Water		2	2x500mL VV		Total & Sta	Commence of the Control of the Contr	
PZ170-2	20230821	8/21/2023	11:25	Water		2	2x500mL V V		Total & Sta		
The state of the s	-20230821	8/21/2023	10:45	Water		2	2x500mL V V		Total & Sta	-	
MW370	-20230821	8/21/2023	12:10	Water		21 st	2x500mL V		Total & Sta		
MW358-	-20230822	8/22/2023	12:15	Water		2	2x500mL V V		Total & Sta		The state of the s

^{1 -} Submersible pump, 2 - Suction pump, 3 - Bailer, 4 - Tap/outlet, 5 - Trial pit, 6 - Percussion drilling, 7 - Direct push sampling, 8 - Hand excavation, 9 - others (give sampling type)

^{#1-}NaOH, 2-Na₃PO₄·12H₂O, 3-HCl, 4-H₂SO₄, 5-none, 6-others (give preservative)

Relinquished by	Received by	Relinquished by	Received by
account of the same	Signature: 1 Mm pm	Signature:	Signature:
Susan Thomas	Name: Vazquez Ramos 1028.	Name:	Name:
ompany: SIREM	Company: Isodefect Gubit	Company;	Company:
Pate/Time: 9-6-2023	Date/Time: 11.09.2023	Date/Time:	Date/Time:

Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany

Phone: +49 (0)341-355-35851, Fax: +49 (0)341-355-35852, Email: kuntze@isodetect.de www.isodetect.de

^{* 1 -} BTEX, 2 - halogenated VOC, 3 - PAH, 4 - Fuel additives (MTBE, ETBE, TAME, TAEE etc.), 5 - Explosives (TNT, RDX, dinitrotoluene, nitrobenzenes etc.),

^{6 –} Petroleum hydrocarbons (e.g. alkylated benzenes, alkanes etc.), 7 – Chlorobenzenes, 8 – Gas hydrocarbons (e.g. methane, ethane, propane, butane, etc.),

^{9 –} Pesticides (HCH, DDT, phenoxy acids, atrazine, bromacil, etc.), 10 – others (give target compounds)

^{^ 1} $^{-13}$ C/ 12 C, 2 $^{-2}$ H/ 1 H, 3 $^{-37}$ Cl/ 35 Cl, 4 $^{-15}$ N/ 14 N, 5 $^{-81}$ Br/ 79 Br, 6 $^{-}$ others (give target isotope ratio)

Sample ID	B Isotopic Composition	d11B (per mil)	+/- (2SE)	B concentrations (ppb)
20230206 TPZ-164		2.84	1.2	1116.4
20230206 Cooling Pond		5.73	1.2	240.5
20230206 MW-370		32.43	1.2	2061.1
20230206 PZ-170		43.18	1.2	326.3
20230206 MW-158R		17.98	1.2	85.9
20230207 MW-358		31.07	1.2	1777.7
20230207 MW-258		14.23	1.2	1248.1

SGS Canada Inc.

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Ramboll Americas Engineering Solutions, Inc.

Attn: Evvan Plank

P.O# Box 4873 Syrascuse, New York 13221-7873, USA

Phone: 315-463-7554

Fax:

28-February-2023

Date Rec.: 24 November 2022 LR Report: CA19226-NOV22

Reference: Baldwin Power Plant Drilling

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start Anal Date	•	3: Analysis mpleted DateCor	4: Analysis npleted Time	6: MW-358 (47-49)	7: MW-358 (86-88)	8: MW-392 (80-82)	12: MW-392 (66-68)
Sample Date & Time					06-Oct-22 15:00	08-Oct-22 18:00	26-Sep-22 16:00	26-Sep-22 12:00
Cl [µg/g]	15-Dec-22	20:55			22	70	34	45
SO4 [µg/g]	15-Dec-22	20:55	29-Dec-22	13:45	50	620	280	100
F [%]	08-Dec-22	18:18	12-Dec-22	08:47	0.091	0.091	0.42	0.095
TKN [as N %]	30-Nov-22	09:28	02-Dec-22	11:00	0.06	0.05	< 0.01	0.05
Ra226 [Bq/g]	12-Dec-22	08:48	12-Dec-22	14:33	0.07	< 0.01	0.09	< 0.01

Catharine Arnold, B.Sc., C.Chem Project Specialist,

Environment, Health & Safety

SGS Canada Inc.

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA19226-NOV22

NOV 19217-28

Rev. 02/2017	CHAIN OF CU	STO	DY								, ,	<u> </u>	1 12		Page	of
Company: Ramboll Project Contact: Evvan Plank Telephone: 414-531-0142	CT LABORATOR	11	5			6	08-356	5-2760	t, Baral) Fax /w.ctlal	608-3	56-27	13 R 66 C	eport To MAIL: Compan	Ευν y:	ian. Ran	plank Qramboll.com 1601/ U Flortda St. whee, WI FL. 5
Project #:	Lab Use Only Place Header Sticker						Invoice To:* EMAIL: Company:				ukee, WI FL. 5					
Location:						PO#							ddress	-		
Sampled By: Evvan Plank	4 - 8-						4	Party	ister is l	espons	ible for	payme	nt of invo	ice as p	er CT L	aboratories' terms and conditions
Client Special Instructions Chem *: and berglium, boron, Ladmium, chromium mercury, molybdenum, selenium, +1 and sulfate; fluoride; iron and madium 226 +228, total sulphur	timony, arsentc, barium n, cobalt, lead, lithium, nallium. CEC, chloride nanganese oxides, i total nitrogen.	Filtered? Y/N	Q	,,	*.	Leach (SEP)	ANAL	YSES I	REQUE	STED				Containers	Designated MS/MSD	Turnaround Time Normal RUSH* Date Needed: Rush analysis requires prior CT Laboratories' approval Surcharges: 24 hr 200%
Matrix: GW – groundwater SW - surface water WW - wastewa S - soil/sediment SL - sludge A - air	ter DW - drinking water M - misc/waste	Filtered	X	XA	Chen,	Tessler								Total #	Design	2-3 days 100% 4-9 days 50%
Collection Matrix Grab/ Sample Comp #	Sample ID Description						Fill in	Space	s with	Bottle	s per	Test	ř.			CT Lab ID # Lab use only
10/5/22 14:05 S G 1	MW-358 (13-15)	N	X	X		X										
	MW-358 (47-49) MW-358 (86-88)	N	X	X	X	X						-				
	1W-392 (80-82)	N	×	X	X	×						1				
	MW-392 (32-33.5)	N	火	X	/\	X						A F		1		
10/4/22 16:00 S G 6 /	MW-393 (24-25,5)	N	X	X		X										d in the second
	14-394 (20,5-22)	N	X	X		X										
9/26/2212:00 BR G 8 /	MW-392(66-68)	N	X	Х	Χ	X										
			21€ 1 -11 3		<u></u>											
Relinquished By: Received by:	Date/Time 10/24/22 1000 Date/Time		ived E		porato	ory by:					Date/Ti				Ten	

Custody Seals: 221024-001 4002

Quantitative X-Ray Diffraction by Rietveld Refinement

Report Prepared for: Environmental Services

Project Number/ LIMS No. Custom XRD/MI4508-DEC22

Sample Receipt: December 7, 2022

Sample Analysis: December 15, 2022

Reporting Date: April 24, 2023

BRUKER AXS D8 Advance Diffractometer Instrument:

Test Conditions (Bulk): Co radiation, 35 kV, 40 mA; Detector: LYNXEYE

Regular Scanning: Step: 0.02°, Step time: 0.75s, 2θ range: 6-80°

Co radiation, 35 kV, 40 mA; Detector: LYNXEYE Test Conditions (Clay):

Regular Scanning: Step: 0.02°, Step time: 1s, 2θ range: 3-80°

Clay Section Scanning: Step: 0.01°, Step time: 0.2s, 20 range: 3-40°

PDF2/PDF4 powder diffraction databases issued by the International Center Interpretations:

for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.

0.5-2%. Strongly dependent on crystallinity. **Detection Limit:**

Contents: 1) Method Summary

2) Quantitative XRD Results

3) XRD Pattern(s)

Kim Gibbs, H.B.Sc., P.Geo.

Senior Mineralogist

Huyun Zhou, Ph.D., P.Geo. Senior Mineralogist

Juyun Z

Method Summary

The Rietveld Method of Mineral Identification by XRD (ME-LR-MIN-MET-MN-D05) method used by SGS Natural Resources is accredited to the requirements of ISO/IEC 17025.

Mineral Identification and Interpretation.

Mineral identification and interpretation involves matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

Clay Mineral Separation and Identification:

Clay minerals are typically fine-grained (<2 µm) phyllosilicates in sedimentary rock. Due to the poor crystallinity and fine size of clay minerals, separation of the clay fraction from bulk samples by centrifuge is required. A slide of the oriented clay fraction is prepared and scanned followed by a series of procedures (the addition of ethylene glycol and high temperature heating). Clay minerals are identified by their individual diffraction patterns and changes in their diffraction pattern after different treatments. Clay speciation and mineral identification of the bulk sample are performed using DIFFRACplus EVA (Bruker AXS).

Quantitative Rietveld Analysis:

Quantitative Rietveld Analysis is performed by using Topas 4.2 (Bruker AXS), a graphics based profile analysis program built around a non-linear least squares fitting system, to determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the obtained experimental patterns.

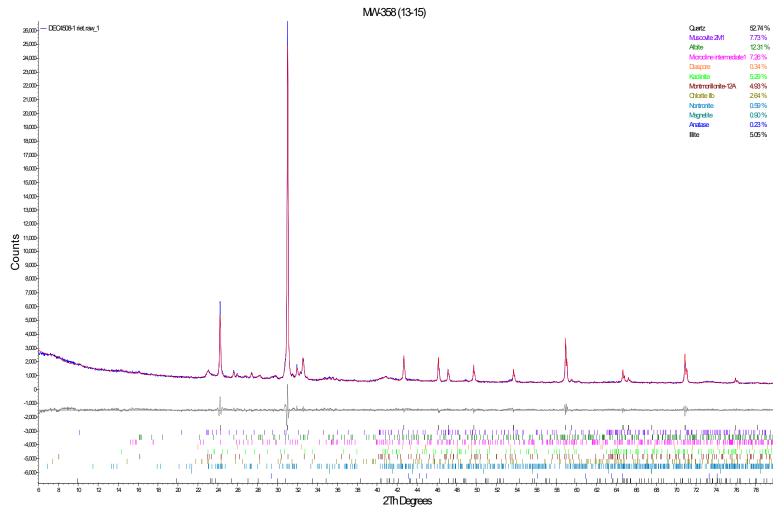
Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.05wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

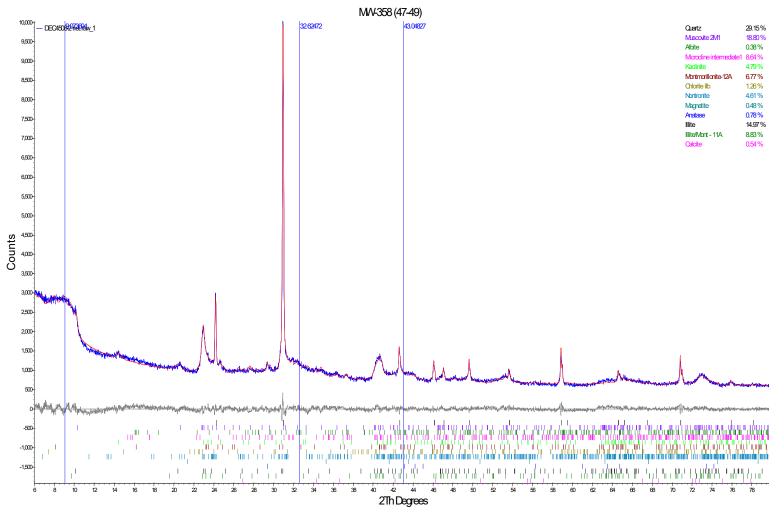
WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

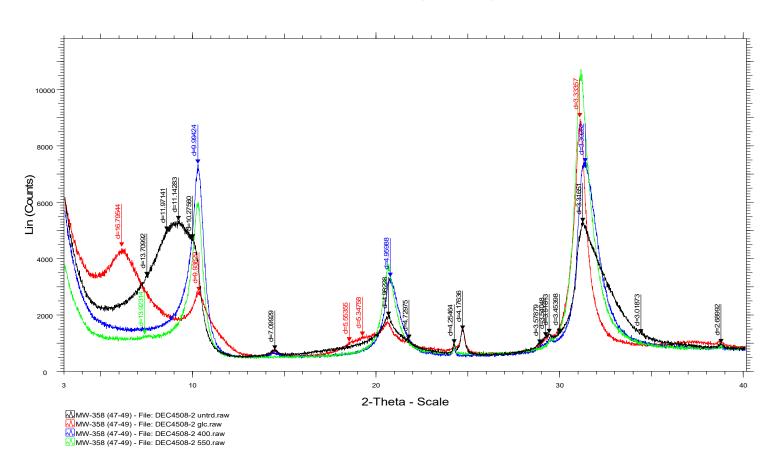
	MW-358 (13-15)	MW-358 (47-49)	MW-358 (86-88)	MW-392 (80-82)	MW-392 (32-33.5)	MW-393 (24-25.5)	MW-394 (20.5-22)	MW-392 (66-68)
Mineral/Compound	DEC4508-1	DEC4508-2	DEC4508-3	DEC4508-4	DEC4508-5	DEC4508-6	DEC4508-7	DEC4508-8
	(wt %)	(wt %)	(wt %)	(wt %)				
Quartz	52.7	29.2	30.7	29.8	52.1	64.1	55.4	22.7
Muscovite	7.7	18.8	19.7	13.1	9.0	5.5	7.6	15.9
Albite	12.3	0.4	2.5	0.6	9.1	6.4	12.8	0.6
Microcline	7.3	8.6	5.9	1.0	6.5	10.1	7.3	5.1
Diaspore	0.3	-	-	-	-	0.2	0.5	2.8
Magnetite	0.9	0.5	0.3	1.4	0.1	0.0	0.1	0.1
Anatase	0.2	0.8	1.8	0.8	0.6	0.3	0.3	1.0
Calcite	-	0.5	1.0	28.1	0.0	0.0	0.2	14.9
Fluorapatite	-	-	-	2.7	0.3	-	0.2	0.2
Ankerite	-	-	-	-	1.4	0.9	0.5	0.8
Clay								
Kaolinite	5.3	4.8	15.0	5.5	6.8	3.2	4.2	3.6
Montmorillonite-12A	4.9	6.8	4.8	-	-	-	-	5.8
Montmorillonite-14A	-	-	-	3.5	3.3	3.5	3.6	-
Nontronite	0.6	4.6	4.3	4.2	1.6	1.4	0.5	3.3
Illite/Mont - 11A	-	8.8	2.7	3.6	2.7	2.1	3.0	7.1
Illite	5.0	15.0	9.2	4.1	0.7	1.0	0.6	10.4
Chlorite IIb	2.6	1.3	2.0	1.6	5.8	1.2	3.1	6.1
TOTAL	100	100	100	100	100	100	100	100

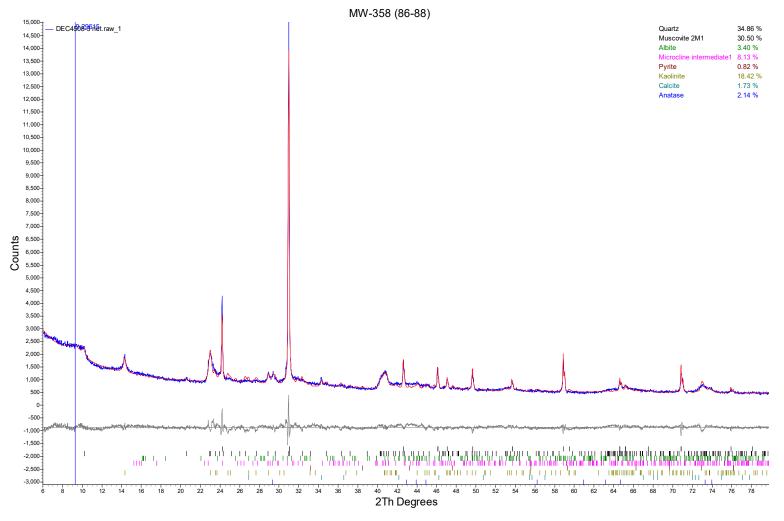

Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.

Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.

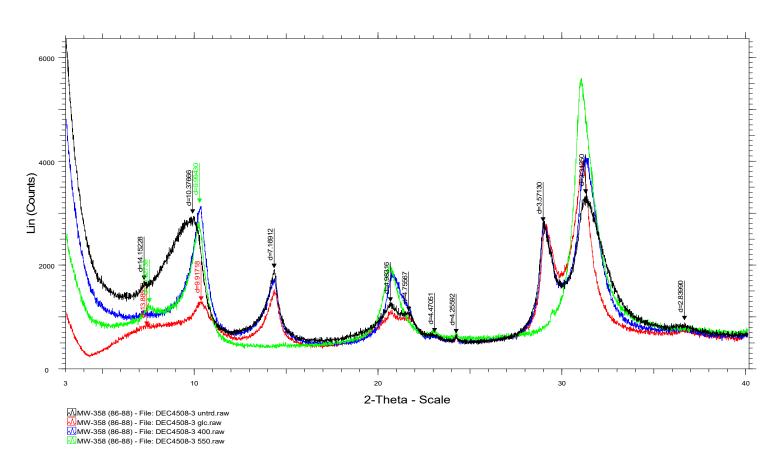

The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

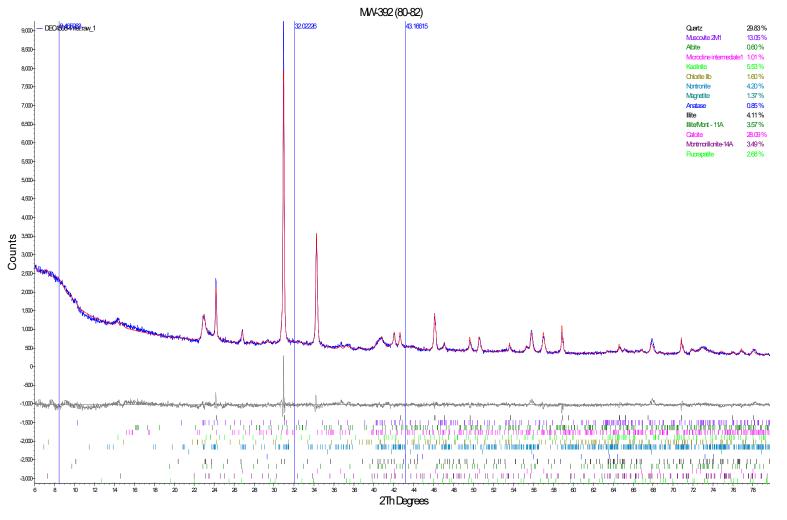
Mineral/Compound	Formula
Quartz	SiO ₂
Muscovite	KAI ₂ (AISi ₃ O ₁₀)(OH) ₂
Albite	NaAlSi ₃ O ₈
Microcline	KAISi ₃ O ₈
Diaspore	aAIO.OH
Magnetite	Fe ₃ O ₄
Anatase	TiO ₂
Calcite	CaCO₃
Fluorapatite	Ca ₅ (PO ₄) ₃ F
Ankerite	CaFe(CO ₃) ₂
Kaolinite	$Al_2Si_2O_5(OH)_4$
Montmorillonite	(Na,Ca) _{0.3} (Al,Mg) ₂ Si ₄ O ₁₀ (OH) ₂ ·10H ₂ O
Nontronite	$Fe_2(AI,Si)_4O_{10}(OH)_2Na_{0.3}(H_2O)_4$
Illite/Mont	KAI ₄ (Si,AI) ₈ O ₁₀ (OH) ₄ ·4H ₂ O
Illite	$(K,H_3O)(Al,Mg,Fe)_2(Si,Al)_4O_{10}[(OH)_2,(H_2O)]$
Chlorite	$(Fe,(Mg,Mn)_5,AI)(Si_3AI)O_{10}(OH)_8$



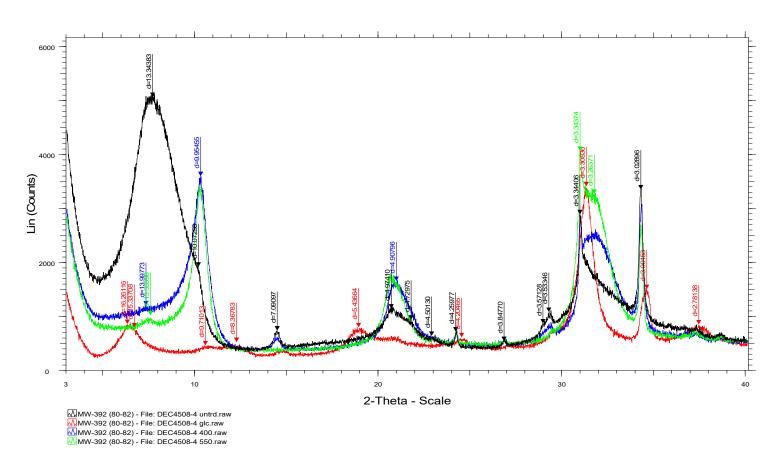


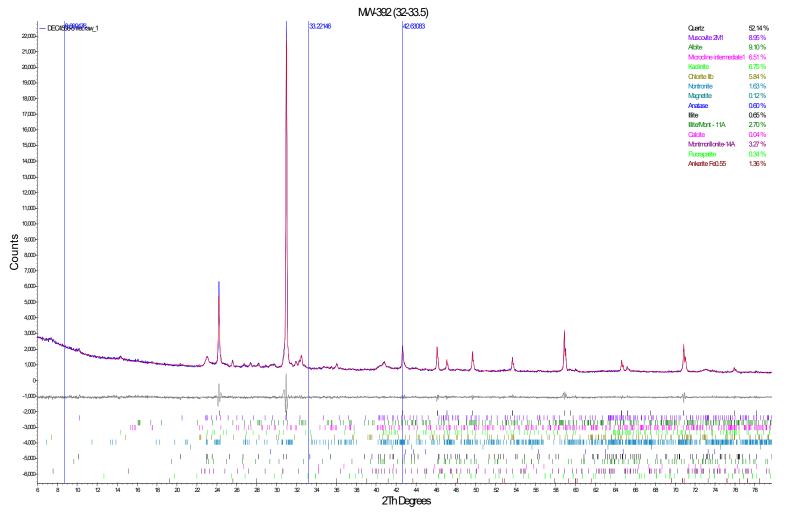
MW-358 (47-49)



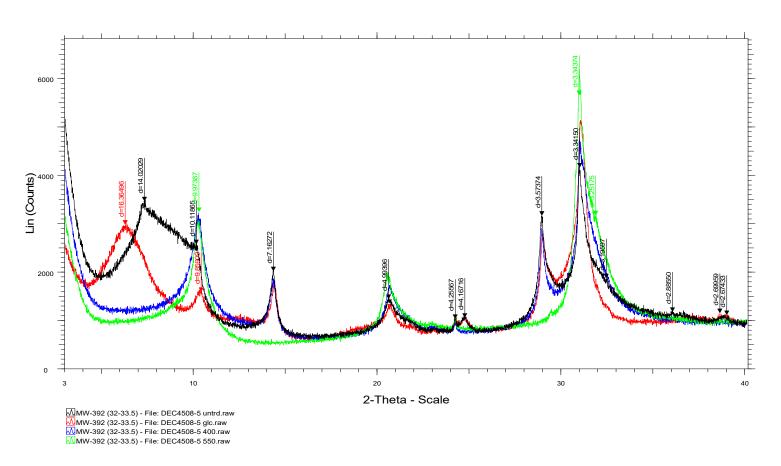


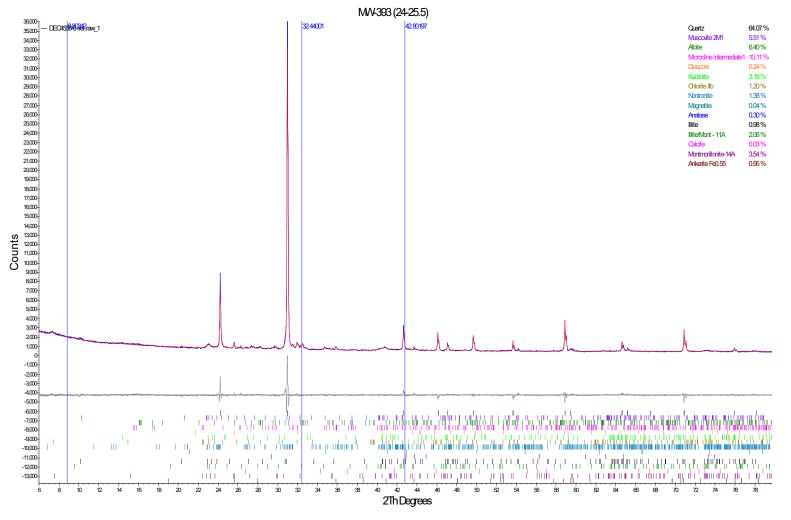
MW-358 (86-88)

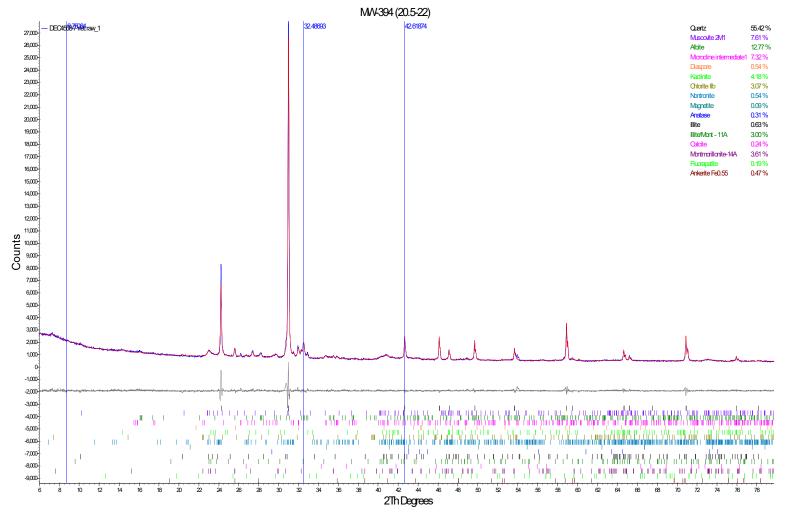


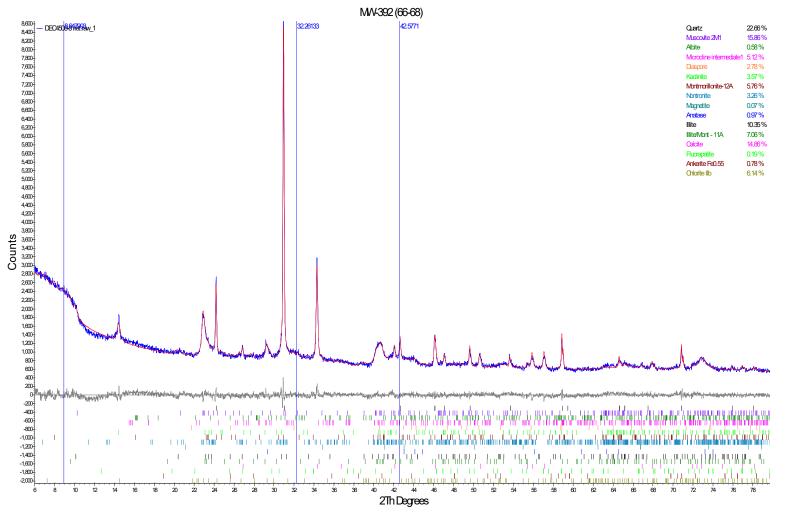


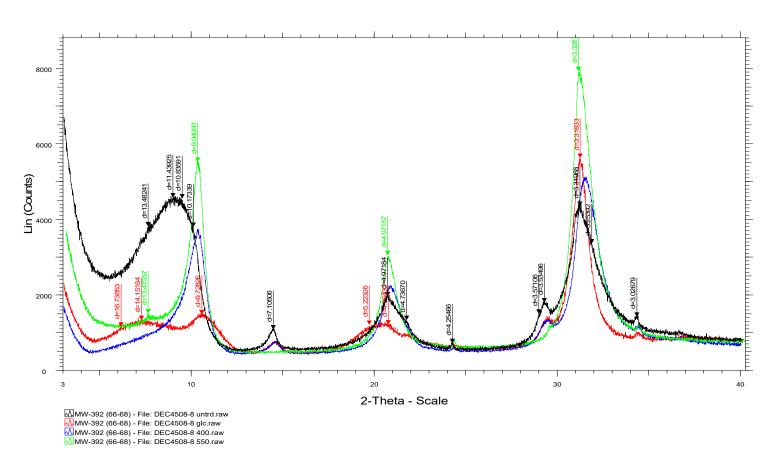
MW-392 (80-82)






MW-392 (32-33.5)





MW-392 (66-68)

ATTACHMENT 9 Referenced Documents

The following documents are included in Attachment 9:

- Attachment 9-1: IEPA. 2016. "Dynegy Midwest Generation, Inc. Baldwin Energy Complex: Baldwin Fly Ash Pond System Closure NPDES Permit No. IL000043." Letter from William Buscher (Illinois Environmental Protection Agency) to Rick Diericx (Dynegy Operating Company). August 16.
- Attachment 9-2: IEPA. 2023. "Baldwin Power Plant Bottom Ash Pond; W1578510001-06 Alternative Source Demonstration (ASD) Submittal." Letter from Michael Summers, P.G. (Illinois Environmental Protection Agency) to Phil Morris (Illinois Power Generating Company). November 28.
- Attachment 9-3: IEPA. 2024a. "Baldwin Power Plant Bottom Ash Pond; W1578510001-06 Alternative Source Demonstration (ASD) Submittal." Letter from Darin LeCrone, P.E. (Illinois Environmental Protection Agency) to Phil Morris (Illinois Power Generating Company). August 8.
- Attachment 9-4: IEPA. 2024b. "Baldwin Power Plant Bottom Ash Pond; W1578510001-06 Alternative Source Demonstration (ASD) Submittal." Letter from Darin LeCrone, P.E. (Illinois Environmental Protection Agency) to Phil Morris (Illinois Power Generating Company). October 3.
- Attachment 9-5: NRT. 2014. Groundwater Quality Assessment and Phase II Hydrogeologic Investigation, Baldwin Ash Pond System, Baldwin, Illinois. Natural Resource Technology, Inc. Prepared for Dynegy Midwest Generation, LLC. June 11.
- Attachment 9-6: NRT. 2016. Supplemental Hydrogeologic Site Characterization and Groundwater Monitoring Plan. Baldwin Fly Ash Pond System. Baldwin Energy Complex, Baldwin, IL. Natural Resource Technology, Inc.
- Attachment 9-7: Ramboll. 2023a. 40 C.F.R. § 257.95(g)(3)(ii): Alternative Source Demonstration. Baldwin Power Plant. Baldwin Bottom Ash Pond, CCR Unit 601. Ramboll Americas Engineering Solutions, Inc. April.

ATTACHMENT 9-1

IEPA. 2016. "Dynegy Midwest Generation, Inc. – Baldwin Energy Complex: Baldwin Fly Ash Pond System Closure – NPDES Permit No. IL000043." Letter from William Buscher (Illinois Environmental Protection Agency) to Rick Diericx (Dynegy Operating Company). August 16.

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 • (217) 782-3397 BRUCE RAUNER, GOVERNOR **ALEC MESSINA, ACTING DIRECTOR**

August 16, 2016

Mr. Rick Diericx Managing Director, Environmental Compliance **Dynegy Operating Company** 1500 Eastport Plaza Drive Collinsville, IL 62234

Re:

Dynegy Midwest Generation, Inc. - Baldwin Energy Complex: Baldwin Fly Ash

Pond System Closure - NPDES Permit No. IL0000043

Dear Mr. Diericx:

The Illinois Environmental Protection Agency (Agency) has completed the review of the Baldwin Fly Ash Pond System Closure Plan, Post Closure Plan and GMZ Application (Plan) dated April 7, 2016 and the technical memorandum dated August 8, 2016 which Dynegy submitted in response to Agency comments date July 13, 2016. The Plan was reviewed using both the 40 CFR Part 257 regulations and the 35 III. Adm. 620 regulations for reference.

The Agency finds that the Plan, in conjunction with the technical memorandum referenced above, represent an appropriate means by which to close the Baldwin Fly Ash Pond System which is comprised of the East Fly Ash Pond, the Old East Fly Ash Pond and the West Fly Ash Pond at the Baldwin Energy Complex.

If you have any questions or concerns, please contact Carl Kamp of my staff or me at the letterhead address or 217/785-4787.

Sincerely,

William E. Buscher, P.G.

William 9. Busch

Supervisor, Hydrogeology and Compliance Unit

Groundwater Section

Division of Public Water Supplies

Bureau of Water

CC:

Rick Cobb

Darin LeCrone Charles Gunnarson

Carl Kamp

Records 06L

ATTACHMENT 9-2

IEPA. 2023. "Baldwin Power Plant Bottom Ash Pond; W1578510001-06 Alternative Source Demonstration (ASD) Submittal." Letter from Michael Summers, P.G. (Illinois Environmental Protection Agency) to Phil Morris (Illinois Power Generating Company). November 28.

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 · (217) 782-3397

JB PRITZKER, GOVERNOR

JOHN J. KIM, DIRECTOR

217-782-1020

November 28, 2023

Phil Morris Illinois Power Generating Company 1500 Eastport Plaza Drive Collinsville, Illinois 62234

Re:

Baldwin Power Plant Bottom Ash Pond; W1578510001-06

Alternative Source Demonstration (ASD) Submittal

Dear Mr. Morris:

The purpose of this correspondence is to notify you that the Illinois Environmental Protection Agency (Illinois EPA) concurs with the Baldwin Power Plant Bottom Ash Pond Alternative Source Demonstration dated October 27, 2023, and the additional evidence provided on November 10, 2023.

Based on the provided evidence, the Illinois EPA concurs that the chloride and fluoride exceedances found in MW-370 and MW-393, respectively, do not come from the Baldwin Power Plant Bottom Ash Pond. The Illinois EPA also concurs that the likely source of the exceedances come from native bedrock. Therefore, the groundwater monitoring may continue in accordance with Section 845.650(e)(5). The ASD provided must be included in the annual groundwater monitoring report and the corrective action report as required by Section 845.610(e).

If you have any questions, please contact: **Heather Mullenax** Illinois EPA, Bureau of Water, Groundwater Section DPWS #13, P.O. Box 19276, Springfield, Illinois 62794-9276. If you have any questions concerning the investigation described above, please call 217-782-1020.

Sincerely,

Michael Summers, P.G.

Manager, Groundwater Section

Division of Public Water Supplies

Bureau of Water

ATTACHMENT 9-3

IEPA. 2024a. "Baldwin Power Plant Bottom Ash Pond; W1578510001-06 Alternative Source Demonstration (ASD) Submittal." Letter from Darin LeCrone, P.E. (Illinois Environmental Protection Agency) to Phil Morris (Illinois Power Generating Company). August 8.

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 · (217) 782-3397

JB PRITZKER, GOVERNOR

JAMES JENNINGS, INTERIM DIRECTOR

217-782-1020

August 8, 2024

Phil Morris Illinois Power Generating Company 1500 Eastport Plaza Drive Collinsville, Illinois 62234

Re: Baldwin Power Plant Bottom Ash Pond; W1578510001-06

Alternative Source Demonstration (ASD) Submittal

Dear Mr. Morris:

The purpose of this correspondence is to notify you that the Illinois Environmental Protection Agency (Illinois EPA) concurs with the Baldwin Power Plant Bottom Ash Pond Alternative Source Demonstration dated July 8, 2024.

Based on the provided evidence, the Illinois EPA concurs that the lithium exceedance found in MW-370 does not come from the Baldwin Power Plant Bottom Ash Pond. The Illinois EPA also concurs that the likely source of the exceedance come from shale bedrock. Therefore, the groundwater monitoring may continue in accordance with Section 845.650(e)(5). The ASD provided must be included in the annual groundwater monitoring report and the corrective action report as required by Section 845.610(e).

If you have any questions, please contact: **Heather Mullenax** Illinois EPA, Bureau of Water, Groundwater Section DPWS #13, P.O. Box 19276, Springfield, Illinois 62794-9276. If you have any questions concerning the investigation described above, please call 217-782-1020.

Sincerely,

Darin E. LeCrone, P.E. Manager, Permit Section

Division of Water Pollution Control

Illinois Environmental Protection Agency

cc: Heather Mullenax Anwar Azeem

Records Files 06M - W1578510001-06

ATTACHMENT 9-4

IEPA. 2024b. "Baldwin Power Plant Bottom Ash Pond; W1578510001-06 Alternative Source Demonstration (ASD) Submittal." Letter from Darin LeCrone, P.E. (Illinois Environmental Protection Agency) to Phil Morris (Illinois Power Generating Company). October 3.

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 (217) 782-3397

JB PRITZKER, GOVERNOR

JAMES JENNINGS, ACTING DIRECTOR

217-782-1020

October 3, 2024

Phil Morris Illinois Power Generating Company 1500 Eastport Plaza Drive Collinsville, Illinois 62234

Re:

Baldwin Power Plant Bottom Ash Pond; W1578510001-06

Alternative Source Demonstration Submittal

Dear Mr. Morris:

The purpose of this correspondence is to notify you that the Illinois Environmental Protection Agency (Illinois EPA) does not concur with the Baldwin Power Plant Bottom Ash Pond Alternative Source Demonstration (ASD) for arsenic on September 17, 2024. The Illinois EPA does not concur due to the following data gaps:

- Characterization to include sample and analysis in accordance with 35 IAC 845.640 of alternative source must be provided with the ASD.
 - o 35 IAC 845.640(a) requires evidence of field collection methods and field and laboratory quality control and quality assurance.
 - o 35 IAC 845.650(e) requires alternative source data as evidence of the alternative source, see item 1(a)(i) above. SW846 chapter 1, incorporated by reference in 35 IAC 845, states that regulatory decisions must be made with environmental data.

If you have any questions, please contact: **Heather Mullenax** Illinois EPA, Bureau of Water, WPC #15, P.O. Box 19276, Springfield, Illinois 62794-9276. If you have any questions concerning the investigation described above, please call 217-782-1020.

Sincerely,

Darin E. LeCrone, P.E. Manager, Permit Section

Division of Water Pollution Control

Illinois Environmental Protection Agency

2125 S. First Street, Champaign, IL 61820 (217) 278-5800 115 S. LaSalle Street, Suite 2203, Chicago, IL 60603 1101 Eastport Plaza Dr., Suite 100, Collinsville, IL 62234 (618) 346-5120 9511 Harrison Street, Des Plaines, IL 60016 (847) 294-4000

ATTACHMENT 9-5

NRT. 2014. Groundwater Quality Assessment and Phase II Hydrogeologic Investigation, Baldwin Ash Pond System, Baldwin, Illinois. Natural Resource Technology, Inc. Prepared for Dynegy Midwest Generation, LLC. June 11.

SMARTER SOLUTIONS

EXCEPTIONAL SERVICE

VALUE

Groundwater Quality Assessment and Phase II Hydrogeologic Investigation

Baldwin Ash Pond System
Baldwin Energy Complex
Baldwin, Illinois
Dynegy Midwest Generation, LLC

Project No: 2189

June 11, 2014

ENVIRONMENTAL CONSULTANTS

2422 E. WASHINGTON STREET, SUITE 104 BLOOMINGTON, ILLINOIS 61704 (P) 414.837.3607 (F) 414.837.3608

GROUNDWATER QUALITY ASSESSMENT AND PHASE II HYDROGEOLOGIC INVESTIGATION

BALDWIN ASH POND SYSTEM

Baldwin Energy Complex Baldwin, Illinois Dynegy Midwest Generation, LLC

Project No. 2189

Prepared For:

Dynegy Operating Company 1500 Eastport Plaza Drive Collinsville, IL 62234

Prepared By:

Natural Resource Technology 2422 E. Washington Street, Suite 104 Bloomington, Illinois 61704

June 11, 2014

parla

Stuart J. Cravens, PG Senior Hydrogeologist

TABLE OF CONTENTS

1	INTR	ODUCTI	ION	1-1
	1.1	Purpos	se	1-1
	1.2	Overvie	ew of the Plant and Ash Pond System	1-1
	1.3	Previou	us Investigations and Monitoring Well Installations	1-2
	1.4	Site De	escription	1-4
	1.5	Climate	e	1-4
2	FIELI	D PROCI	EDURES	2-′
	2.1	Boreho	ole Drilling	2-^
		2.1.1	2010 – 2012 Investigation	2-^
		2.1.2	2013 – 2014 Investigation	2-
	2.2	Monito	ring Well Installation and Development	2-2
		2.2.1	2010 – 2012 Investigation	2-2
		2.2.2	2013 – 2014 Investigation	2-3
	2.3	Site Su	urveying	2-
	2.4	Ground	dwater-Level Measurements	2-5
	2.5	Field P	Permeability Testing	2-6
	2.6		dwater Sampling and Chemical Analysis	
		2.6.1	2010 – 2012 Investigation	
		2.6.2	2013 – 2014 Investigation	
	2.7	Data M	Management	
3	REGI		GEOLOGY AND HYDROLOGY	
	3.1	Topogr	raphy	3-^
	3.2	Region	nal Geomorphology	3-2
	3.3	Region	nal Geology	3-2
	3.4	Surface	e Water Hydrology	3-5
	3.5	Unlithif	fied Deposits Hydrology	3-6
	3.6	Bedroc	ck Hydrology	3-7
	3.7	Water \	Well Survey	3-7
4	GEO	LOGY AI	ND HYDROGELOGY	4-′
	4.1	Geolog	gy	4-
	4.2	Hydrog	geology	4-6
		4.2.1	Hydraulic Conductivity	
		4.2.2	Potentiometric Surface Maps	
		4.2.3	Saturated Ash	
		4.2.4	Vertical Hydraulic Gradients	4-10
		4.2.5	Hydrogeologic Unit Designations	
		4.2.6	Groundwater Classification	
5	GRO		TER QUALITY	
-	5.1		Anions and Cations	
	5.2	-	eters of Concern	

7	REFERENCES	S	7-
6	CONCLUSION	NS	6-
		Other Inorganic Parameters	
		pH	
	5.2.6	Chloride	
	5.2.5	Total Dissolved Solids	
	5.2.4	Iron	
	5.2.3	Manganese	
	5.2.2	Sulfate	
	5.2.1	Boron	

FIGURES

Figure 1	Site Location Map
Figure 2	Aerial Photograph of Ash Pond System
Figure 3	Monitoring, Observation, and Piezometer Well Locations
Figure 4A	Monitoring and Observation Well Screen Elevations
Figure 4B	Temporary Piezometer and Observation Well Screen Elevations
Figure 5	Site Topographic Map
Figure 6	Historic Topographic Map
Figure 7	Cross Section Location Map
Figure 8A	Geologic Cross Section A-A'
Figure 8B	Geologic Cross-Section B-B'
Figure 8C	Geologic Cross-Section C-C'
Figure 8D	Geologic Cross-Section D-D'
Figure 8E	Geologic Cross-Section E-E'
Figure 9	Bedrock Topography
Figure 10A	Potentiometric Surface in the Unlithified Deposits – September 2013
Figure 10B	Potentiometric Surface in the Unlithified Deposits – November 2013
Figure 10C	Potentiometric Surface in the Unlithified Deposits – February 2014
Figure 11	Piper Diagram of Major Ion Chemistry in Groundwater
Figure 12A	Boron Concentration Map – November 2013
Figure 12B	Boron Concentration Map – February 2014
Figure 12C	Sulfate Concentration Map – November 2013
Figure 12D	Sulfate Concentration Map – February 2104
Figure 12E	TDS Concentration Map – November 2013
Figure 12F	TDS Concentration Map – February 2014

TABLES

Table 1	Monitoring Well Construction Details
Table 2	Groundwater, Leachate, and Surface-Water Levels and Elevations
Table 3	Field and Laboratory Groundwater Monitoring Parameters
Table 4	Groundwater Quality Data Summary: November 2010 – March 2012
Table 5	Groundwater Quality Data Summary: December 2013 and February 2014
Table 6	Geologic Layers and Hydrogeologic Unit Designations
Table 7	Geotechnical Analysis Summary of Ash Pond Deposits
Table 8	Summary of Horizontal and Vertical Permeability Test Results
Table 9	Vertical Hydraulic Gradients

APPENDICES

Appendix A	Boring and Well Construction Logs: 1990 – 2013
Appendix B	IDPH Well Construction Reports: 2010 – 2013
Appendix C	Well Development Reports: 2010 – 2013
Appendix D	Laboratory Physical Test Results
Appendix E	Field Permeability Test Data and Analyses

Appendix F Laboratory Analytical Reports: September 2013, November 2013, and February 2014

1 INTRODUCTION

1.1 Purpose

This groundwater quality assessment and Phase II hydrogeologic investigation has been prepared by Natural Resource Technology, Inc. (NRT) on behalf of Dynegy Operating Company (DOC) to further assess the hydrogeology and groundwater quality in the vicinity of the ash pond system at the Baldwin Energy Complex (BEC), which is owned by Dynegy Midwest Generation, LLC (DMG). This Phase II assessment follows the Proposed Scope of Work (DOC, March 22, 2013) which was approved, with clarifications, in a letter from the Illinois EPA to DMG dated June 18, 2013. In conjunction with the hydrogeologic investigation, a groundwater model has been developed to evaluate the effect of various ash pond closure scenarios on groundwater quality. The groundwater modeling report is being submitted under separate cover. These two reports will be utilized to identify potential corrective actions at the Ash Pond System to mitigate possible water quality impacts to the groundwater system.

The information presented in this report is comprehensive as it incorporates the data and evaluations from the prior hydrogeologic investigation report, Groundwater Quality Assessment and Initial Hydrogeologic Investigation – Baldwin Ash Pond System (Kelron Environmental, June 30, 2012). The earlier report assessed the hydrogeology and groundwater quality in the vicinity of the Ash Pond System (APS), but not beneath the ash ponds as does this latest study.

1.2 Overview of the Plant and Ash Pond System

The BEC (Figure 1) is a coal-fired electrical generating plant that began operation of its first unit in 1970, with two other generating units put into service in 1973 and 1975. The plant initially burned bituminous coal from Illinois, and switched to subbituminous coal in 1999. Total plant generating capacity is approximately 1,892 megawatts. Through 2011, the BEC utilized six active ash ponds with one out-of-service fly ash pond, located at the eastern end of the ash pond system. The former active ash ponds consisted of a bottom ash pond, primary fly ash pond, secondary fly ash pond, secondary pond, intermediate pond, and tertiary pond. There is one outfall from the ash pond system, with the outlet at the southwest corner of the tertiary pond into a tributary to the Kaskaskia River. The tributary discharges into the Kaskaskia River to the south of the Cooling Pond intake structure.

As of this report date, the following changes have been made to the handling of coal combustion residuals (CCRs) at the APS (Figure 2):

- Fly ash is no longer sluiced to the APS; dry fly ash from Units 1 and 2, conditioned with 10 to 12 percent water, is transported to the West Fly Ash Cell and dry fly ash from Unit 3 is marketed for off-site industrial use.
- Bottom ash from Units 1 and 2 at the northeast corner of the bottom ash pond of the APS is being actively mined and sold for off-site commercial/industrial use.
- Bottom ash from Unit 3 is being sluiced to the southeast corner of the Bottom Ash Pond of the APS.
- The Old East Fly Ash Pond and East Fly Ash Pond are both out of service, with the Old East Fly Ash Pond covered with top soil.
- The berm separating the Intermediate Pond from the Secondary Pond was removed and the Intermediate Pond joined with the Secondary Pond.

To summarize, the APS (Figure 2), currently consists of six cells:

- Bottom Ash Pond (176 acres, active)
- Old East Fly Ash Pond (119 acres, out of service)
- East Fly Ash Pond (77 acres, out of service)
- West Fly Ash Cell (55 acres, active)
- Secondary Pond, used for water clarification rather than direct management of CCRs, but does contain a small volume of CCR
- Tertiary Pond, used for final water clarification and may contain a very small volume of CCR

There is one outfall from the APS at the Tertiary Pond; it discharges to a tributary of the Kaskaskia River south of the Cooling Pond intake structure. All six cells of the Ash Pond System have been evaluated as part of the hydrogeologic investigation, groundwater quality assessment and modeling.

1.3 Previous Investigations and Monitoring Well Installations

The Illinois State Water Survey (ISWS) conducted a limited groundwater investigation of the BEC ash pond system in the early 1980's, including the installation of eight monitoring wells (Wehrmann, 1982). None of the eight ISWS wells are still in existence, having been abandoned and/or destroyed during continual development of the ash pond system between 1982 and 2010.

Five additional monitoring wells (BMW-9 to BMW-13) were installed by John Mathes & Associates, Inc. (Mathes) in 1984 along the south side of the ash pond system. Four of those wells (BMW-9, BMW-10, BMW-11, and BMW-12) were found during the 2010 to 2012 initial investigation, but due to their damaged condition were sealed and abandoned between September 10 and 21, 2010. Monitoring well BMW-13 is

believed to have been destroyed. All well sealing documentation was submitted to the Illinois Department of Public Health (IDPH) as required. New monitoring wells were installed in the vicinity of each of the abandoned Mathes wells in late 2010.

Two wells situated upgradient (east) of the ash pond system were located in 2010 during the initial field reconnaissance and literature search. These wells were installed in November 1990 by Burlington Environmental, Inc. as part of an evaluation of potential landfill sites in the vicinity of the BEC. After evaluating and re-developing the wells, designated MW-104S and MW-104D, it was determined that they were suitable for incorporation into a new monitoring well network for the ash pond system. Subsequently, in June 2011 the two upgradient monitoring wells were accidentally destroyed. Both wells were replaced in July 2011 with almost identical monitoring wells, designated MW-104SR and MW-104DR. All documentation for the original and replacement monitoring wells is provided in Appendix A.

Five prior documents concerning the BEC's APS have been prepared and submitted to the Illinois EPA, specifically:

- <u>Hydrogeologic Assessment and Groundwater Monitoring Plan Baldwin Ash Pond System</u>, dated May 26, 2010. A plan for initial evaluation of groundwater quality in the vicinity of the Ash Pond System along with an initial hydrogeologic characterization. This plan was accepted, with clarifications, in a letter from the Illinois EPA to DOC dated August 31, 2011.
- <u>Water Well Survey Baldwin Ash Pond System</u>, dated June 7, 2010. A survey identifying water wells located within 2,500 feet of the BEC's Ash Pond System. The water well survey was prepared in accordance with the "Right to Know" Potable Water Well Survey procedures of 35 Illinois Administrative Code 1600.210(b)(1) and 1600.210(b)(2).
- Groundwater Quality Assessment and Initial Hydrogeologic Investigation Baldwin Ash Pond System, dated June 30, 2012. This report assessed the hydrogeology and groundwater quality in the vicinity of the Ash Pond System, but not beneath the ash ponds. Thirteen monitoring wells were installed around the perimeter of the Ash Pond System to assess upgradient and downgradient groundwater quality. Six quarterly rounds of groundwater sampling and analysis were conducted for the full inorganic parameter list in IAC 35 Part 620.410.
- Off-Site Groundwater Quality Results Baldwin Energy Complex, dated April 16, 2012. This report presented the results of an off-site groundwater quality investigation, south and southwest of the Ash Pond System, to assess shallow off-site groundwater quality for the presence of inorganic parameters related to CCRs.
- <u>Proposed Scope of Work Baldwin Ash Impoundment System</u>, letter from DOC to Illinois EPA dated March 22, 2013. A plan for conducting a more comprehensive hydrogeologic investigation along with development of a groundwater model to evaluate various pond closure scenarios on groundwater quality in the vicinity of the APS. This plan was accepted, with clarifications, in a letter from the Illinois EPA to DOC dated August 31, 2011.

1.4 Site Description

The BEC is located in southwest Illinois in Randolph and St. Clair Counties. The Randolph County portion of the BEC is located within Sections 2, 3, 4, 9, 10, 11, 14, 15 and 16 of Township 4 South and Range 7 West. The St. Clair County portion of the property is located within Sections 33, 34, and 35 of Township 3 South and Range 7 West. The BEC ash pond system is approximately one-half mile west-northwest of the Village of Baldwin.

In general, the BEC property is bordered: on the west by the Kaskaskia River; on the east by Baldwin Road, farmland, and strip mining areas; on the southeast by the village of Baldwin; on the south by the Illinois Central Gulf (ICF) railroad tracks and State Route 154; and, on the north by the St. Clair/Randolph County Line. Although most of the operational area of the BEC is within Randolph County, the BEC's cooling pond (a.k.a. Baldwin Lake) extends to the north into St. Clair County. The entire BEC property encompasses approximately four square miles. However, the Baldwin cooling pond, which supplies the BEC with cooling water, occupies most of that area, covering approximately three square miles. Overflow from the Baldwin cooling pond discharges into the Kaskaskia River, with a spillway elevation of 430 feet NGVD (National Geodetic Vertical Datum).

In this report, the hydrogeologic investigation study area (referred to herein as the "Site") includes the APS and eastward several hundred feet, westward to the Kaskaskia River, and south to the BEC's southern property boundary along the ICF railroad tracks..

1.5 Climate

Historical climate data for temperature, precipitation, and snowfall is based on 30-year averages compiled from 1981 – 2010 for the Red Bud 5 SE, Illinois station (climatological station 117152) and the Sparta 1 W, Illinois station (climatological station 118147) by the NOAA National Climatic Data Center and accessed via the Midwestern Regional Climate Center in Champaign, Illinois (http://www.isws.uiuc.edu/atmos/statecli/newnormals.htm#stationlist). The Red Bud station (latitude 38.1853 degrees N, longitude 89.9283 degrees W) only has precipitation data but is just 2.7 miles west-southwest of the southwest corner of the BEC APS. The Sparta station (latitude 38.1167 degrees N, longitude 89.7167 degrees W) has both temperature and precipitation data but is located 9 miles southeast of the southeast corner of the APS.

The climate of the region is characterized by four distinct seasons (summer, fall, winter, and spring) without prolonged periods of extreme cold, extreme heat, or high humidity. Both warm air masses from the Gulf of Mexico and cold air masses from Canada influence local weather conditions. Precipitation is usually adequate though summer although drought periods are not uncommon. Because of its latitude, the area can experience abrupt temperature changes during all but the mid-summer season.

Temperature

Based on the Sparta climatological station data, the average annual temperature is 55.1 degrees Fahrenheit (°F), which represents a range in temperature from January's mean temperature of 30.7 °F to July's mean temperature of 77.2 °F. Average 30-year (1981 – 2010) maximum, minimum and mean temperatures for each month of the year at the Sparta 1 W station are listed below.

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANN
Max °F	39.9	45.0	55.8	66.9	75.7	84.5	88.1	87.4	80.3	69.5	56.0	42.6	66.1
Min °F	21.5	25.1	33.1	43.3	53.0	62.4	66.3	64.2	55.2	44.4	35.4	24.9	44.2
Mean °F	30.7	35.1	44.5	55.1	64.3	73.4	77.2	75.8	67.8	57.0	45.7	33.8	55.1

The three winter months of December, January and February are the coldest months with average 30 year minimums and maximums ranging from 21.5 °F in January to 45.0 °F in February. The three summer months of June, July, and August are the warmest months with average 30-year minimums and maximums ranging from 62.4 °F in June to 88.1 °F in July.

Precipitation

Normal annual precipitation for the region, based on the 30-year average at the Red Bud 5 climatological station, is 42.48 inches. May is typically the wettest month with 5.11 inches and January and February are the driest months with 2.4 inches on average each month. The 30-year (1981 – 2010) mean precipitation for each month of the year at the Red Bud 5 station are listed below.

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANN
Precip (in)	2.37	2.40	3.50	3.92	5.11	3.99	3.62	3.02	3.39	3.58	4.26	3.32	42.48

Average annual snowfall is 13.1 inches. Measurable amounts of snow occurs six months out of the year from November through April, ranging from approximately 0.3 inches in both November and April to 4.4 inches in January, the month that has the greatest amount of average snowfall.

2 FIELD PROCEDURES

2.1 Borehole Drilling

2.1.1 2010 - 2012 Investigation

Thirteen monitoring wells (Table 1) were installed by TerraDrill, Inc. (Dupo, Illinois) during September 2010 at the BEC APS at locations shown on Figure 3. The boring were advanced using a CME-550 drilling rig with 4.25-inch inside diameter (I.D.) and 8.5-inch outside diameter (O.D.) hollow-stem augers (HSA) through unlithified materials and rotary drilling through lithified materials with a 3.875-inch diameter tri-cone bit. Soil samples of the unlithified materials at each location were collected continuously using a 60-inch long by 2 inch diameter MacroCore sampler. Following extraction of each MacroCore the boring was advanced to the next sampling interval within the unlithified materials using the HSA. Shelby tube samples were recovered using a 3-inch I.D. thin-walled tube sampler in accordance with ASTM D 1587. Bedrock drilling and sampling was performed with NX-size wire-line rock coring methods using a hollow coring bit. Rock cores were placed in waxed-cardboard core boxes for further classification and analysis.

Soil samples were logged in the field for sample interval and soil recovery, stratum thickness and depth, visual soil classification by the Unified Soil Classification System [(USCS); ASTM D 2487 and 2488], moisture content and presence of water, and horizontal compressive strength using a pocket penetrometer. Soil boring logs are provided in Appendix A.

Twenty-two grab samples of soil from MacroCores and three Shelby tube sample were collected for additional USCS visual classification and moisture analysis at Shively Geotechnical in Fairview Heights, Illinois. Thirteen of those samples were also analyzed for grain size distribution. Three Shelby tube samples were collected for more comprehensive analysis for USCS visual classification, grain size analysis, moisture analysis, and vertical permeability. The physical testing results for the soil samples are presented in Appendix D.

2.1.2 2013 – 2014 Investigation

Five monitoring wells and nine temporary piezometers (Table 1) were installed by Bulldog Drilling, Inc. (Dupo, Illinois) during August 2013 at locations shown on Figure 3. The borings were advanced using a CME-55LC track-mounted rig. All borings were continuously sampled unless they were located adjacent to another boring/well location that had been characterized during the 2010 – 2012 investigation. In such cases, only those soil intervals not previously characterized were sampled. Two methods were utilized to

drill and obtain soil samples depending on the type of well being installed, the boring penetration depth, sampling interval, and to maximize sample recovery.

- Method 1: HSA with 4.25-inch ID and 8.5-inch OD. Soil samples were collected using 60-inch MacroCores and Shelby tube samplers. At some borings, split-spoon samplers were utilized instead of MacroCores if the sampling interval was not continuous, geologic materials were too hard, or if sample recovery with the MacroCores was poor.
- Method 2: Solid-stem augers (SSA) with 4-inch OD flights. Soil samples were collected using MacroCores and Shelby tube samplers.

Soil samples were collected and logged utilizing the same methods described in Section 2.1.1. Soil boring logs are provided in Appendix A.

Nine grab samples of soil from MacroCores or split-spoon samples, and eight Shelby tube samples, were collected for analysis at Geotechnology, Inc's. geotechnical laboratory in Fairview Heights, Illinois. All samples were classified using the USCS system. Ten samples were analyzed for grain size distribution and five samples underwent vertical permeability analysis.

Three of the eight Shelby tube samples and one split-spoon sample were collected from borings advanced into the ash ponds; these four samples underwent more comprehensive analysis for determination of total porosity, water-filled porosity, and air-filled porosity. The locations and depths of the samples were as follows:

- Sample ST163-3 at 1.5 to 3.5 feet BLS from boring TPZ-163 (Old East Fly Ash Pond)
- Sample ST164-5 at 3 to 5 feet BLS from boring TPZ-164 (Bottom Ash Pond)
- Sample SS167-30 at 29 to 30 feet BLS from boring TPZ-167 (West Fly Ash Cell)
- Sample ST168-5 at 3 to 5 feet BLS from boring TPZ-168 (East Fly Ash Pond)

The physical testing results for the soil samples are presented in Appendix D.

2.2 Monitoring Well Installation and Development

2.2.1 2010 - 2012 Investigation

The monitoring wells installed in September 2010 were constructed of flush-threaded, 2-inch ID Schedule 40 PVC riser with either five or ten feet of 0.010-inch pre-pack with 20-40 sand and filter sock. Monitoring wells installed across the uppermost unconfined water bearing unit (i.e., water table wells) were constructed with ten-foot well screens. Monitoring wells installed in deeper water bearing units within the unlithified materials or bedrock were constructed with five-foot well screens.

A granular sand pack was placed around each well screen and brought up one to two feet above the top of the screened interval. A minimum two-foot thick bentonite seal (bentonite chips or grout) was placed above the sand pack. The remainder of the borehole annulus was filled to the surface with bentonite chips or cement/bentonite grout using a 1.25-inch ID PVC tremie pipe which was placed down the inside of the augers as they were removed from the ground. The remaining one foot was backfilled with sand to allow the well protector to drain in the event of surface infiltration. The wells were all completed with an above-ground well protector to 2.5 to 3.2 feet above ground surface and set in a concrete pad. The top of the wells were capped with a waterproof locking cap and labeled. Monitoring well construction forms and diagrams are provided in Appendix A and the Illinois Department of Public Health (IDPH) Well Construction Reports in Appendix B.

At least 48-hours following well completion, the monitoring wells were developed to promote restoration of the natural hydraulic conductivity of the monitored formation and remove drilling-induced sediment to minimize turbidity in groundwater samples. Development was performed by surging and pumping using a submersible pump. Bailers were also used to surge and remove development water at some wells. The wells were developed until a minimum of five well volumes was removed and/or pH, specific conductance, and temperature of the groundwater had stabilized. Well development data sheets are provided in Appendix C.

In addition to the new monitoring wells installed in September 2010, two replacement wells MW-104SR and MW-104DR were installed for the damaged upgradient wells MW-104S and MW-104D in July 2011. Both of the damaged wells were sealed with notifications and documentation sent to the IDPH. Monitoring well MW-104SR was installed with a 10-foot screen across the water table with a total depth of 15 feet bgs, similar to the original well. Monitoring well MW-104DR was installed with a 5-foot screen with a total depth of 28.5 feet bgs, unlike the original well which had a 10-foot screen. The shorter screen in the replacement well was deemed more suitable for characterizing groundwater quality in a thin sand layer present between 24.5 and 27.25 feet bgs.

Monitoring and observation well depths and screened intervals are shown visually on Figure 4A, locations shown on Figure 3, and well depths and screened intervals are provided on Table 1.

2.2.2 2013 – 2014 Investigation

Wells installed in August 2013 had different types of materials and construction depending on if they were shallow or deep monitoring wells or temporary piezometers. The materials and construction for the wells were as follows:

- Wells MW-161, MW-162, and TPZ-166: 2-inch ID Schedule 40 PVC riser with 10-foot long, 2-inch ID screens
- Well MW-262: 2-inch ID Schedule 40 PVC riser with 5-foot long, 2-inch ID screens

- Wells OW-256, OW-257 and TPZ-164: 2-inch ID Schedule 40 PVC riser with 5-foot long pre-pack screens (2-inch ID and 3.5-inch OD
- TPZ -163, TPZ-167, and TPZ-168: 2-inch ID Schedule 40 PVC riser with 10-foot long pre-pack screens (2-inch ID and 3.5-inch OD
- TPZ-158, TPZ-159, TPZ-160, and TPZ-165: 1.25-inch ID Schedule 40 PVC riser with 10-foot long pre-pack screens (1.25-inch ID PVC with 2.0-inch OD poly filter fabric

All well screens were 0.010 inch slot size. Wells installed across the uppermost unconfined water bearing unit (i.e., water table wells) were constructed with ten-foot well screens. The only exception to this was piezometer TPZ-164, which was installed with a five-foot screen to 10.3 feet bgs due to the shallow depth of both the CCR materials and groundwater at this location. Wells installed in deeper water bearing units (i.e., wells OW-256, OW-257, and MW-262) within the unlithified materials were constructed with five-foot well screens.

A 20-40 granular sand pack was placed around each well screen and brought up one to two feet above the top of the screened interval. A minimum two-foot thick bentonite seal (bentonite chips or grout) was placed above the sand pack. The remainder of the borehole annulus was filled to the surface with bentonite chips or a high solids bentonite grout. The remaining one foot was backfilled with sand to allow the well protector to drain in the event of surface infiltration. The wells were all completed with an above-ground well protector to 2.3 to 3.0 feet above ground surface and set in a concrete pad. The top of the wells were capped with a waterproof locking cap and labeled. Monitoring well construction forms and diagrams are provided in Appendix A and the Illinois Department of Public Health (IDPH) Well Construction Reports in Appendix B.

At least 48-hours following well completion, the monitoring wells were developed to promote restoration of natural hydraulic conductivity of the monitored formation and remove drilling-induced sediment to minimize turbidity in groundwater samples. Development was performed by surging and pumping using a submersible pump. Bailers were also used to surge and remove development water at some wells. Wells were developed until a minimum of five well volumes was removed and/or pH, specific conductance, and temperature of the groundwater had stabilized. Well development data sheets are provided in Appendix C.

Well depths and screened intervals are shown visually on Figures 4A (monitoring and observation wells) and 4B (temporary piezometers), locations shown on Figure 3, and well depths and screened intervals are provided on Table 1.

It should be noted that a few months prior to the August 2013 well installation work, a truck transporting dry fly ash to the Active West Fly Ash Cell overturned, spilling fly ash onto the haul road and down the embankment, partially covering monitoring well OW-157 and the surrounding area. Although most of the spilled fly ash was removed, some remains around the well due to the steep nature of the embankment.

2.3 Site Surveying

Monitoring well and borehole locations were surveyed by an Illinois Professional Land Surveyor to an accuracy of 0.1-foot horizontal and 0.01-foot vertical relative to the state planar horizontal datum NAD83 and vertical datum NAVD88 Geoid 96, respectively. Measuring point and land surface elevations of all monitoring wells, observation wells, and temporary piezometers at the APS are provided in Tables 1 and 2.

2.4 Groundwater-Level Measurements

Prior to collecting groundwater samples, static water depth was measured to an accuracy of 0.01 foot in each monitoring well using a Solinst-101 electronic water-level indicator. The groundwater depths were measured relative to the top of the PVC riser and subsequently subtracted from the measuring point elevation to determine the groundwater elevation within the well.

Groundwater-level measurements for this report were conducted on the following dates:

- Initial Hydrogeologic Investigation:
 - November 15 16, 2010
 - o March 22 23, 2011
 - o June 6 8, 2011
 - September 12 14, 2011
 - o December 6 8, 2011
 - o March 6 8, 2012
- Phase II Hydrogeologic Investigation:
 - o September 16 17, 2013
 - o December 20 21, 2013
 - o February 18 19, 2014

The measurements were used to develop potentiometric surface maps, determine vertical gradients, and evaluate groundwater levels in the hydrogeologic units at the Site. Groundwater elevations from the initial investigation (2010 – 2012) are provided in Table 4 along with groundwater quality data. Groundwater level measurements and elevations for the Phase II investigation (2013 – 2014) are provided in Table 2. Groundwater elevations for the Phase II investigation are also included with the groundwater quality data summary in Table 5.

2.5 Field Permeability Testing

In-situ hydraulic conductivity tests were performed on eight monitoring wells from September 28 to October 3, 2011 and seven monitoring and observation wells on October 16 to 17, 2013. The monitoring wells were tested by the variable head ("slug") test method. The test methods utilized were modifications of the slug test method described by Cooper et al. (1967), whereby a solid slug is lowered or raised into the saturated portion of the well column, and the resulting change in water level measured with time.

The solid slug tests at the Site were conducted using two, three and four foot long by 1-1/4 inch diameter PVC slugs with rope and recorded using Aquistar PT2X Smart Sensors (PT2X) with 50 pounds per square inch (psi) transducers. The PT2X is a combination downhole transducer and datalogger. In most cases, multiple tests were performed on each well in order to provide corroborating data and because of the variability inherent in groundwater level recoveries when a slug is inserted versus removed from a well. However, not all wells had multiple tests and/or analyses either because of very low permeability or limitations associated with low groundwater levels and well construction. The field data collected and downloaded from the PT2X sensors is represented graphically in Appendix E.

A laptop computer was used to download the data from the dataloggers and analyze the data with the use of AQTESOLVTM for Windows (Version 4.50.002), an aquifer test analysis software package by HYDROSOLVE. The analytical solutions utilized on the data were the Bouwer-Rice method (1976) for unconfined and confined aquifers and the KGS Model (Hyder et al., 1994). The AQTESOLVTM for Windows output is included in Appendix E.

2.6 Groundwater Sampling and Chemical Analysis

2.6.1 2010 – 2012 Investigation

Quarterly monitoring of the new groundwater monitoring well network around the BEC APS was initiated in the 4th Quarter 2010. The groundwater elevation and quality data presented was collected during six consecutive quarters from the 4th Quarter of 2010 through the 1st Quarter of 2012. The Dynegy Operating Company (DOC) laboratory collected all samples following guidelines in their Standard Operating Procedure. Groundwater samples collected for metals analysis were filtered through a 0.45 micron filter at the time of collection.

Prior to purging and groundwater sampling an initial water level was measured with an electronic water level indicator to an accuracy of 0.01 foot. The water level gauging measurements were recorded in the field logbook. Groundwater at each monitoring well was purged and sampled using low flow sampling methods utilizing dedicated bladder pumps and a water quality meter with flow-through cell, specifically the Hydrolab® Minisonde Model 4a water quality analyzer connected directly to the discharge tubing of

the pump. Temperature, conductivity, and pH of the groundwater at each well was monitored and recorded prior to and at the conclusion of groundwater sample collection. Groundwater samples were collected, placed in appropriate preserved containers, packed in a cooler with ice, and returned to the DOC laboratory.

Quality assurance/quality control (QA/QC) procedures were followed during the collection of groundwater samples. Field duplicates were collected for analysis of all parameters at the rate of one per ten (10%) samples of each analytical type.

Chemical analyses were performed by the DOC laboratory with the exception of the total cyanide analyses, which were analyzed by Teklab, Inc. (Collinsville, Illinois). During the first six quarters encompassing the initial groundwater characterization, the full list of inorganic parameters listed in IAC 35 Part 620.410 (a) and (d), (excluding Radium 226/228) were sampled and analyzed (Table 3). In addition, the supplemental parameters of alkalinity, calcium, magnesium, potassium, and sodium were analyzed in all four quarters of 2011 and the 1st Quarter of 2012 in order to fully characterize the groundwater as to type and cation-anion balance. Metals were analyzed by the total recoverable method. All analyses were performed in accordance with U.S. EPA SW-846, Standard Methods for the Examination of Water and Wastewater, 19th Edition and American Society of Testing and Materials (ASTM) methods (Table 3).

A summary of all field and laboratory parameter data for the 4th Quarter 2010 through the 1st Quarter 2012 sampling events are listed in Table 4.

2.6.2 2013 - 2014 Investigation

Three quarters of groundwater level data and two quarters of groundwater quality data were collected and utilized in this report as follows: 3rd Quarter 2013 (September) – water levels only; ¹ 4th Quarter 2013 (December) - field parameters and water quality; and, 1st Quarter 2014 (February) – field parameters and water quality. All groundwater measurements, sampling, and analyses were performed by Teklab, Inc. The groundwater sampling was conducted using the same procedures and methods as outlined in Section 2.6.1 for all of the wells fitted with dedicated bladder pumps, which included all monitoring wells (i.e., MW-designation). Observation wells (OW-designation) and temporary piezometers (TPZ-designation) were sampled using a peristaltic pump with disposable low density polyethylene (LDPE)

¹ Water samples were obtained in September 2013; however, metals were inadvertently not filtered. As a result, parameters sensitive to turbidity (iron and manganese) had concentrations that are not representative of the filtered samples collected during the previous and subsequent sample events. Unfiltered boron results were representative of samples collected before and after this event. An extra sample event was added in February 2014 to replace the September 2013 values. All analytical results are provided in Appendix F.

tubing. Wells without dedicated pumps were purged until three stable readings were obtained for temperature, conductivity, and pH.

Quality assurance/quality control (QA/QC) procedures were followed during the collection of groundwater samples. Field duplicates and field blanks were collected for analysis of all parameters at the rate of one per day, which was equivalent to two field duplicates and blanks per sampling event.

Chemical analyses were performed by Teklab, Inc. for a subset of the inorganic parameters listed in IAC 35 Part 620.410 (a): dissolved chloride, dissolved sulfate, total dissolved solids (TDS), and the dissolved metals boron, iron, and manganese (Table 3).

A summary of all field and laboratory parameter data for the 4th Quarter 2013 and 1st Quarter 2014 sampling events are listed in Table 5. Laboratory analytical reports are provided in Appendix F.

2.7 Data Management

Field data were recorded on pre-printed forms including:

- Daily field reports
- Boring logs
- Monitoring well completion reports
- Well development reports
- Water sampling forms

Groundwater sample data, including water levels, field parameter analyses, and laboratory chemical analyses, were imported directly from laboratory-provided electronic files and stored on a proprietary groundwater data management software package (MANAGESTM Version 3.2, Electric Power Research Institute).

3 REGIONAL GEOLOGY AND HYDROLOGY

3.1 Topography

Topography in the vicinity of the BEC APS (Figure 5) ranges from approximately 370 feet NGVD along the Kaskaskia River southwest of the APS to 450 feet NGVD towards the south and east. The principal surface drainage for the region is the Kaskaskia River, located west of APS. A USGS stream gage (USGS 05595240) is located on the Kaskaskia River at Illinois Route 154 to the southwest of the APS. As seen on the historic topographic map (Figure 6), which represents the site topography in 1968 prior to construction of the APS, the natural drainage at the Site was east to west where the current Bottom Ash Pond is located, with elevations ranging from approximately 400 to 435 feet. The drainage merged towards the west end of the future Bottom Ash Pond, becoming a defined intermittent stream running southwest through what is now the Secondary Pond and running to the southwest corner of the APS at the current locations of the Tertiary Pond.

Comparing the 1968 topography to the current site topography, the following are approximate land surface elevation changes observed at the ash ponds:

Pond or Cell Location	Approximate Range in Current Topographic Elevations (feet NGVD)	Current Topographic 1968 Topographic	
Bottom Ash Pond	415 – 450	400 – 430	10 – 20
Out of Service Old East Fly Ash Pond	455 – 460	420 – 440	15 – 30
Out of Service East Fly Ash Pond	450 – 460	420 – 435	25 – 35
Active West Fly Ash Cell	430 – 440	410 – 415	20 – 30
Secondary Pond	395 – 430	390 – 425	5 – 10

The overall change in topography from pre-pond to current land surface ranges from 5 to 35 feet, with the greatest elevation changes, ranging from 15 to 35 feet, occurring in the three out of service fly ash ponds and the smallest elevation changes, ranging from 5 to 10 feet, occurring in the area now occupied by the Secondary Pond. The current drainage pattern at the APS is similar to that present prior to construction of the impoundment and the cooling pond.

3.2 Regional Geomorphology

Randolph County has an area of about 387,840 acres or 604 square miles. The county has about 41,800 acres of woodland, much of it along the Mississippi and Kaskaskia Rivers. Surface water features in the form of streams and lakes greater than 40 acres in size occupy approximately 7,800 acres, of which 2,018 acres are occupied by the Baldwin Cooling Pond.

The physiographic division in the region of the Site is the Mt. Vernon Hill Country of the Till Plains Section, Central Lowland Province. Within the Mt. Vernon Hill Country, the topography is controlled largely by the underlying bedrock, which has been extensively eroded in some areas, resulting in a surface expression of gently rolling hills and valleys. Most streams have broad valleys with low gradients. Topographic relief seldom exceeds 30 feet. Ground surface slopes in the area range from 0 to 10 percent and lie on broad drainage divides, ridges, and side slopes.

The geomorphology of the area has been shaped by periods of glaciations and erosion. The glaciers that advanced into the region carried abundant rock debris which was deposited as the ice melted, forming an irregular layer that thinly covers much of the bedrock north of the glacial boundary. Outwash and finer deposits were carried by the meltwater from the glaciers and deposited in valleys. Exposed glacial deposits were subject to wind erosion, and silts and fine-grained sands were deposited on the uplands adjacent to the valleys as loess. Erosion of these loess deposits overlying glacial till has been one of the processes that developed the gently rolling hills and ridges in the southern Illinois uplands.

Approximately 2.5 miles east of the BEC APS, the topography has been altered through reclamation of strip-mined (i.e., surface mined) land. This reclaimed mining area is hummocky and has numerous man-made ponds and lakes with linear to irregular shapes.

3.3 Regional Geology

Based on regional and local information available from the Illinois State Geological Survey (ISGS), the geology in the vicinity of the BEC APS consists of less than 25 to 75 feet of glacial drift deposits resting on top of Pennsylvanian and Mississippian age bedrock. There are three general geologic sequences found in the vicinity of the BEC, depending on proximity relative to the Kaskaskia River. The general sequences of geologic materials at the BEC based on stack-unit mapping by the ISGS and geologic quadrangle maps (Berg and Kempton, 1988; Devera, 2004; and Grimley and Webb, 2010) are presented for the following areas: Ash Pond System and Cooling Pond; Kaskaskia River Bottomlands; and, Southern and Eastern Upland Areas.

Ash Pond System and Cooling Pond

From the surficial deposits downward, there are four primary geologic materials in the vicinity of the ash pond system and cooling pond, consisting of:

- Equality Formation of the Wisconsinan Episode of glaciation of the Pleistocene Epoch (approximately 75,000 to 12,000 years before present (B.P.): consist of lake deposits and/or fine-grained alluvium (silt loam to silty clay loam to silty clay) deposited as slackwater sediment during peak glacial sedimentation periods of the Mississippi River; terraces generally occur at 400 to 425 feet NGVD; this formation may include some interbeds of fine sand or coarse silt, is generally light olive-brown to grayish brown to dark gray, stratified, secondary carbonate concretions may occur along bedding planes, may contain small (<1 centimeter) aquatic gastropod shells, bivalves, or conifer wood in unoxidized portions, soft to medium stiffness when moist; up to 50 feet thick; may include approximately 3 feet of loess cover and is underlain by any of the following: Henry Formation, Pearl Formation, or Petersburg Silt.</p>
- Pearl Formation (Mascoutah Facies) of the Illinois Episode of glaciations (approximately 200,000 to 130,000 years B.P.), which consists of outwash sand and some gravel deposited from glacial meltwater rivers; generally greater than 20 feet and increasing in thickness up to 55 feet towards the west as the Kaskaskia Valley is approached; the sand is predominantly fine to medium, yellowish brown, stratified below the weathered zone, typically more weathered or more clayey in upper portions, moderately to well sorted; may be overlain by the Berry Clay Member (silty clay to clay loam) in some areas.
- Vandalia Till Member of the Glasford Formation, of the Illinois Episode, is the predominant till unit in the region. It is a loamy and sandy compact diamicton deposited as till and icemarginal sediment with the following lithologic description: pebbles mainly less than 2-inches in diameter, includes silt, sand and gravel lenses up to several feet thick, massive to crudely stratified; yellowish brown, olive brown, grayish brown to dark gray with iron and manganese oxide staining along fracture faces; leached to calcareous; stiff to very stiff; and, up to 120 feet thick (Willman et al., 1970; Berg and Kempton, 1988; Philips, 2008). The Vandalia Till Member has been mapped by the ISGS with thicknesses between 20 and 50 feet in the area surrounding the Site. The Vandalia Till Member has a lower and upper portion, with the lower portion a dense basal till layer, stiff to very hard, low moisture content, and calcareous. The upper portion is a weaker and moister supraglacial till, deposited off the surface of an inactive melting glacier (i.e., ablation till), and may include lenses of silt, sand or gravel up to 10 feet thick and tens of feet wide, is weathered brown, softer, more clay rich, and relatively moist (Philips, 2008).
- Pennsylvanian and Mississippian bedrock, mainly limestone and shale with some sandstone occurs within 50 feet of the ground surface; the uppermost Pennsylvanian bedrock is the Tradewater Formation of the Desmoinesian Series and ranges from 0 to 40 feet in thickness; the uppermost Mississippian bedrock is the Upper Okaw Formation, which includes the Tar Springs, Vienna, and Waltersburg units of the Chesterian Series and is generally 20 to 30 feet thick; the Upper Okaw consists of shale, limestone, and sandstone; the Tradewater Formation predominates under the APS and Baldwin Cooling Pond, as the Carbondale Formation pinches out to the east and the Tradewater pinches out to the west towards the Kaskaskia River.

Kaskaskia River Bottomlands

From the surficial deposits downward, there are three primary geologic materials along the Kaskaskia River bottomlands, consisting of:

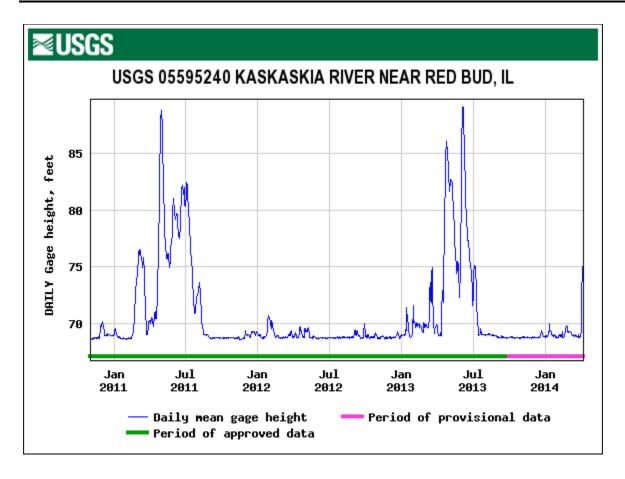
- Cahokia Formation: alluvium (river deposits) in floodplains of tributaries to the Kaskaskia River from the Hudson Episode (approximately 12,000 years B.P. to today); consists of silt loam to silty clay loam which may contain thin sandy, gravelly or loamy zones; there are three principal facies of the Cahokia in the Kaskaskia River bottomlands west of the APS:
 - Clayey facies: silt loam, silty clay loam, and silty clay deposits within abandoned channel fills and backswamps; within frequent flood areas and only differentiated within the modern floodplain of the Kaskaskia River; olive-gray to grayish brown to gray, massive to stratified, noncalcareous, contains weak soil development without a B horizon; up to 20 feet thick.
 - Sandy Facies: fine to medium sand within point bar and channel deposits of the modern floodplain of the Kaskaskia River (near surface) as well as in early to middle Holocene terraces (subsurface); interstratified with the clayey facies; may include beds of sandy loam and silty clay loam, dark yellowish brown to brownish gray, moderately to well sorted, stratified, noncalcareous, soft; up to 25 feet thick.
 - Clayey facies (high level): occurs within the early to middle Holocene terrace at elevations of approximately 395 to 400 feet above mean sea level (NGVD); a silty clay loam to silt loam of river overbank alluvial deposit that is generally less than 20 feet in thickness but may be up to 30 feet thick; brown to yellowish brown to grayish brown, noncalcareous, upper 5 feet may exhibit a relatively weak modern soil profile.
- Henry Formation of the Wisconsinan Episode of glaciation, consisting of glacial outwash deposits (glacial meltwater river deposits) or nonglacial alluvium up to 20 feet in thickness; the outwash is dominated by fine to medium sand, moderately to well sorted, stratified, and tan to grayish brown; may contain interbeds of fine-grained silty deposits; can be intertongued with the Equality Formation.
- Pennsylvanian and Mississippian bedrock, mainly limestone and shale with some sandstone occurs within 50 feet of the ground surface; the uppermost Pennsylvanian bedrock is the Tradewater Formation of the Desmoinesian Series and ranges from 0 to 40 feet in thickness; the uppermost Mississippian bedrock is the Upper Okaw Formation, which includes the Tar Springs, Vienna, and Waltersburg units of the Chesterian Series and is generally 20 to 30 feet thick; the Upper Okaw consists of shale, limestone, and sandstone; the Mississippian bedrock predominates in the Kaskaskia River bottomlands as the Tradewater Formation pinches out towards the west end of the APS.

Southern and Eastern Upland Areas

Areas south and east of the BEC, where higher topographic elevations occur, are characterized by unlithified glacial deposits above shallow to medium depth bedrock. The three principal materials found to the south, eastern portions of the BEC, and east of the BEC, from the surface downward, are:

Peoria Loess and Roxana Silt consists of loess (windblown silt) of the Wisconsinan Episode; the loess is a silt loam to silty clay loam that is up to 12 feet thick and typically underlain by the Glasford Formation at surface elevations greater than 440 feet NGVD; generally brown to yellowish brown to grayish brown to slightly pinkish brown, leached of carbonates, massive but with strong soil structure in the upper 5 feet, and soft to moderately stiff.

- Vandalia Till Member of the Glasford Formation see earlier description under "Ash Pond System and Cooling Pond".
- Pennsylvanian bedrock, mainly undifferentiated shale and limestone of either the Tradewater Formation or the Carbondale Formation of the Desmoinesian Series, generally occurs within 30 feet of the ground surface; areas to the east of the APS are immediately underlain by the Carbondale Formation, which pinches out towards the west.


3.4 Surface Water Hydrology

The predominant surface water bodies in the regional study area include the Mississippi River, Kaskaskia River, and Baldwin Cooling Pond. The Mississippi River is located approximately 25 miles west of the APS. The Kaskaskia River borders the BEC property to the west, and the Baldwin Cooling Pond borders the APS to the north (Figure 1). The regional drainage features of the Kaskaskia River exhibit a predominantly dendritic drainage pattern.

The Baldwin Cooling Pond is 2,018 acres and was constructed with an 8-mile levee around the Kaskaskia River bottomland. The cooling pond was begun in 1967, and completed and filled in 1970. It is a perched cooling pond in that it is semi-isolated hydrologically from the natural drainage features – surface water and groundwater – of the area. The average depth of the cooling pond is approximately 8 feet; however, old creek channels and ponds provide areas of 20 to 50 feet in depth. The lake is filled by water pumped from the Kaskaskia River, supplemented by natural precipitation onto the surface of the lake. The pond level is generally maintained at approximately 429 to 430 feet NGVD. Excess water from the cooling pond flows via a 3,250 foot long man-made channel from its southwest corner to the Kaskaskia River. Discharge from the Baldwin Cooling Pond to the Kaskaskia River is regulated as part of the BEC's NPDES discharge permit.

A USGS stream gage (#05595240) for the Kaskaskia River is located ½-mile directly west the BEC APS at latitude 38.1942 degrees N, longitude 89.8881 degrees W. Daily gage heights for the period of November 2010 through February 2014 are provided in the graph below.

3.5 Unlithified Deposits Hydrology

The extent of sand and gravel aquifers in the region are primarily found along the Kaskaskia River Valley where sand and gravel deposits are highly permeable, thick, and extensive. Outside of the Kaskaskia River Valley, the unlithified materials in upland areas are predominantly clay deposits associated with the Equality Formation or the Glasford Formation, which generally provide a low probability of encountering sand and gravel layers for dependable groundwater supply. Although some thin sand seams and layers occur intermittently within the Vandalia Till Member of the Glasford Formation in localized areas around the BEC, most groundwater supplies in upland areas are obtained from large diameter shallow bored wells. Typical water wells in the vicinity of the BEC are between 25 and 55 feet deep, 36 to 48-inches in diameter, and collect groundwater through slow percolation into the wells, which are large diameter to allow for greater water storage to compensate for the low rate of groundwater infiltration. Some of these bored wells do not intercept sand and gravel seams, but rely on obtaining groundwater from sandy clay deposits.

The effective porosities for the types of sediments (diamictons) found in the vicinity of the study site range from 10 to 20 percent (Fetter, 1980). Effective porosity, which is a measure of the pore space thorough which saturated flow can occur, typically ranges from 5 to 20 percent for diamictons (Walton, 1988).

Horizontal hydraulic conductivity for silt, clay, and mixtures of sand, silt, and clay typically have horizontal permeability ranging from 10⁻⁴ to 10⁻⁷ cm/s (USDI, 1981; Fetter, 1980).

3.6 Bedrock Hydrology

The Mississippian and Pennsylvanian rocks in the vicinity of the BEC yield small amounts of water to wells from interconnected pores, cracks, fractures, crevices, joints, and bedding planes. Water-bearing openings are variable from place to place and are best developed near the surface in thin limestones and sandstones. Shallow sandstone and creviced limestone may yield small supplies in some areas, but water quality becomes poorer (i.e., highly mineralized) with increasing depth. The Pennsylvanian and Mississippian rocks generally have low porosities and permeabilities, are not a reliable source of groundwater, and the quality varies considerably (Pryor, 1956). No bedrock water wells have been identified in the vicinity of the APS.

Groundwater in the Pennsylvanian- and Mississippian-age rocks mainly occurs under semi-confined to confined conditions. Water moves primarily through secondary openings such as fractures and joints or secondary solution channels in limestones. Recharge takes place through the overlying Quaternary deposits (Student, 1981; Lloyd and Lyke, 1995). The regional direction of groundwater flow in these rocks is not known directly, but is assumed to be towards a regional discharge area within the Kaskaskia River Valley, with groundwater moving upward from the Pennsylvanian and Mississippian rocks to the surficial unlithified deposits and the Kaskaskia River.

The porosity of shale typically ranges from 1 to 20 percent (Walton, 1988). Representative horizontal field hydraulic conductivity (permeability) for shale typically ranges from $5x10^{-10}$ to $5x10^{-6}$ centimeters per second (cm/s). Representative aquitard field permeability ranges for shale, which is defined as the rate of vertical flow of water through a unit horizontal cross-sectional area of the aquitard, are $5x10^{-12}$ to $5x10^{-8}$ cm/s. The porosity of limestone is much more variable than shale, ranging from 5 to 55 percent. Representative horizontal field hydraulic conductivity for limestone also has a wide range as a result of secondary openings, with values ranging from $9x10^{-7}$ to $9x10^{-1}$ cm/s (Walton, 1988).

3.7 Water Well Survey

A comprehensive water well survey was conducted by Kelron and NRT (2010b) for a 2,500-foot radius around the BEC APS. According to database records of the ISGS, ISWS, and Illinois EPA, there are 10 water wells (assumed potable) owned by private residences within a 2,500 feet radius of the BEC ash pond system. None of these 10 wells has been field verified as to their existence, location, or current use. Two additional undocumented private wells were identified at residences located northeast of the APS during a visual (windshield) survey; subsequently, one of those wells was destroyed during a house demolition sometime between January and April 2010.

There are two Community Water Supply (CWS) wells utilized by the City of Red Bud as a raw water supply that lie outside a 2,500 foot radius of the APS. Both these wells are installed into the sand and gravel deposits along the west side of the Kaskaskia River. However, both the Phase I and II Wellhead Protection Areas (WHPAs) for these CWS wells extend eastward across the Kaskaskia River into the Facility's 2,500 foot search radius.

The Village of Baldwin neither owns nor operates any water wells or treatment system. It distributes treated water for its CWS from the City of Sparta's CWS, with treated water from Sparta conveyed via pipeline by Egyptian Water. Baldwin's two public water supply wells were sealed and abandoned (date unknown). The BEC also obtains its water supply from the Sparta CWS via Egyptian Water distribution pipeline.

Based on interviews and field observations conducted by Kelron and NRT (2010b), it is suspected there may be undocumented water wells within 2,500 feet of the Facility, both within the Village of Baldwin CWS distribution area and outside of the distribution area. It is not known if these wells are utilized for potable or non-potable use.

4 GEOLOGY AND HYDROGELOGY

The information used to describe the geology and hydrogeology in the vicinity of the APS is based primarily on the field data collected during the course of the study from 2010 to 2014. The field data and analyses are summarized in the accompanying tables, figures, and appendices. A summary of the lithologic layers and corresponding hydrogeologic unit designations encountered at the Site is provided in Table 6.

4.1 Geology

The two types of materials present at the Site consist of unlithified deposits (alluvium and glacial deposits) and bedrock. Each of these materials will be discussed in detail in order to establish a framework with which to understand the hydrogeology, and in later sections the geochemistry, of the Site. Figure 3 shows the locations of all of the borings used in describing the geology of the Site. Figure 7 shows the locations of the east-west (Figures 8A and 8B) and north-south (Figures 8C, 8D, and 8E) geologic cross-sections.

The five principal types of unlithified materials present above the bedrock in the vicinity of APS consist of the following in descending order (Table 6):

- Fill, predominantly coal ash (fly ash, bottom ash, and slag) within the APS, but also including constructed levees around the Baldwin Cooling Pond, constructed berms around the APS, and constructed railroad embankment south of the APS
- Alluvial clay, sandy clay, and clayey sand of the Cahokia Formation
- Silt and silty clay of the Peoria Loess
- Clay and sandy clay of the Equality Formation, with occasional sand seams and lenses
- Clay and sandy clay diamictons of the Vandalia Till Member with intermittent and discontinuous sand lenses

Fill and CCRs

CCRs in the central portion of the former east and west fly ash ponds range in thickness from 18 to 32 feet (borings TPZ-163, TPZ-167, and TPZ-168). Approximately 9 feet of bottom ash was intercepted towards the center of the bottom ash pond (boring TPZ-164) and 5.5 feet of silt, clay and fly ash was encountered in the Secondary Pond (TPZ-165). Geotechnical analysis results of four ash samples (Table 7) provided USCS soil classifications of silty sand, sandy silt, and silt. The three shallow samples, collected at depths between 1.5 and 5 feet bgs, had moisture contents of 22 to 56 percent, dry bulk densities ranging from 63 to 92 pounds per cubic foot (pcf), specific gravities of 2.6 to 2.9, and calculated total porosities of 45 to 65 percent.

The deepest sample, collected at 29 to 30 feet bgs from boring TPZ-167 at the former Secondary Fly Ash Pond, had a moisture content of 18.8 percent, dry bulk density of 99.9 pcf, specific gravity of 2.6, and calculated total porosity of approximately 38 percent.

Cahokia Formation

The Cahokia Formation (Cahokia) is the uppermost unlithified unit between the APS and the Kaskaskia River and along the south side of the western third of the APS. The Cahokia was identified at four boring/well locations. The Cahokia, an alluvial deposit of the Kaskaskia River and its tributaries, consists of predominantly clay with some clayey sand and sandy clay intervals. The color of the Cahokia was described for different intervals as black, dark gray to very dark gray-brown, brown, light olive-brown, and dark yellow-brown. At the four boring/well locations at the Site the Cahokia ranged in thickness from 13 to 27 feet with average and median thicknesses of 20 and 22 feet, respectively. The lowermost and uppermost observed elevations of the Cahokia ranged from 368 to 394 feet NGVD, with the lowermost elevation observed at boring/well location MW-154, which is located just east of the Kaskaskia River and lies within 13 feet of bedrock.

Although the lithology of the Cahokia is described as a lean to fat clay under the USCS, the percent clay for nine samples that underwent physical testing (Appendix D) ranged from 18 to 76%, silt ranged from 18 to 47%, and sand/gravel ranged from 1 to 54%. Average and median percentages of sand/gravel, silt, and clay for the Cahokia samples are listed below.

Grain Size	Sand/Gravel	Silt	Clay	
Range	1 – 54%	18 – 47%	18 – 76%	
Average	21%	32%	49%	
Median	8%	29%	52%	

Cahokia Formation (n = 9)

Peoria Loess

The Peoria Loess occurs in topographically higher areas and bedrock upland areas and is typically underlain by the Vandalia Till Member of the Glasford Formation at surface elevations greater than 440 feet NGVD. The Peoria Loess was identified at seven boring/well locations. It was categorized as silt and silty clay with a light brown to light gray color and ranged from 2 to 23 feet in thickness with lowermost and uppermost elevations ranging from 406 to 453 feet NGVD. Based on locations where it was encountered, the average and median thicknesses of the Peoria Loess were 10 and 9 feet, respectively. No physical testing was conducted on this lithologic layer.

Equality Formation

The Equality Formation (Equality) occupies different stratigraphic positions relative to the other lithologic units based on areal location within the Site. Generally, it is the lowermost unlithified geologic layer along the southwestern portion of the APS, where it lies between the Cahokia and bedrock; the uppermost layer at the south-central portion of the APS where the Cahokia pinches out; or, the middle or uppermost unlithified layer in the central portion of the APS, where it is either the uppermost unit above the Vandalia Till Member or lies between the Vandalia Till Member and either the Peoria Loess or CCRs and fill material.

The Equality was deposited in a slackwater lake formed as a result of backflooding of the Kaskaskia River during flooding events of the Mississippi River. Based on its identification at 11 boring/well locations, the Equality consists of predominantly clay with silt and sand, and occasional sand lenses. The color of the Equality was typically described as dark yellow-brown, dark gray-brown, dark brown, and gray. At the locations where it was identified at the Site, the Equality ranged in thickness from 8 to 20 feet with average and median thicknesses of 13 and 12 feet, respectively. The lowermost and uppermost observed elevations of the Equality ranged from 396 to 443 feet NGVD, with the lowermost elevation observed at boring/well locations MW-150/MW-350, which is located near the southeast corner of the APS, and the highest elevation observed at boring/well locations MW-153/MW-253.

The lithology of the Equality is described as a lean to fat clay and sandy clay under the USCS. The percent clay for two samples that underwent physical testing ranged from 29 to 31%, silt ranged from 36 to 62%, and sand/gravel ranged from 7 to 34%. Average and median percentages of sand/gravel, silty, and clay for the samples are listed below.

Grain Size	Sand/Gravel	Silt	Clay	
Range	7 – 34%	36 – 62%	29 – 31%	
Average	21%	49%	30%	
Median	21%	49%	30%	

Equality Formation (n = 2)

Vandalia Till Member

The Vandalia Till Member of the Glasford Formation (Vandalia Till) is the lowermost and oldest unlithified geologic material in the vicinity of the APS. The Vandalia Till is a diamicton and occurs beneath the Equality in the central portion of the APS as the Cahokia pinches out and as the topographic and bedrock uplands are approached. At the higher topographic elevations (i.e., bedrock uplands) to the east of the APS and southeast of the APS the Vandalia Till is the principal unlithified geologic material but may be mantled in some areas by four to six feet of the Peoria Loess.

The Vandalia Till was identified at 15 boring/well locations, and consists of predominantly clay and silty clay with sand and trace gravel. However, in the vicinity of the APS there are some intermittent and discontinuous sand lenses at depths below 20 feet bgs, as observed at boring MW-104DR where approximately four feet of a fine to medium sand was intercepted at approximately 25 feet bgs. The lowermost portion of the Vandalia Till may become shaley within a few feet of the top of bedrock.

The color of the Vandalia Till has been variously described in the boring logs as light to dark yellow-brown, light to dark gray-brown, olive-brown, light to dark gray, and greenish gray. At the 15 locations where it was identified at the Site, the Vandalia Till ranged in thickness from 11 to 37 feet with average and median thicknesses of 21 and 18 feet, respectively. The lowermost and uppermost observed elevations of the Vandalia Till ranged from 369 to 451 feet NGVD, with the lowermost elevation observed at boring/well locations MW-152/MW-252/MW-352 southeast of the APS, and the highest elevation observed at TPZ-158 to the east of the APS.

Although the lithology of the Vandalia Till is typically described as a lean to fat clay with sand under the USCS, the percent clay for 10 samples that underwent physical testing ranged from 30 to 87%, silt ranged from 38 to 40%, and sand/gravel ranged from 2 to 44%. Average and median percentages of sand/gravel, silty, and clay for the samples are listed below.

Grain Size	Sand/Gravel	Silt	Clay	
Range	2 – 44%	38 – 40%	30 – 87%	
Average	15%	38%	47%	
Median	13%	40%	40%	

Vandalia Till Member (n = 10)

The amount of clay observed and analyzed in the Vandalia Till samples is greater than in the Equality samples and the amount of silt is lower.

Bedrock

The uppermost bedrock at the Site consists of Pennsylvanian and Mississippian bedrock, mainly limestone and shale. Bedrock was intercepted at 22 boring/well locations, the data from which was used to create a bedrock topographic map (Figure 9). Depth to bedrock at the Site ranges from 12.5 feet at well MW-154 near the Kaskaskia River to approximately 54 feet at well MW-352, located south of the central portion of the APS.

The bedrock surface reflects the pre-development site topography as shown on the historic topographic map from 1968 (Figure 6). As evident on Figure 9, a bedrock low is present at the southwest corner of the APS and extends northeastward. Similarly, the historic topographic map has a stream channel which overlays this bedrock valley. The locations of the Secondary and Tertiary ponds, as shown on the modern

topographic map from 2012 (Figure 5), overlay the former stream channel and the bedrock valley. The location of the Tertiary Pond at the extreme southwest corner of the APS corresponds to the lowest observed bedrock surface elevation. Bedrock is within a few feet of ground surface in this area and most likely outcropped prior to development of the adjacent railroad embankment to the south, county road to the west, and APS.

The bedrock elevation rises from west to east across the Site, with elevations increasing from less than 375 feet to the west and southwest to 415 feet at the east end of the APS and 429 feet at the easternmost boring (TPZ-158). The average westward slope of the bedrock surface across the entire Site, from the bedrock high at TPZ-158 to the westernmost borings along the Kaskaskia River (MW-154 and MW-355), is approximately 0.006 foot per foot (ft/ft) [32 feet per mile (ft/mi)]. The average westward slope of the bedrock surface at the eastern end of the APS, in the area east of the relatively flat bedrock surface around boring OW-257, is 0.010 ft/ft (53 ft/mi).

The eastern area of higher bedrock elevations is a bedrock and topographic upland area which borders the lower topography and lower bedrock elevations of the Kaskaskia River valley. The APS lies above this transition zone from the river valley to the upland, which is characterized by a distinct change in topographic elevation, bedrock elevation, unlithified geology, and bedrock geology.

The shallow bedrock transitions from Mississippian age limestone and shale beneath the western portion of the Site to Pennsylvanian age limestone and shale beneath the eastern portion of the Site (Willman, 1967). The change from Mississippian bedrock to Pennsylvanian bedrock occurs beneath the central portion of the APS, although the two formations were not distinguished based on the samples collected for the current study. The shallow bedrock is composed of interbedded and undifferentiated limestone and shale.

Limestones intercepted at the Site are generally light to dark gray, fine-grained, thin bedded, banded, argillaceous, and competent except where weathered. Weathering of the limestone produces a calcareous clay. Limestone layers are often interbedded with thin shale layers and are sometimes fossiliferous or sandy. The shale layers are generally weathered, competent, silty, slightly micaceous, fissile and dark gray. Where highly weathered shale was encountered the shale was non-fissile and resembled an unlithified stiff clay with medium to high plasticity.

4.2 Hydrogeology

4.2.1 Hydraulic Conductivity

Fill and Coal Ash

The vertical hydraulic conductivity of four ash samples (three fly ash and one bottom ash) based on laboratory measurement ranges from 9.7x10⁻⁶ cm/s to 6.5x10⁻⁴ cm/s with a geometric mean for all four samples of 1.6x10⁻⁴ cm/s (Table 8). However, the ash sample collected from boring TPZ-167 at 29 to 30 feet bgs, which was remolded in the laboratory, had the lowest hydraulic conductivity measurement with a value of 9.7x10⁻⁶ cm/s. Excluding the one deeper fly ash sample that was remolded, the three shallow ash samples (two fly ash and one bottom ash) had a median permeability of 4.1x10⁻⁴ cm/s. The ash samples had particle sizes equivalent to silt, sandy silt, and silty sand. The ash sample from TPZ-167 was the only deeper sample and also had the smallest particle size range, which would correlate to the lower hydraulic conductivity value.

Cahokia Formation

The shallow hydrogeology beneath the southwestern portion of the APS and along the Kaskaskia River is controlled by the fine grained materials (i.e., clay and sandy clay) of the Cahokia Formation. In the vicinity of the Site this predominantly clay material rests directly above the limestone and shale bedrock. Both horizontal and vertical hydraulic conductivity have been determined for this unit (Table 8; Appendices D and E). Field measured horizontal hydraulic conductivity at well MW-151, screened within clay to sandy clay materials, was 1.1×10^{-5} cm/s. Laboratory measured vertical hydraulic conductivity for two samples, one sandy clay with gravel and one clay, was 7.8×10^{-6} and 3.4×10^{-7} cm/s, respectively. The geometric mean vertical hydraulic conductivity for the two Cahokia Formation samples was 1.6×10^{-6} cm/s, or approximately 7 times lower permeability than the horizontal hydraulic conductivity.

Equality Formation

The Equality occupies different stratigraphic positions relative to the other lithologic units based on areal location within the Site. The Equality occurs under most of the western and central portion of the APS, but pinches out towards the eastern end of the APS. Four wells installed within the Equality had horizontal hydraulic conductivities ranging from 4.3×10^{-5} to 1.3×10^{-4} cm/s, with a geometric mean value of 7.5×10^{-5} cm/s. The tested wells had screened intervals predominantly within clay materials, although a portion of the screened interval of one well (MW-161) penetrated into a sand with silt layer.

The laboratory vertical hydraulic conductivity for one clay sample of the Equality from 10 to 12 feet bgs at boring TPZ-164 was 1.3x10⁻⁶ cm/s, or approximately 1.8 orders of magnitude (factor of 58) lower than the horizontal hydraulic conductivity.

Vandalia Till Member

The Vandalia Till Member is the principal unlithified geologic material on the eastern side of the APS, east of the APS and southeast of the APS. It is the lowermost and oldest geologic unit above bedrock in the eastern portion of the Site. The horizontal hydraulic conductivity of the Vandalia Till, based on five wells screened predominantly in clay and two wells in sand, silt and clay, ranged from 3.5×10^{-7} to 6.8×10^{-4} cm/s with a geometric mean of 2.3×10^{-5} cm/s. The two wells screened in sand, silt, and clay (MW-104DR and MW-262) had hydraulic conductivities of 6.8×10^{-4} and 6.0×10^{-4} cm/s. The geometric mean horizontal hydraulic conductivity of the five wells screened within clay, and excluding the two wells screened in predominantly sandy materials, was 6.2×10^{-6} cm/s

The laboratory vertical hydraulic conductivities for five samples of the Vandalia Till ranged from 6.3x10⁻⁹ to 4.2x10⁻⁴ cm/s, with a geometric mean value of 6.1x10⁻⁷ cm/s. The geometric mean permeability of the five samples is 1.6 orders of magnitude lower than the horizontal permeability of the seven wells screened within the Vandalia Till.

Bedrock

With the exception of the southwest corner of the APS, most of the groundwater in the Mississippian and Pennsylvanian bedrock underlying the Site is under confined conditions. The shallow bedrock is composed primarily of low permeability limestone and shale that is overlain by fine grained unlithified materials, principally clay of the overlying Cahokia, Equality, and Vandalia Till units. The bedrock was hydraulically tested for field permeability at three well locations (MW-350, MW-352, and MW-355), with hydraulic conductivity ranging from 1.7x10⁻⁶ to 3.5x10⁻⁵ cm/s with a geometric mean of 5.0x10⁻⁶ cm/s.

Summary

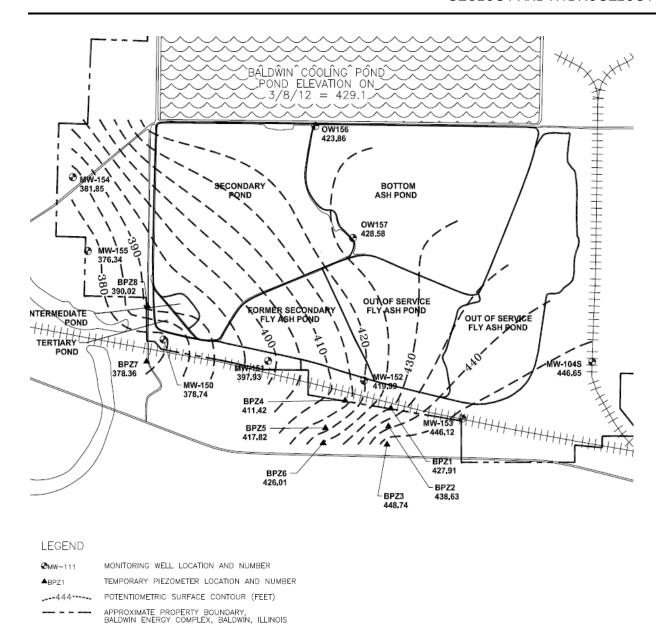
Based on 12 wells installed within the unlithified deposits (excluding fill) at the Site, the overall geometric mean horizontal hydraulic conductivity is $3.2x10^{-5}$ cm/s.

The geometric mean of the limestone and shale bedrock is 5.0x10⁻⁶ cm/s, which is approximately 6 times lower than the overlying unlithified materials.

4.2.2 Potentiometric Surface Maps

Potentiometric surface maps of the unlithified deposits (Figures 10A, 10B, and 10C) – water table maps - were prepared using quarterly groundwater elevation data measured on: September 16 – 17, 2013; November 20 – 21, 2013; and, February 18 – 19, 2014. Groundwater level and elevation data is provided in Table 2. The groundwater levels utilized in preparing the potentiometric surface maps were primarily from wells screened across the water table, although a few wells used in creating the contour maps were screened below the water table. The deeper wells installed within the ash ponds, deep unlithified

deposits, and bedrock were not used in contouring groundwater elevations. However, the groundwater elevations of the deeper wells are shown on the contour maps to highlight the differences in groundwater elevations between the water table wells, deeper wells, and leachate wells.


During the three quarters of groundwater-level observations conducted as part of the current investigation, the horizontal groundwater flow direction was consistently from east to west across the Site, from the higher topographic area along the eastern boundary at wells TPZ-158 and MW-104S to the lowest topographic areas at the southwestern-most corner of the APS (i.e., near Well MW-150) and along the Kaskaskia River (wells MW-154 and MW-155). Overall groundwater flow from the central portion of the APS is towards the southwest with eventual discharge into the Kaskaskia River. In the area of the Secondary and Tertiary ponds the groundwater elevation contours on the three potentiometric surface maps all reflect the land surface topography and underlying bedrock surface topography.

Horizontal groundwater gradients across the APS were consistent in terms of magnitude and direction during the three quarterly groundwater measurements, and were similar to those measured in the 1½ years (6 quarters) of measurement from November 2010 to March 2012. Groundwater gradients were approximately 0.01 ft/ft in a westerly direction across the eastern and central portions of the APS; 0.01 ft/ft in a southwesterly direction from the central APS towards the southwest corner at Well MW-150; and 0.02 ft/ft in a southwesterly direction from the northwest area of the Site (near the southwest end of Baldwin Cooling Pond) towards the Kaskaskia River at Well MW-154.

Although there are currently no piezometers or monitoring wells located south of the Site, eight off-site temporary piezometers (later sealed and abandoned) were measured for groundwater levels in March 2012 as part of an earlier investigation. Six of the eight piezometers were located south of the ICF railroad tracks. A groundwater elevation map created from the off-site temporary piezometers and on-site wells, shown in the figure below, was included in the initial hydrogeologic investigation report for the APS (Kelron, 2012b).

At the time of measurement in March 2012, groundwater elevations at temporary piezometers BPZ1 through BPZ6 decreased from south to north towards the BEC property and from east to west. Shallow groundwater flow direction south of the Site was towards the northwest, with groundwater flow in the vicinity of the south-central property boundary converging towards an earthen drainage channel that is present north of the railroad tracks and south of the APS. The groundwater elevation data from March 2012 suggests that the drainage channel and low lying area south of the ash ponds and adjacent to the railroad tracks is a localized groundwater capture zone for topographically higher areas south of the railroad tracks and to the north (i.e., ash ponds).

Potentiometric Surface in the Unlithified Deposits – March 6 - 15, 2012 (Figure 6F from <u>Groundwater Quality Assessment and Initial Hydrogeologic Investigation – Baldwin Ash Pond System</u>. June 30, 2012.

4.2.3 Saturated Ash

The amount of saturated ash within the ash ponds is variable both laterally and temporally within the various APS units. The maximum thickness of saturated CCRs, ranging from 19.1 to 29.2 feet, was measured at the active West Fly Ash Cell. The minimum thickness of saturated CCRs (including clay and silt fill material) was measured at the Secondary Pond. All of the CCR units had some degree of saturated materials, although the lowest observed levels occurred in September 2013 and the highest observed levels occurred in February 2014. Variability in saturated ash thicknesses in the out of service Old East

and East fly ash ponds are related to precipitation while the saturated ash thickness in the active West Fly Ash Cell, Bottom Ash Pond, and Secondary Pond are related to both precipitation and plant operation.

Leachate Piezometer	CCR Unit Designation	Ash / Fill Thickness	Leachate Level above Base of CCR Unit (feet)			
Fiezonietei		(feet)	9/16-17/13	11/20-21/13	2/18-19/14	
TPZ-163	Old East Fly Ash Pond (Inactive)	18.3	9.1	10.3	14.2	
TPZ-164	Bottom Ash Pond	8.7	6.7	6.8	7.0	
TPZ-165	Secondary Pond	5.2	0.0	3.1	3.4	
TPZ-167	West Fly Ash Cell (Active)	31.5	19.1	26.9	29.2	
TPZ-168	East Fly Ash Pond (Inactive)	28.5	13.5	17.3	23.3	

4.2.4 Vertical Hydraulic Gradients

Vertical hydraulic gradients are a measure of the change in total head with a change in vertical distance. The vertical hydraulic gradient measures the potential for groundwater to move upward or downward through and between geologic layers. Gradients were computed by dividing the difference in the potentiometric head in the nested wells (i.e., dh) by the difference in the midpoint of the screened elevations (i.e., dl). A positive (+) vertical gradient indicates a downward potential for groundwater movement and a negative (-) gradient indicates an upward potential for groundwater movement.

Vertical hydraulic gradients were calculated based on groundwater-level measurements at nested well pairs both within the unlithified deposits and between the unlithified deposits and bedrock (Table 9). Within the unlithified deposits of the Vandalia Till Member upgradient from the APS, as measured at nested wells MW-104SR/MW-104DR, the average gradient was downward at +0.02 ft/ft during September 2011 through February 2014. However, during November 2013 and February 2014 the vertical gradient was slightly upward at -0.006 and -0.005 ft/ft, respectively. Groundwater within the deeper Vandalia Till at this location is under confined to semi-confined conditions.

Southeast of the APS at nested well pair MW-153/MW-253 within the Vandalia Till, the average gradient was upward at -0.07 ft/ft. Gradients were slightly downward in two of seven quarters and upward in five quarters. The maximum downward and upward gradients at this well pair were +0.032 ft/ft and -0.236 ft/ft, respectively. The upward gradients observed for three consecutive quarters from September 2013 to February 2014 correspond to a period of lower observed groundwater levels, lower precipitation, and higher evapotranspiration. Groundwater within the deeper Vandalia Till at this location is under confined to semi-confined conditions.

South of the central portion of the APS the vertical gradients observed in nested wells MW-152/MW-252, screened within the Equality Formation and the Vandalia Till, respectively, were consistently upward and ranged from -0.037 to -0.183 ft/ft with an average gradient of -0.13 ft/ft. No correlation between magnitude of the vertical gradients and time of year, or periods of lower versus higher precipitation, were evident. However, the groundwater levels observed in Well MW-252, screened within the Vandalia Till, have been under flowing artesian conditions (i.e., groundwater levels above ground surface) during both the current and prior investigations. Groundwater within the Vandalia Till at this location is under confined conditions.

Within unlithified materials in the central portion of the APS, at nested wells OW-156/OW-256 and OW-157/OW-257, the groundwater gradients were consistently downward at average gradients of +0.14 and +0.05 ft/ft, respectively.

The remaining three pairs of nested wells for which vertical gradients were calculated (Table 9) are all screened within the unlithified deposits and the underlying bedrock. Nested well pairs MW-150/MW-350, MW-155/MW-355, and MW-252/MW-352 had average downward gradients of +0.08, +0.13, and +0.03 ft/ft, respectively, between November 2010 and February 2014. Well pairs MW-150/MW-350 and MW-155/MW-355, screened within the Cahokia Formation and bedrock, had gradients that were consistently downward over eight quarters of measurement. Well pair MW-252/MW-352, screened within the Vandalia Till and bedrock, had both upward and downward gradients, with downward gradients measured in five quarters and upward gradients in two quarters. Groundwater within the bedrock at this location is under confined conditions.

4.2.5 Hydrogeologic Unit Designations

Three distinct water-bearing layers have been identified at the Site based on stratigraphic relationships and common hydrogeologic characteristics.

- Unit 1 Fill Unit: CCRs, consisting primarily of fly ash, bottom ash and boiler slag. Also includes earthen fill deposits of predominantly clay and silt materials from on-site excavations that were used to construct berms and roads surrounding the various impoundments across the Site. The overall (geometric mean) hydraulic conductivity for the Fill Unit is 1.6x10⁻⁴ cm/s.
- Unit 2 Upper Groundwater Unit: Predominantly clay with some silt and minor sand, silt layers, and occasional sand lenses. Includes the lithologic layers identified as the Cahokia Alluvium, Peoria Loess, Equality Formation, and Vandalia Till Member. This unit is composed of unlithified natural geologic materials and extends from the water table to the bedrock. The overall horizontal and vertical hydraulic conductivities for this unit are 3.2x10⁻⁵ cm/s and 8.6x10⁻⁷ cm/s, respectively.
- Unit 3 Bedrock Confining Unit: This unit is composed of interbedded shale and limestone bedrock and underlies the entire Site. The horizontal hydraulic conductivity for this unit is 5.0x10⁻⁶ cm/s.

4.2.6 Groundwater Classification

Field hydraulic conductivity tests performed on the unlithified geologic materials of Unit 2 (i.e., Cahokia Alluvium, Equality Formation, and Vandalia Till Member) and lithified materials of Unit 3 (Mississippian and Pennsylvanian bedrock) at the BEC APS had geometric mean hydraulic conductivities of approximately 3x10⁻⁵ cm/s and 5x10⁻⁶ cm/s, respectively.

As set forth in 35 III. Adm. Code 620, any geologic material with a hydraulic conductivity of less than 1×10^{-4} cm/s, and which does not meet the provisions of Section 620.210 (Class I), Section 620.230 (Class III), or Section 620.240 (Class IV), meets the definition of a Class II – General Resource Groundwater. Based on the detailed geologic information provided for the unlithified materials and bedrock intercepted at the BEC APS along with the hydrogeologic data, the groundwater in both the Upper Groundwater Unit (i.e., unlithified deposits) and the Confined Bedrock Unit at the Site can be classified as Class II groundwater and the groundwater quality standards set forth in Section 620.420 are the applicable groundwater quality standards for groundwater at the BEC APS.

5 GROUNDWATER QUALITY

The initial six quarters of sampling and analysis of groundwater from monitoring wells at the BEC APS was conducted from November 2010 through March 2012. The purpose of the initial groundwater sampling was to assess background and downgradient groundwater quality; to determine whether or not concentrations exceeded Class I groundwater standards;² and to identify primary factors potentially influencing groundwater quality spatially and temporally. All of the groundwater quality data collected and analyzed for both field and laboratory parameters from 2010 through 2012, including the full list of inorganic parameters listed in IAC 35 Part 620 Section 410 except for Radium 224/226, are provided in Table 4.

Based on the results of the initial 2010–2012 (Phase I) investigation, additional monitoring wells and piezometers were installed upgradient, downgradient, and within the ash pond system as part of the Phase II investigation. A subset of monitoring parameters, those that had exceedances of groundwater standards in the initial investigation, were sampled and analyzed for two quarters in November 2013 and February 2014. Boron, iron, manganese, chloride, sulfate, TDS, and pH were sampled and analyzed and compared to Class II (General Resource) groundwater quality standards. The Phase II water quality data are summarized in Table 5.

5.1 Major Anions and Cations

Groundwater quality can be grouped based on major ion concentrations into identifiable categories to assist in interpreting the distribution of principal types of groundwater. Two methods of segregating water quality data with respect to sources of dissolved constituents in groundwater are the Piper (trilinear) diagram and Stiff diagram.

A Piper diagram, also called a hydrochemical facies diagram, is a graphical representation of relative major ion composition, and can be used for a variety of purposes such as categorizing water facies, characterization of source waters, and determining whether or not samples are mixtures of different source waters. Figure 11 shows the position of groundwater samples obtained in December 2011 from the 13 monitoring wells that were part of the initial investigation. The triangular plots show the relative percentages of cations and anions for each water sample, the central diamond-shaped field is used to

NATURAL RESOURCE TECHNOLOGY

2189 Baldwin Hydrogeologic Investigation Final 140611

² Class II had not been established as the applicable groundwater quality standard at the time these samples were collected.

show the overall chemical character of the groundwater,³ and the diameter of the circle at each point is equal to the sum of the major ions (i.e., TDS). The order of monitoring wells listed in the legend of Figure 11 is generally from east to west across the Site.

Groundwater samples with similar facies that group together on the Piper plot have been color coded for ease of identification. Not all of the groundwater samples collected from monitoring wells at the Site could be grouped, as two of the samples – MW-352 (orange symbol) and MW-350 (green symbol) – had relatively unique water quality signatures. All of the groundwater sample groups and independent values shown on the Piper plot are discussed below. For reference, leachate from the subbituminous coal ash currently generated at the plant is typically dominated by sulfate and sodium, while leachate from the bituminous coal ash historically generated at the plant is typically dominated by sulfate and calcium. Coal ash leachate from this site is expected to plot along the upper right axis of the diamond.

<u>Group 1 – Moderate Bicarbonate to Calcium-Bicarbonate Dominated Facies of the Glacial Materials:</u>

Groundwater from monitoring wells MW-104S, MW-104D, MW-153, MW-151 has moderately high bicarbonate as the dominant anion and either calcium as the semi-dominant cation (i.e., wells MW-104S, MW-104D, and MW-151) or no dominant cation (i.e., well MW-153). Other than nested deep well MW-104D (installed to 28 feet bgs), these wells are screened in shallower unlithified deposits within 20 feet of the ground surface.

Groundwater at these locations is not measurably impacted by leachate from coal combustion residuals, with the CCR indicator parameters of boron (<0.02 to 0.25 mg/L) and sulfate (43 to 250 mg/L) well below their Class I groundwater standards (Tables 4 and 5). The upgradient monitoring well MW-104S has high iron concentrations and both wells MW-104S and MW-104D have high manganese concentrations; iron and manganese commonly can have naturally high concentration when groundwater is in a reduced redox state.

Based on geochemical grouping and low CCR indicator parameter concentrations, groundwater in Group 1 wells is representative of upgradient and/or background groundwater for the glacial materials. The high nitrate concentrations of greater than 10 mg/L observed in groundwater at well MW-153 are a result of this well location being at the downgradient edge of cultivated corn and soybean fields.

³ The triangle plots are created by plotting the relative percentage of each constituent as expressed in meq/L. The central diamond plot is created from the triangular plots by projecting rays parallel to the outer axes and plotting the point at the intersection of the rays.

Group 2 – Sulfate to Calcium-Sulfate Dominated Facies of the Glacial Materials:

Groundwater from monitoring wells MW-152 and MW-252, nested wells located south (downgradient) of the central portion of the APS, can be classified as a calcium-sulfate type facies; and groundwater from wells MW-150 and MW-253, located at the southwest (downgradient) and southeast (sidegradient) corners of the APS, respectively, can be classified as a sulfate type facies with no dominant cation. Wells MW-150 and MW-152 are shallow wells screened within the Cahokia Alluvium and Equality Formation, respectively, and wells MW-252 and MW-253 are deeper wells screened within the Vandalia Till Member.

Groundwater at these locations exhibits varying degrees of impact from CCR leachate. Downgradient well MW-150, near the southeast corner of the APS, has sulfate concentrations ranging from 507 to 696 mg/L and TDS concentrations ranging from 1,090 to 1,396 mg/L. However, boron concentrations are only slightly elevated at 0.31 to 0.80 mg/L (Tables 4 and 5). The other shallow well, MW-152, has sulfate concentrations ranging from 700 to 1,030 mg/L, boron concentrations ranging from 3.6 to 18 mg/L, and TDS concentrations ranging from 1,511 to 1,983 mg/L. Groundwater sampled from deeper monitoring well MW-252 has low to moderate boron (0.19 to 1.5 mg/L) and sulfate ranging from 463 to 578 mg/L), while the other deeper monitoring well, MW-253, has low to moderate boron (<0.05 to 0.24 mg/L) and variable sulfate concentrations ranging from 262 to 806 mg/L.

CCR indicator concentrations and geochemical grouping indicate that Group 2 wells MW-150, MW152, and MW-252 represent a mixture of CCR leachate and background groundwater. Group 2 well MW-253 exhibits evidence of mixing with CCR leachate based on geochemistry; however, due to relatively low boron concentrations, this is not a definitive assessment.

Group 3 – Calcium-High Bicarbonate Dominated Facies of the Cahokia Alluvium and Bedrock:

Groundwater from the three most downgradient monitoring wells at the Site (MW-154, MW-155, and MW-355), which are located at the westernmost property boundary of the BEC and are closest to the Kaskaskia River, is characterized by a higher proportion of bicarbonate relative to all of the other monitoring wells at the Site with the exception of well MW-350, to be discussed under Group 4. Monitoring wells MW-154 and MW-155 are both screened in the shallow Cahokia Alluvium along the eastern floodplain of the Kaskaskia River; and well MW-355 is screened in the shallow bedrock as a nested well below MW-155.

Groundwater at these downgradient wells within the alluvial deposits and shallow bedrock at the westernmost edge of the BEC property is very similar to the Group 1 facies but with slightly greater dominance of the bicarbonate anion. Groundwater at these locations shows no indication of impact by CCRs, with sulfate concentrations ranging from 29 to 94 mg/L and boron ranging from <0.02 to 0.030 mg/L (Tables 4 and 5). The only elevated concentration of any inorganic parameters relative to Class I groundwater standards is manganese, which ranges from <0.005 to 0.87 mg/L. The elevated

manganese concentrations are unrelated to the APS, and are indicative of reductive dissolution of naturally occurring manganese oxides or oxyhydroxides present in the alluvial deposits and underlying shale.

The geochemistry data and CCR indicator concentrations indicate that groundwater in the Group 3 wells is similar to Group 1, and representative of background conditions.

<u>Group 4 – High Calcium-High Bicarbonate Dominated Facies of the Bedrock:</u>

Groundwater in Group 4 is represented by one well –bedrock monitoring well MW-350, which is nested below shallow well MW-150 at the southwest (downgradient) corner of the APS and BEC property. Groundwater at well MW-350 is similar to the Group 3 facies in terms of its position on the anion triangle of the Piper plot except that it has significantly higher bicarbonate concentrations; however, it differs on the cation plot and central plot due to very low (<5 mg/L) magnesium concentrations (see Figure 11).

CCR indicator concentrations at MW-350 are low, with boron ranging from 0.030 to 0.60 mg/L, and sulfate from <10 to 62 mg/L.

TDS ranges from 375 to 1,709 mg/L. The high TDS reflects naturally occurring elevated concentrations of the bicarbonate anion and the calcium, sodium, and potassium cations, and not sulfate. Groundwater sampled from well MW-350 also has a high pH ranging from 11.67 to 12.94 S.U. The very basic groundwater at well MW-350 is not representative of the groundwater sampled from most other wells at the Site, which have pH's ranging from 6.36 to 8.07 S.U. (Tables 4 and 5) with the exception of wells MW-253 and MW-352, nor is it due to CCR leachate (see Section 5.2.7).

Based on its major ion geochemistry and low concentrations of CCR indicator constituents, Group 4 groundwater does not exhibit signs of mixing with CCR leachate.

Group 5 – Sodium-Potassium-Chloride Dominated Facies of Bedrock:

Groundwater in Group 5 is also represented by one well –bedrock monitoring well MW-352. This well is nested in bedrock below wells MW-152/MW-252 and is located near the southern (downgradient) BEC property line to the south of the central portion of the APS. Groundwater at this location has high concentrations of the chloride anion and the sodium and potassium cations, unlike any other groundwater sampled at the Site. The geochemistry of groundwater observed at this location is characteristic of Pennsylvanian bedrock of the Illinois Basin. Groundwater from shallower Pennsylvanian rocks is typically moderately hard and is a sodium-bicarbonate type with median dissolved solids concentrations greater than 500 mg/L. Increases in TDS, such as occurs in the groundwater at well MW-352, are due to increases in the concentrations of sodium and chloride that may occur with only small changes in depth (Lloyd and Lyke, 1995) or towards the end of regional groundwater flow paths within the bedrock.

Sulfate concentrations in groundwater at well MW-352 are low and range from <10 to 18 mg/L. Boron concentrations are moderate, ranging from 0.76 to 1.5 mg/L. Manganese and iron concentrations were all below the method detection limit, indicating that the groundwater at this monitoring well is not reduced. As indicated earlier, and unique to this location, the chloride concentrations are very high at 514 to 642 mg/L. pH is also high, ranging from 10.16 to 11.55 S.U., similar to the high pH observed at bedrock monitoring well MW-350.

The major ion geochemistry and low sulfate concentration at MW-352 indicate that the groundwater is not mixed with CCR leachate. Moderate boron concentrations are not indicative of a CCR release in this case, and rather reflect naturally-occurring boron concentrations within Pennsylvanian bedrock.

5.2 Parameters of Concern

Based on the original 2010 – 2012 investigation, parameters measured in groundwater from the initial set of monitoring wells that were of concern were the coal ash indicator parameters (boron and sulfate) and those parameters exceeding Class I groundwater quality standards in at least one monitoring well (antimony, boron, chloride, iron, manganese, nitrate, sulfate, TDS, and pH). Table 4 displays those parameters exceeding Class I groundwater standards and their concentrations for the six monitoring events from November 2010 through March 2012. Antimony was not included because it was only detected in groundwater from MW-350, which is unique to the site and is not affected by CCR leachate, and nitrate was not included because the exceedances were only observed in MW-153 and are attributed to nearby agricultural activity.

Arsenic warrants special mention because while there were no exceedances of the Class I standard of 0.05 mg/L in effect at the time of sampling, there would be exceedances based on the current standard of 0.01 mg/L. Concentrations higher than the current arsenic standard of 0.01 mg/L were only observed in Group 1 (background) monitoring well MW-104S and Group 5 monitoring well MW-350, neither of which are influenced by CCR leachate. Therefore, it is appropriate that arsenic is not included as a parameter of concern.

Each of the parameters of concern are discussed in the following subsections. Parameters that exceeded the Class I standard but met the Class II standard are noted.

5.2.1 Boron

Boron is a primary indicator parameter of CCR leachate. Its median concentration in CCR leachate was 2.2 mg/L in the bottom ash pond and 37 to 83 mg/L in the fly ash ponds.

Figures 12A and 12B show the areal groundwater distribution of boron in November 2013 and February 2014, respectively, along with those concentrations exceeding Class I/II groundwater standards. Only one downgradient monitoring well, MW-152, has a boron exceedance, with concentrations of 9.9 and 12.7 mg/L during the two quarterly monitoring events. In addition to the exceedances at MW-152, located south of the central portion of the APS, elevated concentrations of boron were observed at downgradient wells MW-252 and MW-352, nested below MW-152, and at nested wells MW-150 and MW-350. However, as previously noted the major ion chemistry in bedrock wells MW-350 and MW-352 is significantly different than the wells impacted by coal ash leachate, and the observed boron concentrations represent natural conditions for the bedrock at these locations.

Mid-gradient wells OW-157 and OW-257, located in the center of the APS near the junction of three ash ponds (East Fly Ash Pond, Bottom Ash Pond, and Secondary Pond), had elevated boron concentrations, as did all of the leachate wells screened within CCRs. The high boron concentration observed in groundwater at shallow well OW-157 is attributed partially to a localized spill from a truck carrying fly ash.

Boron, dissolved (mg/L)

Well Number	Number Samples	Average	Median	Maximum	Minimum	Percent Non-Detects		
Upgradient Wells (Unlithified Materials)								
MW- 104S/SR	8	0.09	0.06	0.22	<0.050	25		
MW- 104D/DR	8	0.02	0.02	0.025	<0.050	63		
TW-158	2	0.01	0.01	<0.020	<0.020	100		
Leachate We	ells (Screened	in Fill/CCRs	s)					
TPZ-163	2	37.5	37.5	37.8	37.2	0		
TPZ-164	2	2.20	2.20	2.64	1.76	0		
TPZ-165	2	1.59	1.59	1.35	0.24	0		
TPZ-167	2	53.8	53.8	54.5	53.0	0		
TPZ-168	2	83.0	83.0	87.2	78.8	0		
Mid-Gradient	Wells (Unlith	ified Materia	ls;Within As	h Pond System,)			
OW-156	2	0.02	0.02	0.030	<0.020	50		
OW-256	2	0.16	0.16	0.160	0.150	0		
OW-157*	2	45.2	45.2	45.3	45.2	0		
OW-257	2	3.1	3.1	3.28	2.88	0		
TPZ-159	2	0.04	0.04	0.060	<0.020	50		
TPZ-160	2	0.23	0.23	0.240	0.210	0		
TPZ-166	2	0.08	0.08	0.100	0.060	0		
Downgradien	nt Wells (Unlith	nified Materia	als)					
MW-150	8	0.50	0.47	0.80	0.31	0		
MW-151	7	0.23	0.23	0.25	0.22	0		
MW-152	8	9.6	9.4	18	3.6	0		
MW-153	8	0.02	0.01	0.025	<0.020	88		
MW-154	5	0.02	0.03	0.026	< 0.050	40		
MW-155	7	0.02	0.01	0.025	<0.020	86		
MW-252	8	0.50	0.30	1.47	0.190	0		
MW-253	7	0.10	0.09	0.24	<0.050	14		
MW-161	2	0.01	0.01	<0.020	<0.020	100		
MW-262	2	0.01	0.01	<0.020	<0.020	100		
Downgradien	nt Wells (Bedro	ock)						
MW-350	8	0.22	0.17	0.60	0.030	0		
MW-352	8	0.91	0.85	1.47	0.760	0		
MW-355	8	0.03	0.03	0.03	<0.050	38		

Notes: Statistical evaluation for 8 quarters from November 2010 - March 2012 and November 2013 – February 2014 for original wells; and for 2 quarters from November 2013 – February 2014 for Phase II wells. Some wells have fewer samples due to insufficient groundwater for sampling (i.e., dry wells).

Non-detects have been replaced by ½ the detection limit. * = Impacted by localized fly ash spill in early 2013. Class I and II Groundwater Standard = 2.0 mg/L; exceedances are highlighted. Leachate concentrations higher than 2 mg/L are shown in bold.

5.2.2 Sulfate

Sulfate is also an indicator parameter for CCR leachate. Its median concentration in CCR leachate was 196 mg/L in the bottom ash pond, and 618 to 2,790 mg/L in the fly ash ponds.

Sulfate concentrations exceeded the Class I/II standard of 400 mg/L at mid-gradient well OW-157, shallow downgradient monitoring wells MW-150 and MW-152, and at deeper nested wells MW-252 and MW-253 (Figures 13A and 13B). There are no exceedances at the westernmost monitoring wells MW-154 and MW-155 or within the bedrock wells. As discussed for boron in Section 5.2.1, the high sulfate concentration observed in groundwater at shallow well OW-157 is attributed partially to a fly ash spill.

The sulfate exceedance at MW-253 may be related to CCR leachate. As explained in Section 5.2.7, hydraulic gradient in this monitoring well is generally upward, causing discharge of high pH and low boron water from the bedrock that is not related to CCR leachate. However, the sulfate exceedances combined with the position of well MW-253 in the Group 2 geochemical facies (Section 5.1) is indicative of mixing of natural groundwater with CCR leachate.

Sulfate, dissolved (mg/L)

Well Number	Number Samples	Average	Median	Maximum	Minimum	Percent Non-Detects		
Upgradient Wells (Unlithified Materials)								
MW- 104S/SR	8	155	144	237	114	0		
MW- 104D/DR	8	221	224	250	175	0		
TW-158	2	42	42	44	39	0		
Leachate We	ells (Screened	d in Fill/CCR	s)					
TPZ-163	2	618	618	626	610	0		
TPZ-164	2	196	196	218	173	0		
TPZ-165	2	706	706	1,070	342	0		
TPZ-167	2	1,845	1,845	1,850	1,840	0		
TPZ-168	2	2,790	2,790	2,820	2,760	0		
Mid-Gradient	Wells (Unlith	ified Materia	ls;Within As	h Pond Syster	n)			
OW-156	2	91	91	93	88	0		
OW-256	2	89	89	90	88	0		
OW-157*	2	1,960	1,960	2,050	1,870	0		
OW-257	2	311	311	312	310	0		
TPZ-159	2	97	97	98	96	0		
TPZ-160	2	62	62	63	60	0		
TPZ-166	2	47	47	56	38	0		
Downgradien	t Wells (Unlit	hified Materi	als)					
MW-150	8	558	538	696	502	0		
MW-151	7	78	77	82	74	0		
MW-152	8	879	879	1,030	700	0		
MW-153	8	88	86	98	81	0		
MW-154	5	56	48	94	29	0		
MW-155	7	53	51	62	49	0		
MW-252	8	523	519	578	463	0		
MW-253	7	451	411	806	262	0		
MW-161	2	44	44	44	44	0		
MW-262	2	32	32	40	24	0		
Downgradien	t Wells (Bedr	rock)						
MW-350	8	36	42	62	<10	13		
MW-352	8	14	14	18	11	0		
MW-355	8	52	52	65	36	0		

Notes: Statistical evaluation for 8 quarters from November 2010 - March 2012 and November 2013 – February 2014 for original wells; and for 2 quarters from November 2013 – February 2014 for Phase II wells. Some wells have fewer samples due to insufficient groundwater for sampling (i.e., dry wells).

Non-detects have been replaced by ½ the detection limit. * = Impacted by localized fly ash spill in early 2013. Class I and II Groundwater Standard = 400 mg/L; exceedances are highlighted. Leachate concentrations higher than 400 mg/L are shown in bold.

5.2.3 Manganese

Manganese is not an indicator constituent for CCR leachate due to its redox-sensitivity in water. It was not detected in the three wells screened in the fly ash ponds, and had a median concentration of 0.57 mg/L in the bottom ash pond. Manganese had relatively high median concentration of 6.9 mg/L in TPZ-165, a monitoring well partially screened in coal ash in the secondary pond where boron concentrations were lower than the other CCR leachate sample points, demonstrating the effect that redox conditions have on this constituent.

Manganese concentrations have not exceeded the Class II groundwater standard (10 mg/L) in groundwater. Manganese concentrations greater than the Class I standard (0.15 mg/L) have been observed in all three upgradient wells, two of five leachate wells, three of seven mid-gradient wells, four of ten downgradient wells, and one of three bedrock wells.

There is no apparent correlation between manganese exceedances in the shallow unlithified wells and boron or sulfate exceedances. The highest manganese concentrations in groundwater were observed in upgradient wells at the Site and some of the lowest concentrations were observed in leachate wells and downgradient wells. Elevated manganese concentrations in groundwater reflect geochemical conditions and are unrelated to CCR leachate.

Manganese, dissolved (mg/L)

Well Number	Number Samples	Average	Median	Maximum	Minimum	Percent Non-Detects		
Upgradient Wells (Unlithified Materials)								
MW-104S/SR	8	2.6	2.1	6.8	0.95	0		
MW-104D/DR	8	0.16	0.13	0.42	0.013	0		
TW-158	2	0.18	0.18	0.35	<0.005	0		
Leachate Wells (Screened in Fill/CCRs)								
TPZ-163	2	0.003	0.003	< 0.005	<0.005	100		
TPZ-164	2	0.57	0.57	0.58	0.56	0		
TPZ-165	2	6.9	6.9	12.7	1.09	0		
TPZ-167	2	0.003	0.003	<0.005	<0.005	100		
TPZ-168	2	0.003	0.003	<0.005	<0.005	100		
Mid-Gradient Wells (U	nlithified Mate	erials;Within	Ash Pond S	System)				
OW-156	2	0.03	0.03	0.05	<0.005	50		
OW-256	2	0.07	0.07	0.13	<0.005	50		
OW-157	2	0.14	0.14	0.14	0.13	0		
OW-257	2	0.39	0.39	0.68	0.10	0		
TPZ-159	2	0.60	0.60	0.68	0.51	0		
TPZ-160	2	0.14	0.14	0.16	0.12	0		
TPZ-166	2	0.15	0.15	0.28	0.02	0		
Downgradient Wells (L	Inlithified Mat	erials)						
MW-150	8	0.003	0.003	<0.005	<0.005	100		
MW-151	7	0.05	0.03	0.14	<0.005	29		
MW-152	8	0.02	0.02	0.07	<0.005	12.5		
MW-153	8	0.01	0.01	0.03	<0.005	25		
MW-154	5	0.04	0.003	0.18	<0.005	60		
MW-155	7	0.20	0.18	0.37	0.04	0		
MW-252	8	0.75	0.77	1.7	0.01	0		
MW-253	7	0.06	0.003	0.14	<0.005	71		
MW-161	2	1.0	1.0	1.2	0.83	0		
MW-262	2	0.02	0.02	0.02	0.01	0		
Downgradient Wells (E	Bedrock)							
MW-350	8	0.003	0.003	<0.005	<0.005	100		
MW-352	8	0.003	0.003	<0.005	<0.005	100		
MW-355	8	0.32	0.27	0.87	0.05	0		

Notes: Statistical evaluation for 8 quarters from November 2010 - March 2012 and November 2013 – February 2014 for original wells; and for 2 quarters from November 2013 – February 2014 for Phase II wells. Some wells have fewer samples due to insufficient groundwater for sampling (i.e., dry wells). Non-detects have been replaced by $\frac{1}{2}$ the detection limit. Class I Groundwater Standard = 0.15 mg/L; Class II = 10 mg/L. Class I exceedances are bold; Class II exceedances highlighted as tan box. Leachate concentrations greater than 0.15 mg/L are shown using italics; greater than 10 mg/L as bold italics.

5.2.4 Iron

Iron is not an indicator constituent for CCR leachate due to its redox-sensitivity in water. It was usually not detected in the three wells screened in the fly ash ponds, and had a median concentration of 6.2 mg/L in the bottom ash pond.

Iron concentrations exceeded the Class I and II standard (5 mg/L) at upgradient monitoring well MW-104SR. No other groundwater monitoring wells at the Site had an exceedance.

Iron, dissolved (mg/L)

Well Number	Number Samples	Average	Median	Maximum	Minimum	Percent Non-Detects		
Upgradient Wells (Unlithified Materials)								
MW-104S/SR	8	4.5	1.0	18	<0.02	13		
MW-104D/DR	8	0.02	0.01	0.07	<0.02	50		
TW-158	2	0.72	0.72	1.43	<0.02	50		
Leachate Wells (Screened in Fill/CCRs)								
TPZ-163	2	0.01	0.01	<0.02	<0.02	100		
TPZ-164	2	6.2	6.2	6.86	5.52	0		
TPZ-165	2	2.0	2.0	3.89	<0.02	50		
TPZ-167	2	0.01	0.01	<0.02	<0.02	100		
TPZ-168	2	0.04	0.04	0.06	<0.02	50		
Mid-Gradient Wells (U	nlithified Mate	erials;Within	Ash Pond S	System)				
OW-156	2	0.04	0.04	0.06	<0.02	50		
OW-256	2	0.02	0.02	0.02	<0.02	50		
OW-157	2	0.03	0.03	0.05	<0.02	50		
OW-257	2	0.02	0.02	0.02	<0.02	50		
TPZ-159	2	0.04	0.04	0.06	<0.02	50		
TPZ-160	2	0.22	0.22	0.39	0.05	0		
TPZ-166	2	0.15	0.15	0.28	0.02	0		
Downgradient Wells (U	Inlithified Mai	terials)						
MW-150	8	0.01	0.01	0.07	<0.01	88		
MW-151	7	0.01	0.01	0.01	<0.01	86		
MW-152	8	0.03	0.02	0.07	<0.01	25		
MW-153	8	0.01	0.01	<0.02	<0.01	100		
MW-154	5	0.01	0.01	0.02	<0.01	80		
MW-155	7	0.08	0.01	0.48	<0.01	43		
MW-252	8	0.02	0.01	0.07	<0.01	75		
MW-253	7	0.01	0.01	0.01	<0.01	71		
MW-161	2	0.05	0.05	0.09	<0.02	50		
MW-262	2	0.07	0.07	0.12	0.02	0		
Downgradient Wells (Bedrock)								
MW-350	8	0.01	0.01	0.01	<0.01	88		
MW-352	8	0.01	0.01	<0.02	<0.01	100		
MW-355	8	0.58	0.57	1.6	0.13	0		

Notes: Statistical evaluation for 8 quarters from November 2010 - March 2012 and November 2013 – February 2014 for original wells; and for 2 quarters from November 2013 – February 2014 for Phase II wells. Some wells have fewer samples due to insufficient groundwater for sampling (i.e., dry wells). Non-detects have been replaced by $\frac{1}{2}$ the detection limit. Class I and II Groundwater Standard = 5.0 mg/L;

Non-detects have been replaced by ½ the detection limit. Class I and II Groundwater Standard = 5.0 mg/L; exceedances are highlighted. Leachate concentrations higher than 5 mg/L are shown in bold.

5.2.5 Total Dissolved Solids

TDS is not a direct indicator for CCR leachate. It can indirectly indicate CCR leachate because sulfate contributes to TDS concentrations; however, other major ions in croundwater, such as chloride, can also affect TDS concentrations. Its median leachate concentration at the site was 548 mg/L in the bottom ash pond, and 1,145 to 4,500 mg/l in the fly ash ponds.

TDS concentrations regularly exceeded the Class I / II standard of 1,200 mg/L at shallow downgradient monitoring wells MW-150 and MW-152, at deeper nested well MW-252, and on one occasion at MW-253 (Figures 12E and 12F). Bedrock well MW-350 also had TDS exceedances unrelated to CCR impacts to groundwater. The high TDS observed in groundwater at well OW-157 is attributed partially to the fly ash spill.

The three downgradient wells in the unlithified materials with median TDS concentrations above the groundwater standard (MW-150, MW-152, and MW-252) also had corresponding sulfate exceedances, indicating that these exceedances are a result of mising with CCR leachate. The single exceedance at MW-253 occurred in the same sample as a sulfate concentration of 806 mg/L, and may be related to CCR leachate. Conversely, groundwater at bedrock well MW-350 had low boron and sulfate concentrations. Elevated TDS concentrations at well MW-350 reflect naturally occurring concentrations of the bicarbonate anion and the calcium, sodium, and potassium cations.

Total Dissolved Solids (mg/L)

Well Number	Number Samples	Average	Median	Maximum	Minimum	Percent Non-Detects			
Upgradient Wells (Unlithified Materials)									
MW-104S/SR	8	854	855	965	742	0			
MW-104D/DR	8	734	754	801	630	0			
TW-158	2	678	678	976	380	0			
Leachate Wells (Screened in Fill/CCRs)									
TPZ-163	2	1,145	1,145	1,160	1,130	0			
TPZ-164	2	548	548	592	504	0			
TPZ-165	2	1,855	1,855	2,290	1,420	0			
TPZ-167	2	3,025	3,025	3,040	3,010	0			
TPZ-168	2	4,400	4,400	5,120	3,680	0			
Mid-Gradient Wells (Unli	thified Materia	als;Within A	sh Pond Sys	stem)					
OW-156	2	468	468	470	466	0			
OW-256	2	498	498	508	488	0			
OW-157*	2	3,170	3,170	3,180	3,160	0			
OW-257	2	929	929	958	900	0			
TPZ-159	2	464	464	480	448	0			
TPZ-160	2	482	482	510	454	0			
TPZ-166	2	305	305	306	304	0			
Downgradient Wells (Uni	lithified Mater	ials)							
MW-150	8	1,225	1,203	1,396	1,090	0			
MW-151	7	561	568	587	538	0			
MW-152	8	1,719	1,739	1,983	1,511	0			
MW-153	8	430	438	462	384	0			
MW-154	5	469	476	559	346	0			
MW-155	7	551	470	1,080	446	0			
MW-252	8	1,296	1,306	1,341	1,224	0			
MW-253	7	792	698	1,441	564	0			
MW-161	2	593	593	756	430	0			
MW-262	2	208	208	228	188	0			
Downgradient Wells (Bed	Downgradient Wells (Bedrock)								
MW-350	8	1,204	1,314	1,709	375	0			
MW-352	8	815	781	996	706	0			
MW-355	8	480	486	532	447	0			

<u>Notes:</u> Statistical evaluation for 8 quarters from November 2010 - March 2012 and November 2013 – February 2014 for original wells; and for 2 quarters from November 2013 – February 2014 for Phase II wells. Some wells have fewer samples due to insufficient groundwater for sampling (i.e., dry wells).

Non-detects have been replaced by ½ the detection limit. * = Impacted by localized fly ash spill in early 2013. Class I and II Groundwater Standard = 1,200 mg/L; wells and parameters with exceedances are highlighted. Leachate concentrations higher than 1,200 mg/L are shown in bold.

5.2.6 Chloride

Chloride is usually not an indicator for coal ash leachate. Median concentrations in coal ash leachate at the Site ranged from 17 to 106 mg/L.

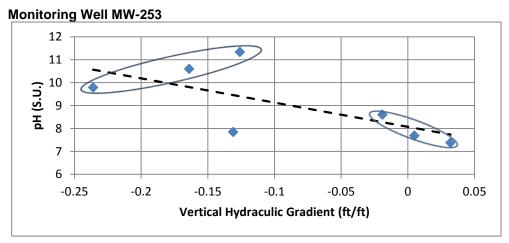
Chloride concentrations in groundwater exceeded the Class I / II standard of 200 mg/L at only one well location, bedrock monitoring well MW-352. The high chloride concentration observed in groundwater at this well is naturally occurring and endemic of Pennsylvanian bedrock of the Illinois Basin. No other monitoring wells at the Site had significantly elevated concentration of chloride, or Class I / II exceedances, during the two to eight quarters of sampling.

Chloride (mg/L)

Well Number	Number Samples	Average	Median	Maximum	Minimum	Percent Non-Detects			
Upgradient Wells (Unlithified Materials)									
MW-104S/SR	8	35	33	59	18	0			
MW-104D/DR	8	18	18	24	16	0			
TW-158	2	73	73	81	65	0			
Leachate Wells (Scre	Leachate Wells (Screened in Fill/CCRs)								
TPZ-163	2	17	17	19	15	0			
TPZ-164	2	74	74	81	67	0			
TPZ-165	2	81	81	91	71	0			
TPZ-167	2	100	100	100	100	0			
TPZ-168	2	106	106	109	103	0			
Mid-Gradient Wells (U	Jnlithified Ma	terials;Withii	n Ash Pond	System)					
OW-156	2	58	58	60	55	0			
OW-256	2	61	61	65	57	0			
OW-157*	2	123	123	124	121	0			
OW-257	2	20	20	21	18	0			
TPZ-159	2	35	35	35	35	0			
TPZ-160	2	43	43	44	42	0			
TPZ-166	2	12	12	12	12	0			
Downgradient Wells (Unlithified Ma	aterials)							
MW-150	8	63	65	77	51	0			
MW-151	7	39	40	44	35	0			
MW-152	8	73	63	140	52	0			
MW-153	8	30	31	34	22	0			
MW-154	5	8	8	12	4	0			
MW-155	7	9	9	11	7	0			
MW-252	8	51	51	61	41	0			
MW-253	7	23	23	27	16	0			
MW-161	2	6	6	6	5	0			
MW-262	2	3	3	<5	<5	100			
Downgradient Wells (Bedrock)									
MW-350	8	30	32	34	21	0			
MW-352	8	550	559	642	390	0			
MW-355	8	13	13	14	11	0			

Notes: Statistical evaluation for 8 quarters from November 2010 - March 2012 and November 2013 - February 2014 for original wells; and for 2 quarters from November 2013 - February 2014 for Phase II wells. Some wells have fewer samples due to insufficient groundwater for sampling (i.e., dry wells). Non-detects have been replaced by $\frac{1}{2}$ the detection limit. * = Impacted by localized fly ash spill in early 2013.

Non-detects have been replaced by ½ the detection limit. * = Impacted by localized fly ash spill in early 2013. Class I and II Groundwater Standard = 200 mg/L; wells and parameters with exceedances are highlighted.



5.2.7 pH

Values for pH in leachate were neutral in the bottom ash pond and slightly alkaline in the fly ash ponds. The highest pH value observed in leachate was 9.17 at TPZ-168.

The lowest pH readings in groundwater at the APS occurred in the shallow unlithified deposits at upgradient well MW-104SR, mid-gradient wells OW-157 and TPZ-159, and downgradient well MW-152. Three of these four wells had a single pH reading below the Class I standard of 6.50 S.U., but otherwise had higher pH values similar to other shallow wells at the Site. Well MW-152 had two pH readings below 6.50 S.U., but the median pH over eight quarters was near neutral at 6.96 S.U. No wells monitored at the Site had an average or median pH value below the lower pH limit of 6.50 S.U. The exceedances of the lower pH limit are not attributed to CCR leachate, because leachate in the APS is neutral to slightly alkaline.

The highest pH readings were observed at three wells, one screened just above bedrock (MW-253) and two bedrock wells (MW-350 and MW-352). The two bedrock wells MW-350 and MW-352 had consistently high pH values, with median pH values of 12.17 and 10.65 S.U., respectively. The other high pH readings occurred at well MW-253, screened in the Vandalia Till just above bedrock. The three highest pH readings at well MW-253 (see figure below) occurred when there was a correspondingly strong upward vertical hydraulic gradient (Table 9) from the bedrock to the overlying unlithified materials. Three of the four lowest pH values from 7.38 to 8.60 S.U. were recorded during the three monitoring events where the vertical hydraulic gradient was downward or near zero.

Based on the location, depth, and formations in which high pH readings were recorded in groundwater, it is surmised that the very basic pH's may be related to weathered limestone near the top of bedrock. High pH values are typical of areas with limestone bedrock. Another reason for the high pH, combined with the high TDS and upward hydraulic gradient, is possible upwelling of connate saline groundwater. Since the area around the APS has inter-bedded limestone and shale, the geochemistry as it relates to pH is complex, but the weathered limestone, combined with an upward hydraulic gradient within bedrock, may be causing higher pH values in groundwater.

Field pH (Standard Units)

Well Number	Number Samples	Average	Median	Maximum	Minimum				
Upgradient Wells (Unlithified Materials)									
MW-104S/SR	6	6.66	6.65	6.90	6.44				
MW-104D/DR	6	6.95	6.85	7.65	6.71				
TW-158	2	7.00	7.00	7.27	6.73				
Leachate Wells (Screened in Fill/CCRs)									
TPZ-163	2	8.20	8.20	8.81	7.59				
TPZ-164	2	7.39	7.39	7.46	7.32				
TPZ-165	2	6.82	6.82	7.18	6.45				
TPZ-167	2	7.93	7.93	8.15	7.70				
TPZ-168	2	8.63	8.63	9.17	8.08				
Mid-Gradient Well	s (Unlithified N	/laterials;With	in Ash Pond	System)					
OW-156	2	6.72	6.72	6.82	6.61				
OW-256	2	6.70	6.70	6.77	6.63				
OW-157*	2	6.50	6.50	6.63	6.37				
OW-257	2	7.10	7.10	7.12	7.07				
TPZ-159	2	6.51	6.51	6.55	6.47				
TPZ-160	2	7.16	7.16	7.30	7.02				
TPZ-166	2	7.51	7.51	7.77	7.24				
Downgradient Wei	lls (Unlithified	Materials)							
MW-150	8	7.18	7.17	7.34	6.99				
MW-151	7	7.11	7.11	7.84	6.77				
MW-152	8	6.96	7.12	7.37	6.36				
MW-153	8	7.13	7.15	7.50	6.58				
MW-154	5	7.11	7.10	7.40	6.71				
MW-155	7	6.99	7.02	7.10	6.82				
MW-252	8	7.37	7.28	8.05	6.80				
MW-253	7	8.51	7.85	11.34	6.89				
MW-161	2	7.02	7.02	7.08	6.95				
MW-262	2	7.32	7.32	7.48	7.15				
Downgradient Wells (Bedrock)									
MW-350	8	11.71	12.17	12.94	8.08				
MW-352	8	9.88	10.65	11.55	6.51				
MW-355	8	6.97	7.00	7.24	6.70				

Notes: Statistical evaluation for 8 quarters from November 2010 - March 2012 and November 2013 – February 2014 for original wells; and for 2 quarters from November 2013 – February 2014 for Phase II wells. Some wells have fewer samples due to insufficient groundwater for sampling (i.e., dry wells).

Class I and II Groundwater Upper / Lower Standards = 9.0 / 6.5 Standard Units (S.U.); wells and parameters with exceedances are highlighted. pH values lower than 6.5 or higher than 9.0 SU in leachate are indicated by bold. * = Impacted by localized fly ash spill in early 2013.

5.2.8 Other Inorganic Parameters

Antimony

Antimony concentrations in groundwater exceeded the Class I standard of 0.006 mg/L at only one monitoring well location, bedrock monitoring well MW-350. The Class II standard for antimony of 0.024 mg/L was not exceeded. Antimony concentrations at this well ranged from below the detection limit of 0.006 mg/L to a maximum concentration of 0.008 mg/L. The antimony detected in groundwater at this one bedrock well is naturally occurring and unrelated to impacts of CCR leachate to groundwater. No other monitoring wells at the Site had a detected concentration of antimony during the six quarters of sampling.

Antimony, dissolved (mg/L)

Well Number	Number Samples	Average	Median	Maximum	Minimum	Percent Non-Detects		
Upgradient Wells (Unlithified Materials)								
MW-104S/SR	6	0.003	0.003	<0.006	<0.006	100		
MW-104D/DR	6	0.003	0.003	<0.006	<0.006	100		
Downgradient Wells (U	Downgradient Wells (Unlithified Materials)							
MW-150	6	0.003	0.003	<0.006	<0.006	100		
MW-151	6	0.003	0.003	<0.006	<0.006	100		
MW-152	6	0.003	0.003	<0.006	<0.006	100		
MW-153	6	0.003	0.003	<0.006	<0.006	100		
MW-154	4	0.003	0.003	<0.006	<0.006	100		
MW-155	6	0.003	0.003	<0.006	<0.006	100		
MW-252	6	0.003	0.003	<0.006	<0.006	100		
MW-253	6	0.003	0.003	<0.006	<0.006	100		
Downgradient Wells (Bedrock)								
MW-350	6	0.005	0.005	0.008	<0.006	50		
MW-352	6	0.003	0.003	<0.006	<0.006	100		
MW-355	6	0.003	0.003	<0.006	<0.006	100		

Notes: Statistical evaluation for six quarters of November 2010 to March 2012 with exception of Well MW-154, which was only sampled four times due to low groundwater levels. Parameter not sampled in 2013-2014. Non-detects have been replaced by ½ the detection limit.

Class 1 Groundwater Standard = 0.006 mg/L; Class II = 0.024 mg/L. Class I exceedances are bold; Class II exceedances highlighted as tan box.

Nitrate

Nitrate concentrations in groundwater exceeded the Class I standard of 10 mg/L at only one well location, shallow monitoring well MW-153, which is located at the downgradient edge of cultivated corn and soybean fields. The Class II standard for nitrate of 100 mg/L was not exceeded. Nitrate concentrations observed in groundwater at this well ranged from 12 to 18 mg/L and are not related to impacts from CCR leachate. No other monitoring wells at the Site had elevated concentration of nitrate during the six quarters of sampling with the exception of bedrock well MW-355 and water table wells MW-154 and MW-155, which are relatively shallow and also adjacent to and downgradient from cultivated corn and soybean fields.

Nitrate, dissolved (mg/L)

Well Number	Number Samples	Average	Median	Maximum	Minimum	Percent Non-Detects			
Upgradient Wells (U	Upgradient Wells (Unlithified Materials)								
MW-104S/SR	6	0.119	0.078	0.37	<0.050	33			
MW-104D/DR	6	0.141	0.068	0.554	<0.050	17			
Downgradient Wells	Downgradient Wells (Unlithified Materials)								
MW-150	6	0.041	0.040	0.058	<0.050	50			
MW-151	6	0.036	0.025	0.093	<0.050	83			
MW-152	6	0.182	0.206	0.310	<0.050	17			
MW-153	6	14.3	14.1	18	12	0			
MW-154	4	1.6	0.90	4.5	0.25	0			
MW-155	6	2.3	2.0	4.5	1.4	0			
MW-252	6	0.035	0.025	0.059	<0.050	67			
MW-253	6	0.116	0.070	0.383	<0.050	33			
Downgradient Wells (Bedrock)									
MW-350	6	0.025	0.025	<0.050	<0.050	100			
MW-352	6	0.030	0.025	0.056	<0.050	83			
MW-355	6	1.0	0.88	2.0	0.21	0			

Notes: Statistical evaluation for six quarters of November 2010 to March 2012 with exception of Well MW-154, which was only sampled four times due to low groundwater levels. Parameter not sampled in 2013-2014. Non-detects have been replaced by ½ the detection limit.

Class 1 Groundwater Standard = 10 mg/L; Class II = 100 mg/L. Class I exceedances are bold; Class II exceedances highlighted as tan box.

Fluoride

Fluoride concentrations at the 13 monitored wells at the BEC APS ranged from 0.119 to 0.865 mg/L. The Class I groundwater standard for fluoride is 4 mg/L. The highest concentrations were observed in MW-150, MW-352, and MW-104S. The concentrations observed in MW-150 may be related to CCR leachate, while the concentrations in MW-104S and MW-352 are not related to CCR leachate.

Cyanide (Total)

All cyanide concentrations measured in groundwater samples during the six quarters of November 2010 to March 2012 were below the detection limits of 0.007 to 0.008 mg/L. The Class I groundwater standard for cyanide is 0.2 mg/L.

<u>Arsenic</u>

Arsenic concentrations at the 13 monitored wells ranged from below the detection limit of 0.005 mg/L to 0.032 mg/L. The highest concentrations occurred in upgradient monitoring well MW-104S. The Class I groundwater standard for arsenic was 0.05 mg/L at the time of sampling. Median concentrations at the 13 wells range from less than 0.005 mg/L to a maximum of 0.006 mg/L.

Barium

Barium concentrations ranged from 0.009 to 1.6 mg/L versus a Class I groundwater standard of 2.0 mg/L. Median barium concentrations at the 13 wells ranged from 0.01 to 0.82 mg/L with no statistical pattern or elevated concentrations attributable to CCRs. The highest barium concentrations were measured in groundwater at the three bedrock monitoring wells. Wells MW-350, MW-352, and MW-355 had median barium concentrations of 0.82, 0.19, and 0.11 mg/L, respectively. The nine monitoring wells in the unlithified deposits had median barium concentrations ranging from 0.01 to 0.08 mg/L.

Beryllium

Beryllium concentrations measured in all groundwater samples were below the detection limits of 0.004 to 0.005 mg/L. The Class I groundwater standard for beryllium is 0.004 mg/L.

Cadmium

Cadmium concentrations measured in all groundwater samples were below the detection limit of 0.002 mg/L. The Class I groundwater standard for cadmium is 0.005 mg/L.

Chromium

Chromium concentrations measured in all groundwater samples were below the detection limit of 0.005 mg/L. The Class I groundwater standard for chromium is 0.10 mg/L.

Cobalt

Cobalt concentrations measured in all groundwater samples were below the detection limit of 0.005 mg/L with the exception of one detected concentration of 0.010 mg/L at well MW-252. The Class I groundwater standard for cobalt is 1.0 mg/L.

Copper

Copper concentrations measured in all groundwater samples were below the detection limit of 0.005 mg/L with the exception of two detected concentrations of 0.016 and 0.007 mg/L, respectively, at wells MW-155 and MW-252. The Class I groundwater standard for copper is 0.65 mg/L, and these two detections were 40 and 92 times below the standard.

Lead

Lead concentrations measured in all groundwater samples were below the detection limit of 0.005 mg/L with the exception of one detected concentration of 0.0051 mg/L at well MW-253. The Class I groundwater standard for lead is 0.0075 mg/L.

Mercury

All mercury concentrations measured in groundwater samples from all 13 wells during the six quarters of monitoring were below the detection limit and Class I groundwater standard of 0.002 mg/L.

<u>Nickel</u>

Nickel concentrations measured in all groundwater samples were below the detection limit of 0.005 mg/L with the exception of one detected concentration of 0.007 mg/L at bedrock well MW-355. The Class I groundwater standard for nickel is 0.1 mg/L.

Selenium

Selenium concentrations measured in groundwater samples were below the detection limit of 0.010 mg/L at all of the monitoring wells with the exception of wells MW-150 and MW-154. Well MW-150 had one selenium detection at a concentration of 0.010 mg/L and well MW-154 had one detection at a concentration of 0.016 mg/L. The Class I groundwater standard for selenium is 0.050 mg/L.

<u>Silver</u>

Silver concentrations measured in groundwater samples were below the detection limit of 0.005 mg/L in 10 of the 13 monitoring wells. Silver was detected at concentrations ranging from 0.006 to 0.010 mg/L in bedrock wells MW-350 and MW-352 and in well MW-253, screened just above the bedrock and at a location with an upward vertical hydraulic gradient during part of the study. All three of these wells had the

maximum pH values recorded during the six quarters of monitoring. The Class I groundwater standard for silver is 0.05 mg/L.

Thallium

All thallium concentrations measured in groundwater samples from all 13 wells during the study were below the detection limit and Class I groundwater standard of 0.002 mg/L.

Zinc

Zinc was detected in five of the 13 monitoring wells at concentrations ranging from 0.0066 to 0.014 mg/L versus a Class I groundwater standard for zinc of 5.0 mg/L. The remaining eight monitoring wells had all zinc concentrations below the detection limit of 0.005 mg/L during all six quarters of monitoring. The highest measured zinc concentration, 0.014 mg/L at wells MW-154 and MW-155, was 357 times below the Class I groundwater standard.

6 CONCLUSIONS

The hydrogeology and groundwater quality in the vicinity of the ash pond system at the Baldwin Energy Complex has been investigated during two phases of investigation over a period of four years (2010 – 2014) with the installation of 29 wells, eight quarters of groundwater sample collection and analysis, field and laboratory permeability testing, and groundwater mapping. In conjunction with the hydrogeologic investigation, a groundwater model has been developed to predict the effect of various ash pond closure scenarios on groundwater quality. The Groundwater Model Report (GMR) is being submitted under separate cover.

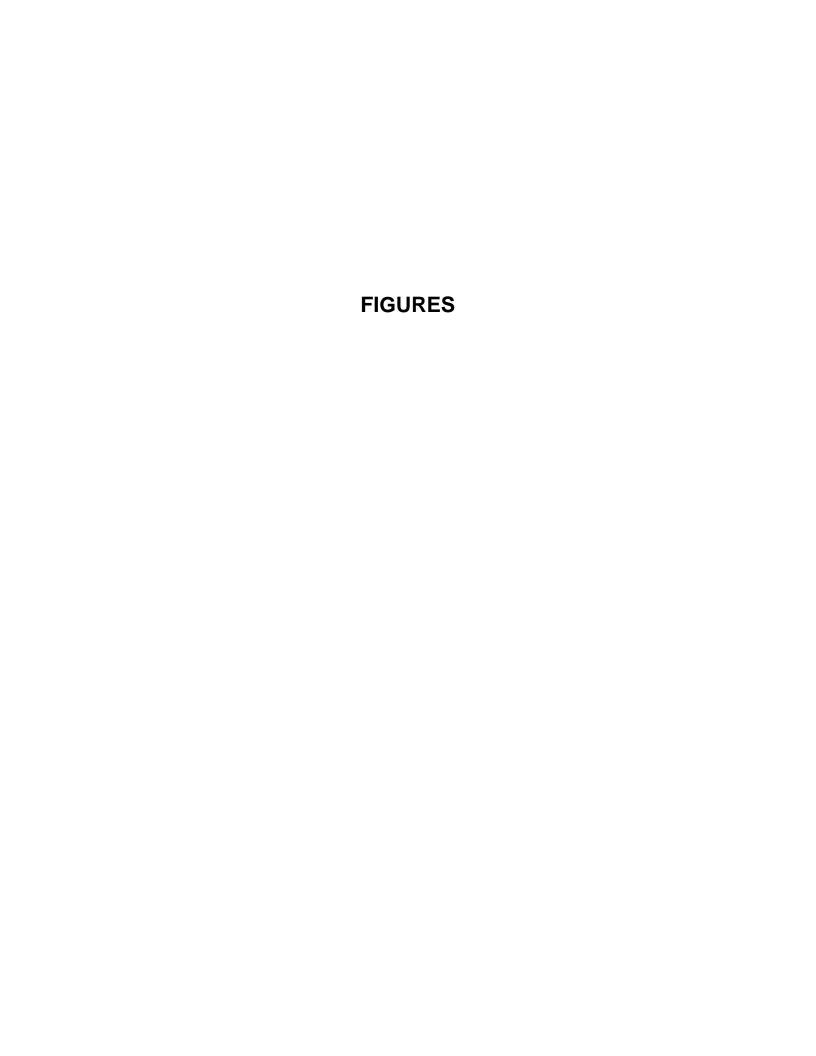
The primary conclusions from hydrogeologic investigations and groundwater quality assessments at the ash pond system are:

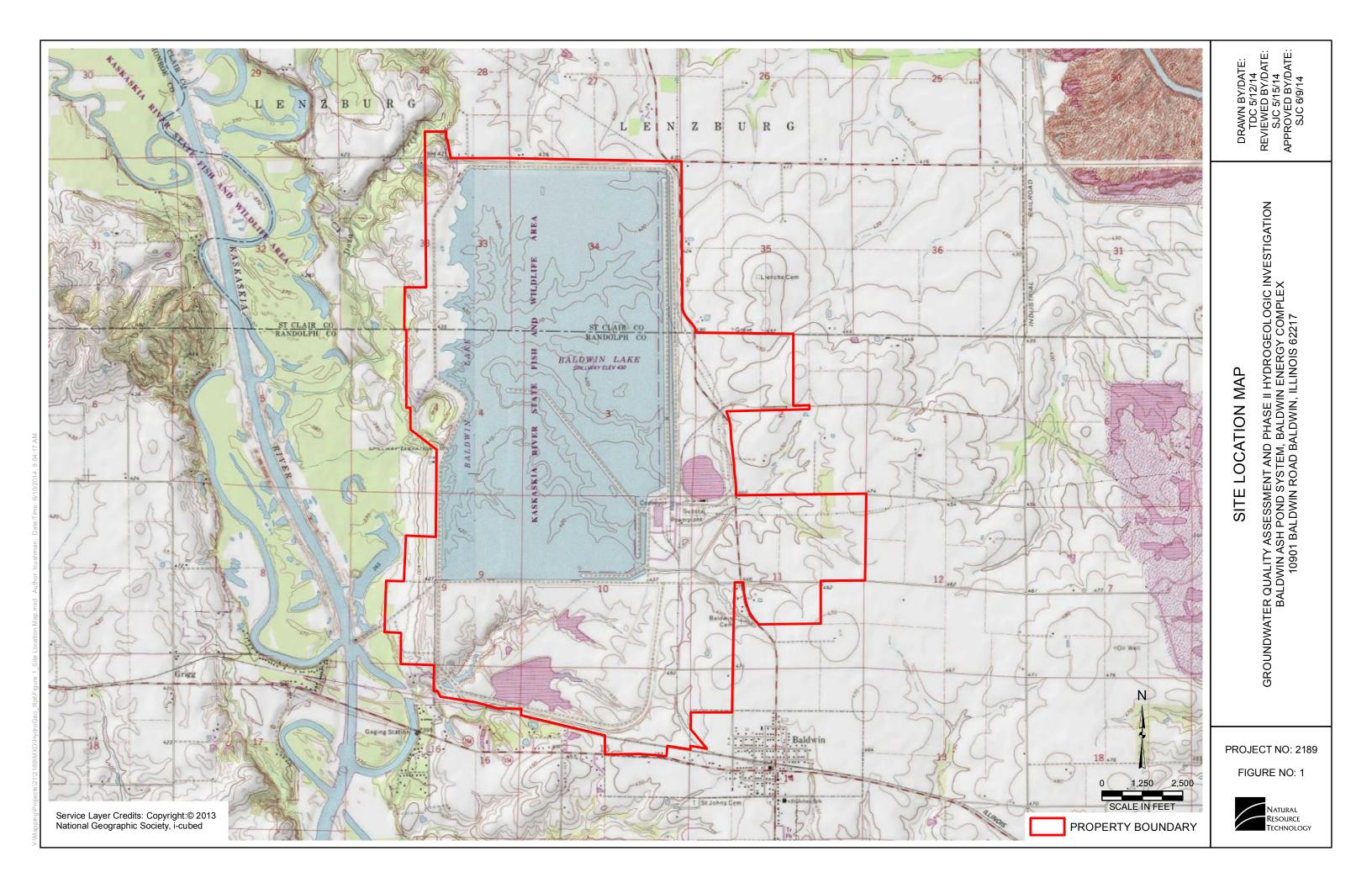
- 1. Three distinct water-bearing layers have been identified based on stratigraphic relationships and common hydrogeologic characteristics.
 - Unit 1 Fill Unit: CCRs, consisting primarily of fly ash, bottom ash and minor slag. Also includes earthen fill deposits of predominantly clay and silt materials forming berms and roads within the site. The overall (geometric mean) hydraulic conductivity for the Fill Unit is 1.6x10⁻⁴ cm/s.
 - Unit 2 Upper Groundwater Unit: Predominantly clay with some silt and minor sand, silt layers, and occasional sand lenses. Includes the lithologic layers identified as the Cahokia Alluvium, Peoria Loess, Equality Formation, and Vandalia Till Member. This unit is composed of unlithified natural geologic materials and extends from the water table to the bedrock. The overall horizontal and vertical hydraulic conductivities for this unit are 3.2x10⁻⁵ cm/s and 8.6x10⁻⁷ cm/s, respectively.
 - Unit 3 Bedrock Confining Unit: This unit is composed of interbedded shale and limestone bedrock and underlies the entire Site. The horizontal hydraulic conductivity for this unit is 5.0x10⁻⁶ cm/s.
- 2. The amount of saturated ash within the APS is variable both laterally and temporally within the various units. The maximum thickness of saturated CCRs, ranging from 19.1 to 29.2 feet, was measured at the active West Fly Ash Cell. The minimum thickness of saturated CCRs (including clay and silt fill material) was measured at the Secondary Pond. All of the CCR units had some degree of saturated materials.
- 3. The APS is underlain by clay deposits that are 12 to 41 feet or more thick, which in turn are underlain by relatively impermeable Pennsylvanian and Mississippian inter-bedded shale and limestone bedrock. These deposits restrict migration of leachate from the impoundment to surrounding groundwater.
- 4. The horizontal groundwater flow direction is from east to west across the Site, from the higher topographic area along the eastern boundary to the lowest topographic areas at the southwestern-most corner of the APS and along the Kaskaskia River. Overall groundwater flow from the central portion of the APS is towards the southwest with eventual discharge into

the Kaskaskia River. In the area of the Secondary and Tertiary ponds the groundwater elevation contours on the three potentiometric surface maps all reflect the land surface topography and underlying bedrock surface topography.

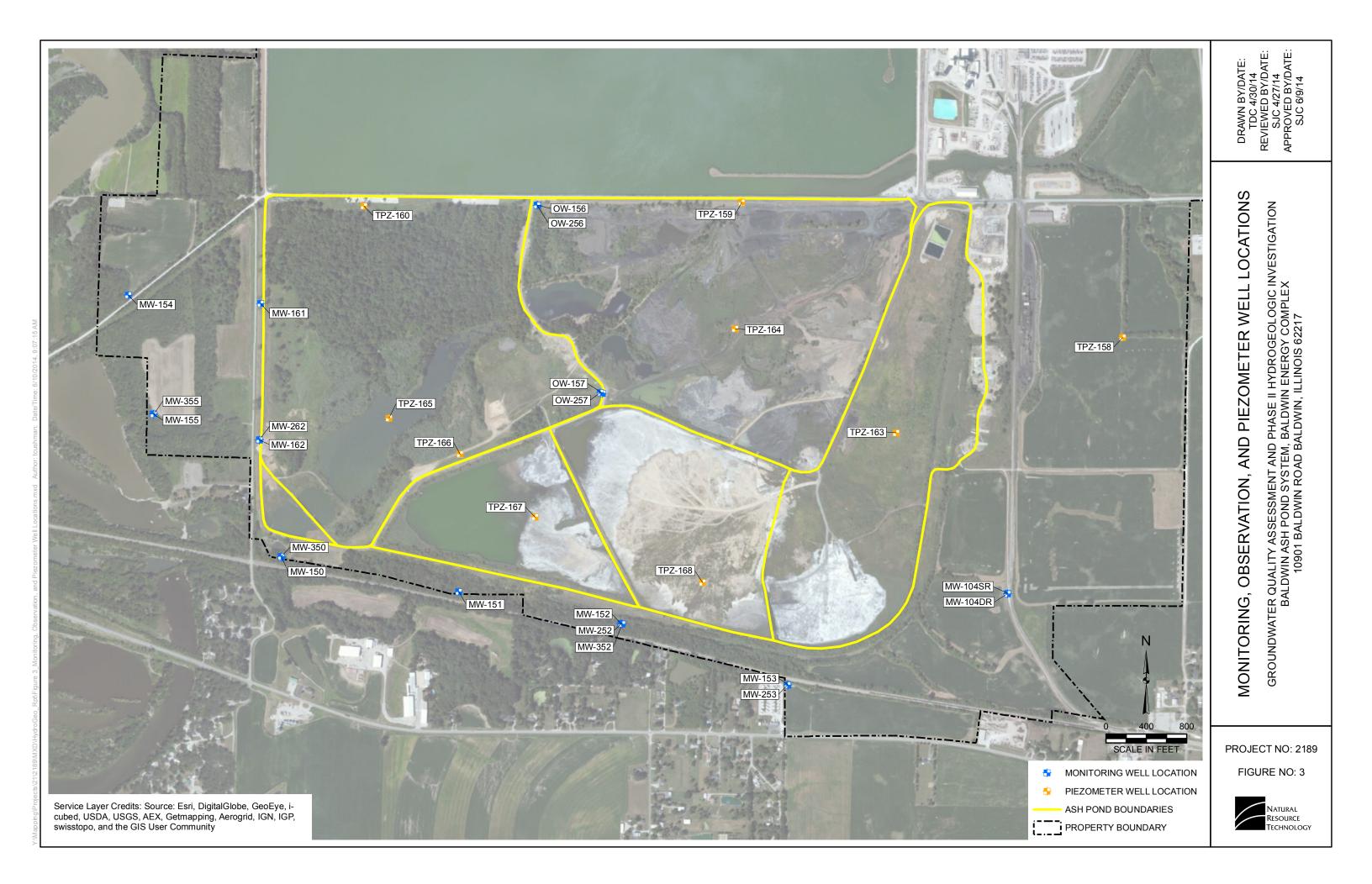
- 5. Horizontal groundwater gradients across the APS typically range from 0.01 to 0.02 ft/ft.
- 6. Based on the detailed geologic information provided for the unlithified materials and bedrock intercepted at the APS along with the hydrogeologic data, the groundwater in both the unlithified deposits and the bedrock at the Site can be classified as Class II groundwater and the groundwater quality standards set forth in IAC Section 620.420 are the applicable groundwater quality standards.
- 7. The parameters of concern in groundwater which are related to CCRs found in leachate, and which have an exceedance of Class I or II groundwater quality standards are: boron, sulfate, and TDS.
- 8. The Class II standards for boron, chloride, iron, sulfate, TDS, and pH are the same as Class I, so exceedances of these constituents are not affected by the groundwater class.
- Only one downgradient location and well (MW-152) has had a boron exceedance during 8 quarters of sampling. Four wells at three downgradient well locations (MW-150, MW-152/MW-252, and MW-253) have had sulfate exceedances that can be attributed to groundwater impacted by CCRs. Nested wells at two downgradient locations (MW-150/MW-350 and MW-152/MW-252) have had TDS exceedances that are related to CCRs.
- Class I or II groundwater quality exceedances of other constituents are due to either natural conditions (antimony, chloride, iron, manganese, pH) or off-site anthropogenic effects (nitrates).

All of the elevated iron and manganese concentrations in upgradient, mid-gradient and downgradient wells are naturally occurring and unrelated to CCR impacts. Nitrate was detected at high concentrations in one shallow well (MW-153) at the edge of a cultivated corn and soybean field. Antimony and chloride both had elevated groundwater concentrations from naturally occurring water geochemistry within the bedrock and not from an anthropogenic source.


7 REFERENCES


- Berg, Richard C. and John P. Kempton, 1988. *Stack-Unit Mapping of Geologic Materials in Illinois to a Depth of 15 Meters*. Illinois State Geological Survey, Circular 542. Champaign, Illinois
- Bouwer, H. and R.C. Rice, 1976. A Slug Test for Determining Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells, Water Resources Research, v. 12, no. 3, p. 423-428.
- Cooper, H.H., J.D. Bredehoeft and S.S. Papadopulos, 1967. *Response of a finite-diameter well to an instantaneous charge of water*, Water Resources Research, vol. 3, no. 1, pp. 263-269.
- Devera, Joseph A., 2004. *Geology of Red Bud Quadrangle, Randolph, Monroe and St. Clair Counties, Illinois*. Illinois State Geological Survey, Illinois Preliminary Geologic Map, IPGM Red Bud-G, 1:24,000.
- Dynegy Operating Company, 2013. *Proposed Scope of Work Baldwin Ash Impoundment System*. Letter dated March 22, 2013 to Illinois EPA.
- Grimley, David A. and Nathan D. Webb, 2010. Surficial Geology of Red Bud Quadrangle, Randolph, Monroe and St. Clair Counties, Illinois. Illinois State Geological Survey, Illinois Geologic Quadrangle Map, IGQ Red Bud-SG.
- Fetter, C.W. 1980. Applied Hydrogeology. Charles E. Merrill Publishing Co., Columbus, Ohio.
- Hyder, Z., J.J. Butler, Jr., C.D. McElwee and W. Liu, 1994. *Slug tests in partially penetrating wells*, Water Resources Research, vol. 30, no. 11, pp. 2945-2957.
- Kelron Environmental and Natural Resource Technology, 2010a. *Hydrogeologic Assessment and Groundwater Monitoring Plan: Baldwin Ash Pond System.* May 26, 2010.
- Kelron Environmental and Natural Resource Technology, 2010b. *Water Well Survey, Baldwin Ash Pond System, Baldwin Energy Complex, Baldwin, Illinois.* June 7, 2010.
- Kelron Environmental, 2012a. *Groundwater Quality Assessment and Initial Hydrogeologic Investigation Baldwin Ash Pond System.* June 30, 2012.
- Kelron Environmental, 2012b. Off-Site Groundwater Quality Results, Baldwin Energy Complex, Baldwin, Illinois. Letter dated April 16, 2012 to Dynegy Operating Company.
- Lloyd, Jr., Orville B. and William L. Lyke. 1995. *Groundwater Atlas of the United States Illinois, Indiana, Kentucky, Ohio, Tennessee*. United States Geological Survey, HA 730-K; http://pubs.usgs.gov/ha/ha730/ch k/K-text1.html.
- Philips, Andrew C. 2008. Surficial Geology of the New Athens West Quadrangle, Monroe and St. Clair Counties, Illinois. Illinois State Geological Survey Statemap Series. Champaign, Illinois.
- Pryor, Wayne A. 1956. *Groundwater Geology in Southern Illinois: A Preliminary Geologic Report.* Illinois State Geological Survey, Circular 212. Urbana, Illinois.
- Student, John D., R. Piskin, L. Withers, and J. Dickman. 1981. *Aquifers of Illinois: Underground Sources of Drinking Water and Non-Drinking Water*. Illinois Environmental Protection Agency, Division of Land/Noise Pollution Control, Springfield, Illinois.

- United States Department of the Interior (USDI). 1981. *Groundwater Manual*. U.S. Government Printing Office, Denver, Colorado.
- Walton, W.C., 1998. *Practical Aspects of Groundwater Modeling*. National Water Well Association, Worthington, Ohio.
- Wehrmann, H.A., 1982. *Groundwater Monitoring for Fly Ash Leachate, Baldwin Power Station, Illinois Power Company.* Illinois State Water Survey. Champaign, Illinois. August 1982.
- Willman, H.B. and others. 1967. Geologic Map of Illinois. Illinois State Geological Survey. Champaign, Illinois.
- Willman, H.B., E. Atherton, T.C. Buschbach, C. Collinson, J.C. Frye, M.E. Hopkins, J.A. Lineback, and J.A. Simon. 1975. Handbook of Illinois Stratigraphy. Illinois State Geological Survey, Bulletin 95. Champaign, Illinois.
- Willman, H.B. and J.C. Frye. 1970. Pleistocene Stratigraphy of Illinois. Illinois State Geological Survey, Bulletin 94. Champaign, Illinois.


I EIVI DRAWN BY/DAIE:
TDC 4/30/14
REVIEWED BY/DATE:
SJC 4/27/14
APPROVED BY/DATE:
SJC 6/0/14

AERIAL PHOTOGRAPH OF SITE AND ASH POND SY

GROUNDWATER QUALITY ASSESSMENT AND PHASE II HYDROGEOLOC BALDWIN ASH POND SYSTEM, BALDWIN ENERGY COMF 10901 BALDWIN ROAD BALDWIN, ILLINOIS 62217

PROJECT NO: 2189 FIGURE NO: 2

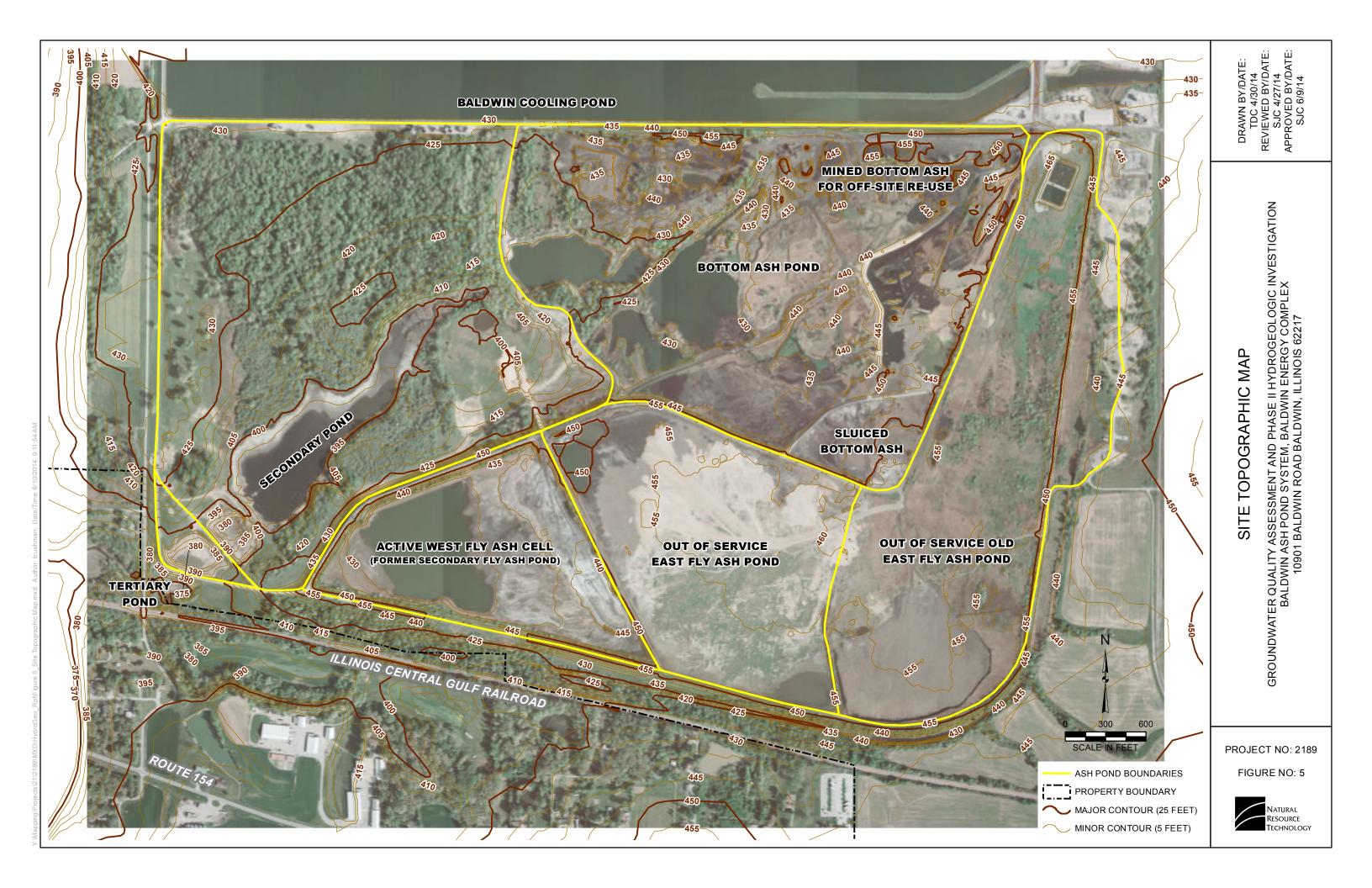
MONITORING AND OBSERVATION WELL SCREEN ELEVATIONS

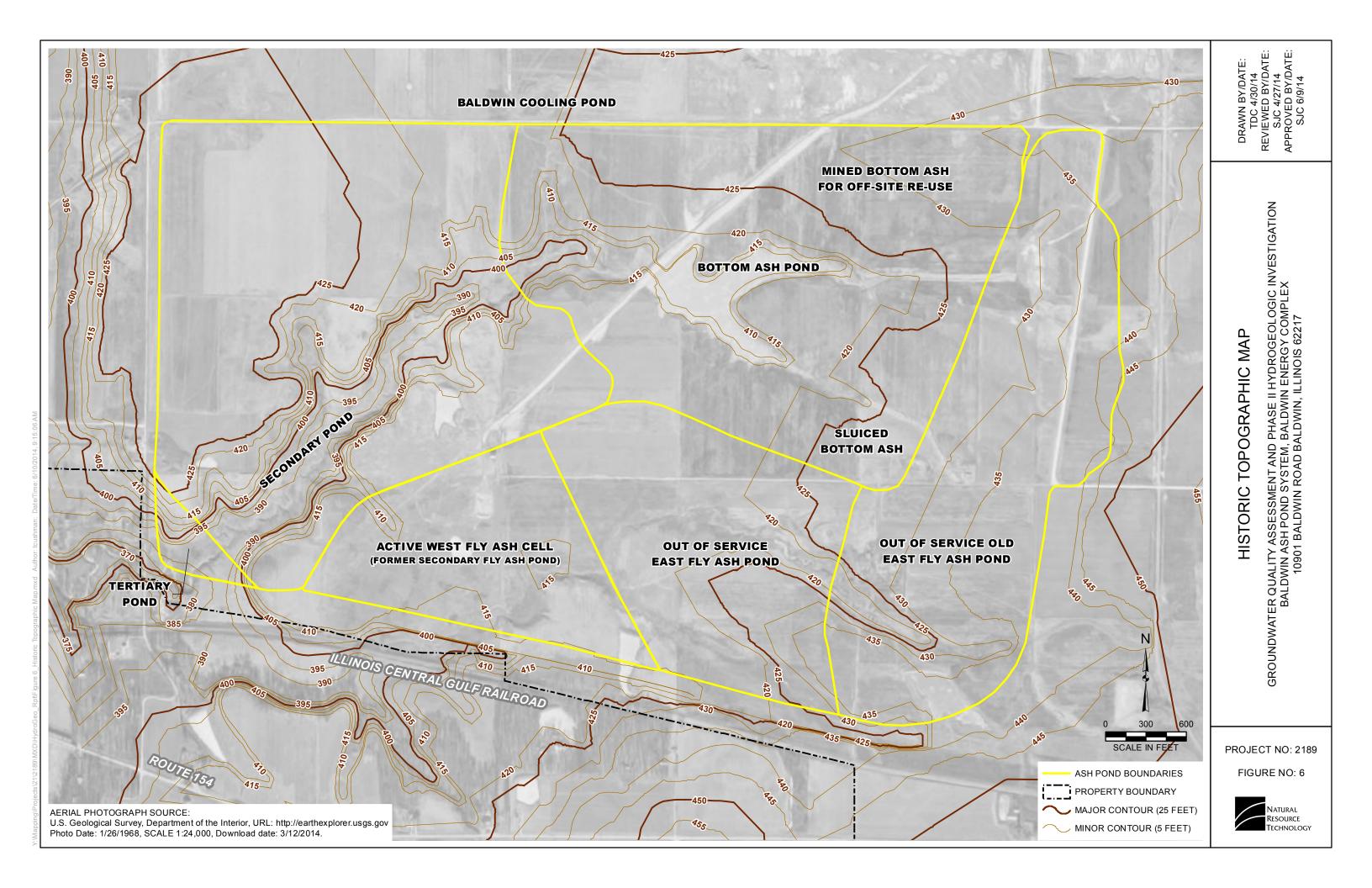
GROUNDWATER QUALITY ASSESSMENT AND PHASE II HYDROGEOLOGIC INVESTIGATION BALDWIN ASH POND SYSTEM, BALDWIN ENERGY COMPLEX 10901 BALDWIN ROAD BALDWIN, ILLINOIS 62217

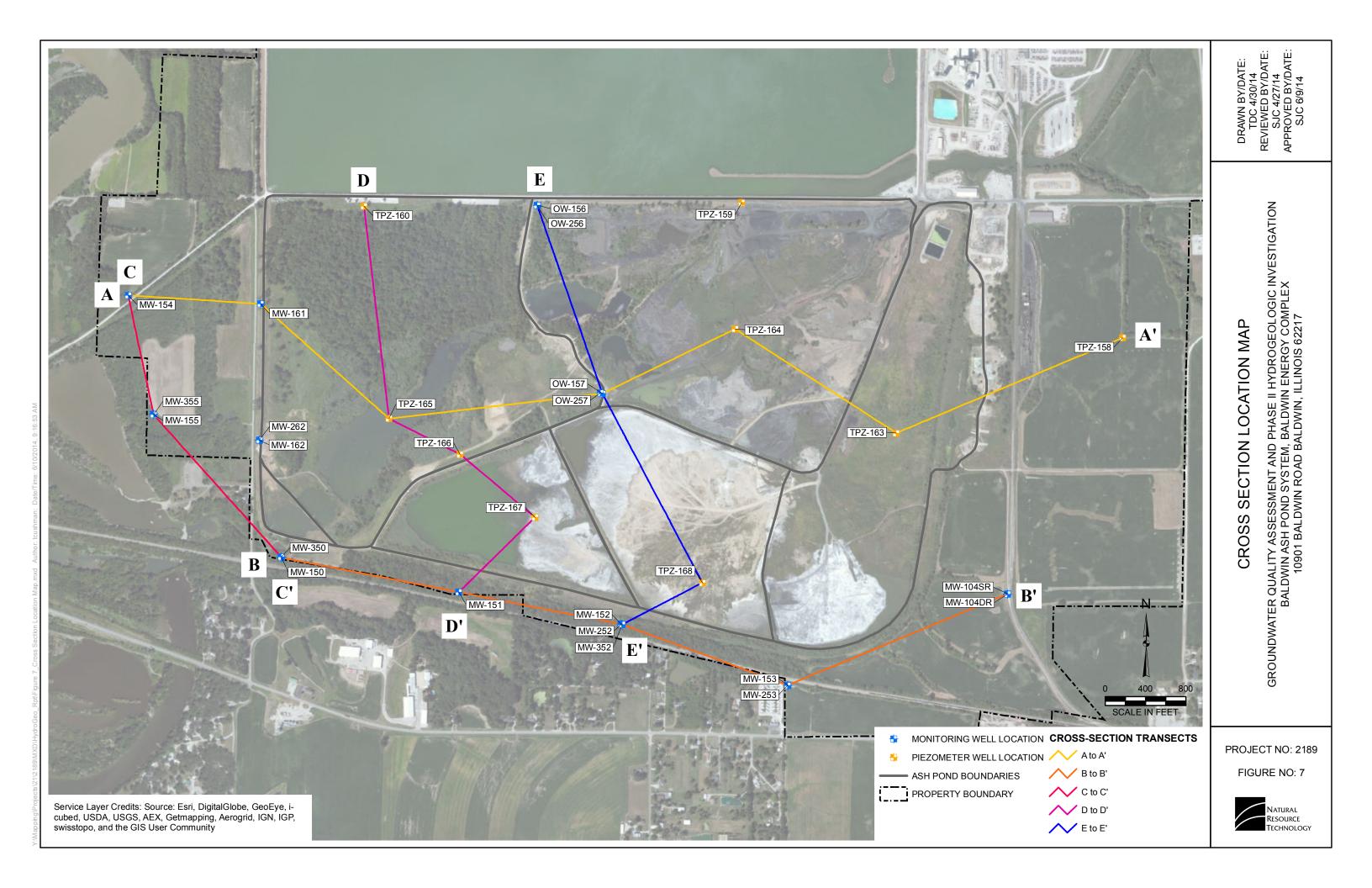
DRAWN BY/DATE: TDC 4/30/14 REVIEWED BY/DATE: SJC 4/27/14 APPROVED BY/DATE: SJC 6/9/14

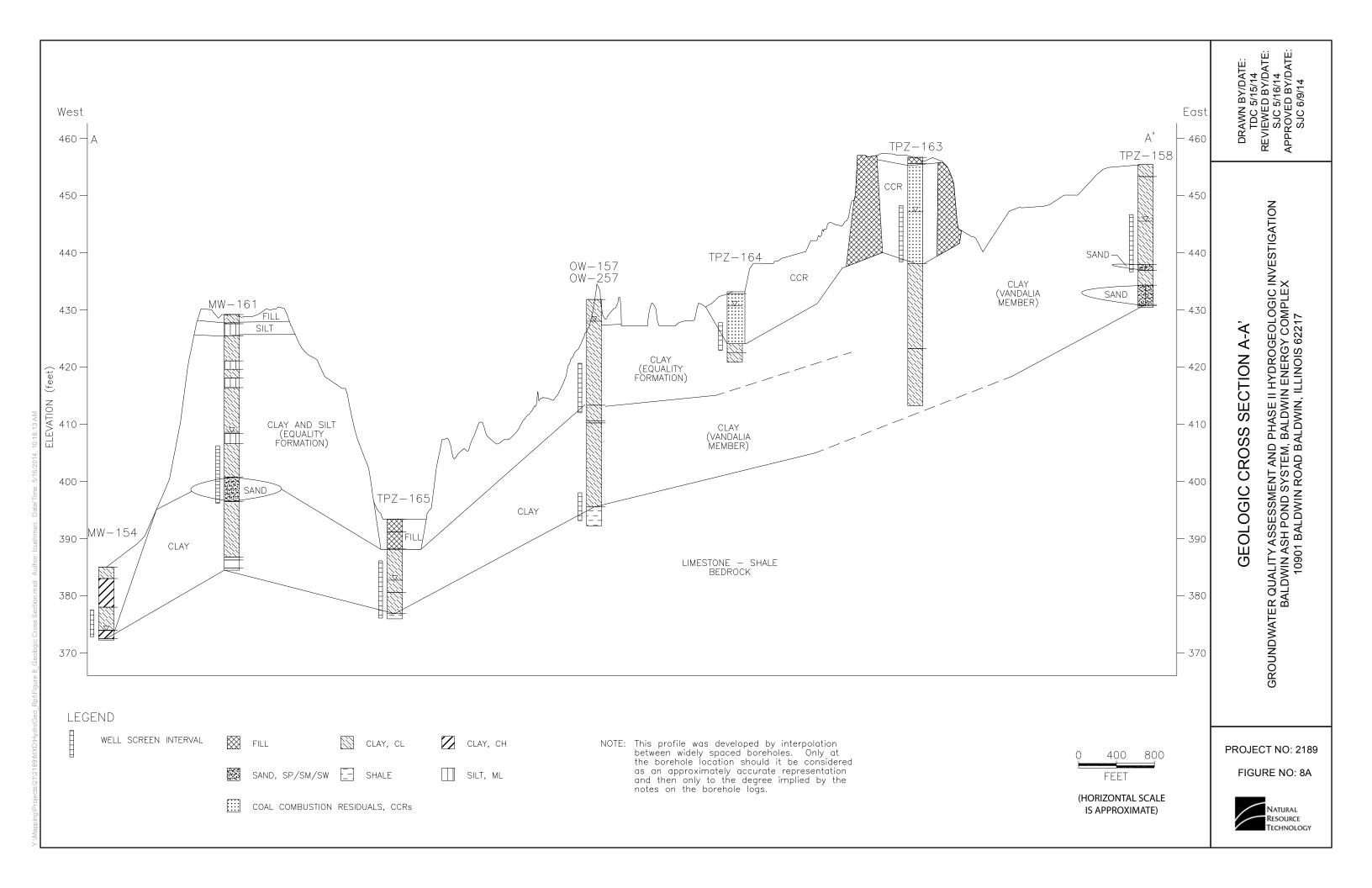
NATURAL RESOURCE

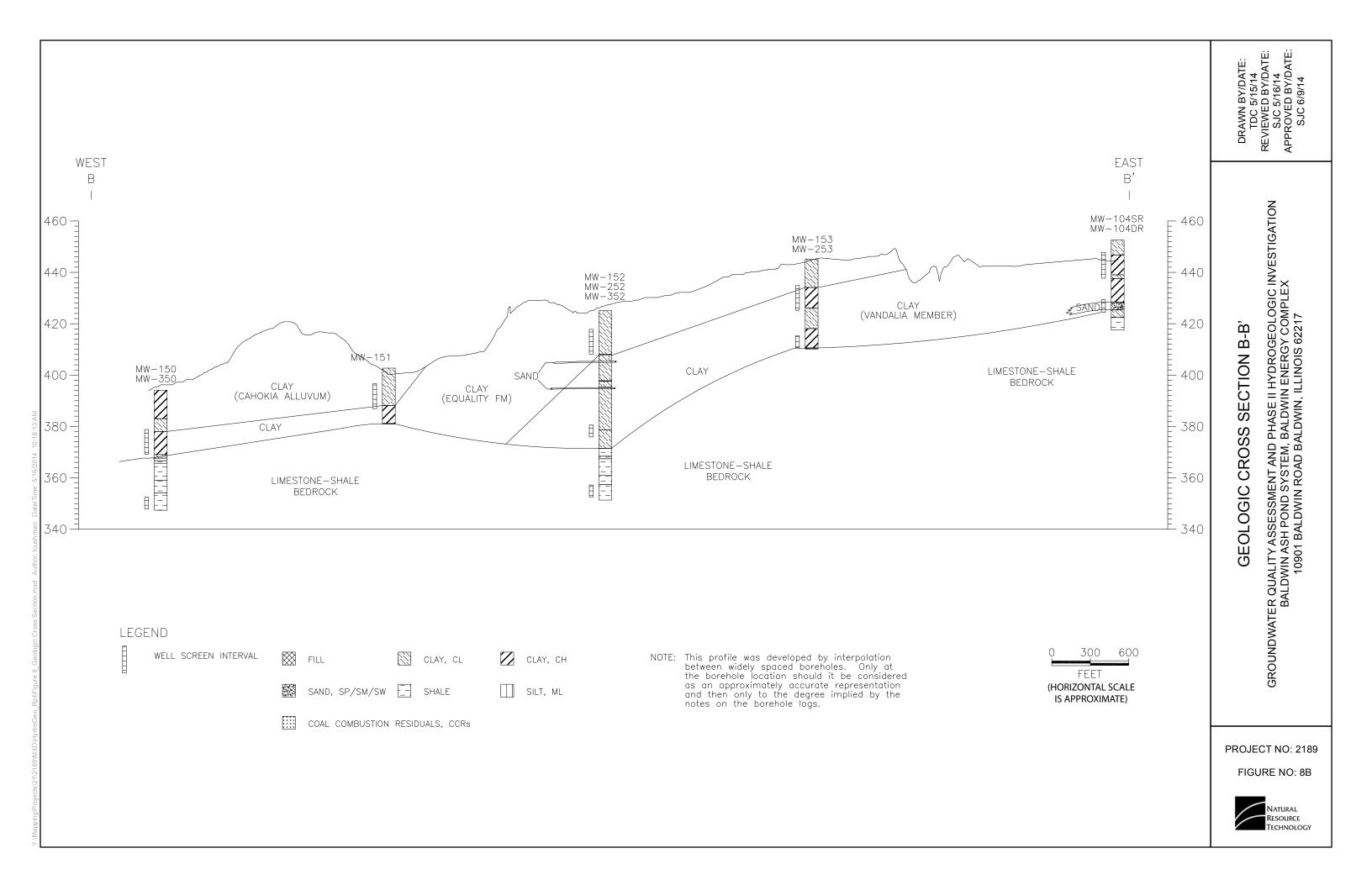
PROJECT NO: 2189 FIGURE NO: 4A

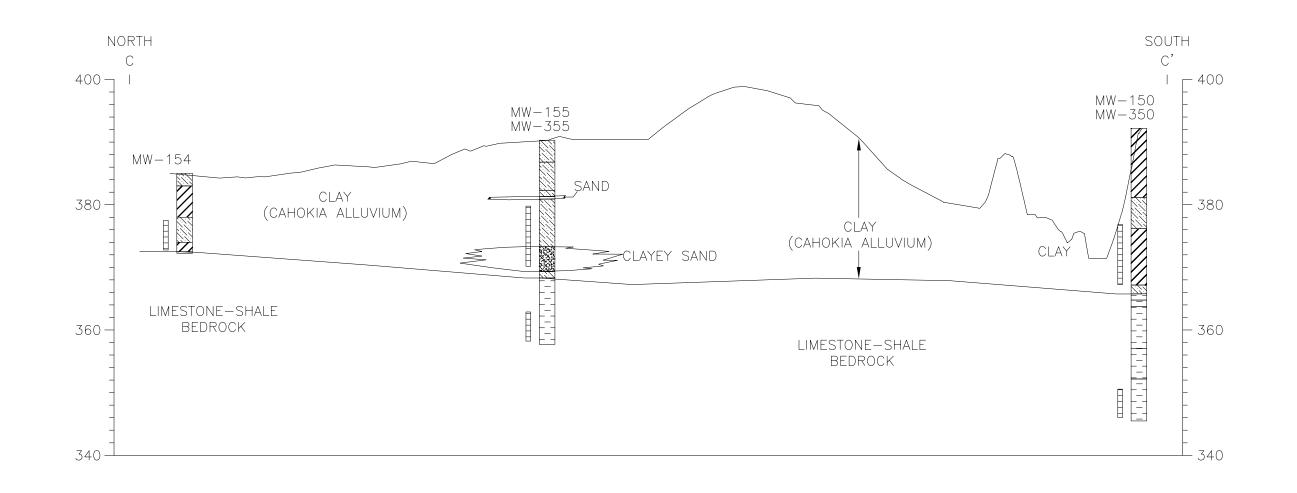

SCREEN ELEVATIONS TEMPORARY PIEZOMETER GROUNDWATER QUALITY ASSESSMENT AND PHASE II HYDROGEOLOGIC INVESTIGATION BALDWIN ASH POND SYSTEM, BALDWIN ENERGY COMPLEX 10901 BALDWIN ROAD BALDWIN, ILLINOIS 62217


DRAWN BY/DATE: TDC 4/30/14 REVIEWED BY/DATE: SJC 4/27/14 APPROVED BY/DATE: SJC 6/9/14


NATURAL RESOURCE TECHNOLOGY


PROJECT NO: 2189


FIGURE NO: 4B


SECTION C-C **CROSS** GEOLOGIC

GROUNDWATER QUALITY ASSESSMENT AND PHASE II HYDROGEOLOGIC INVESTIGATION BALDWIN ASH POND SYSTEM, BALDWIN ENERGY COMPLEX 10901 BALDWIN ROAD BALDWIN, ILLINOIS 62217

PROJECT NO: 2189

FIGURE NO: 8C

LEGEND

WELL SCREEN INTERVAL

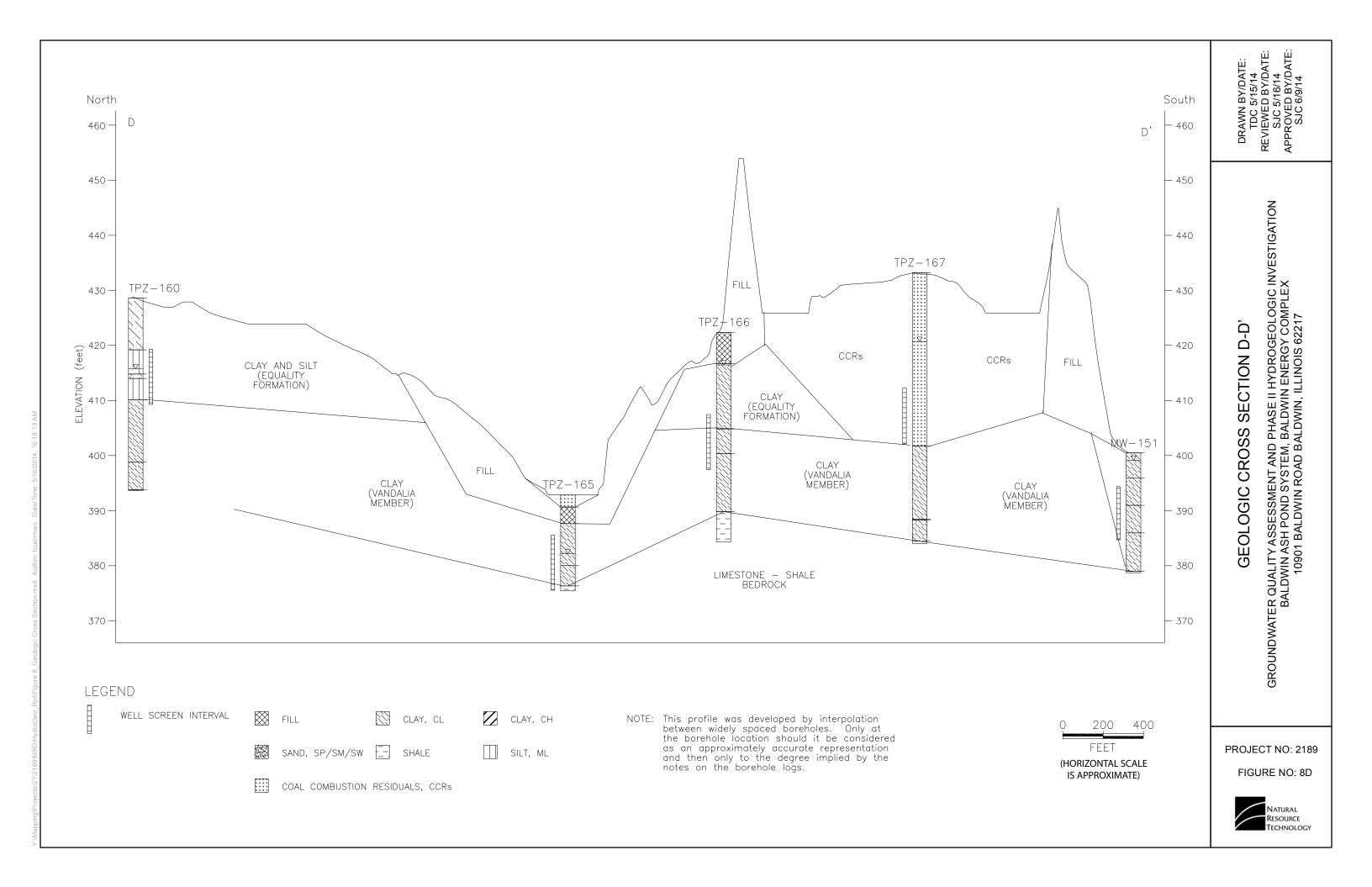
FILL

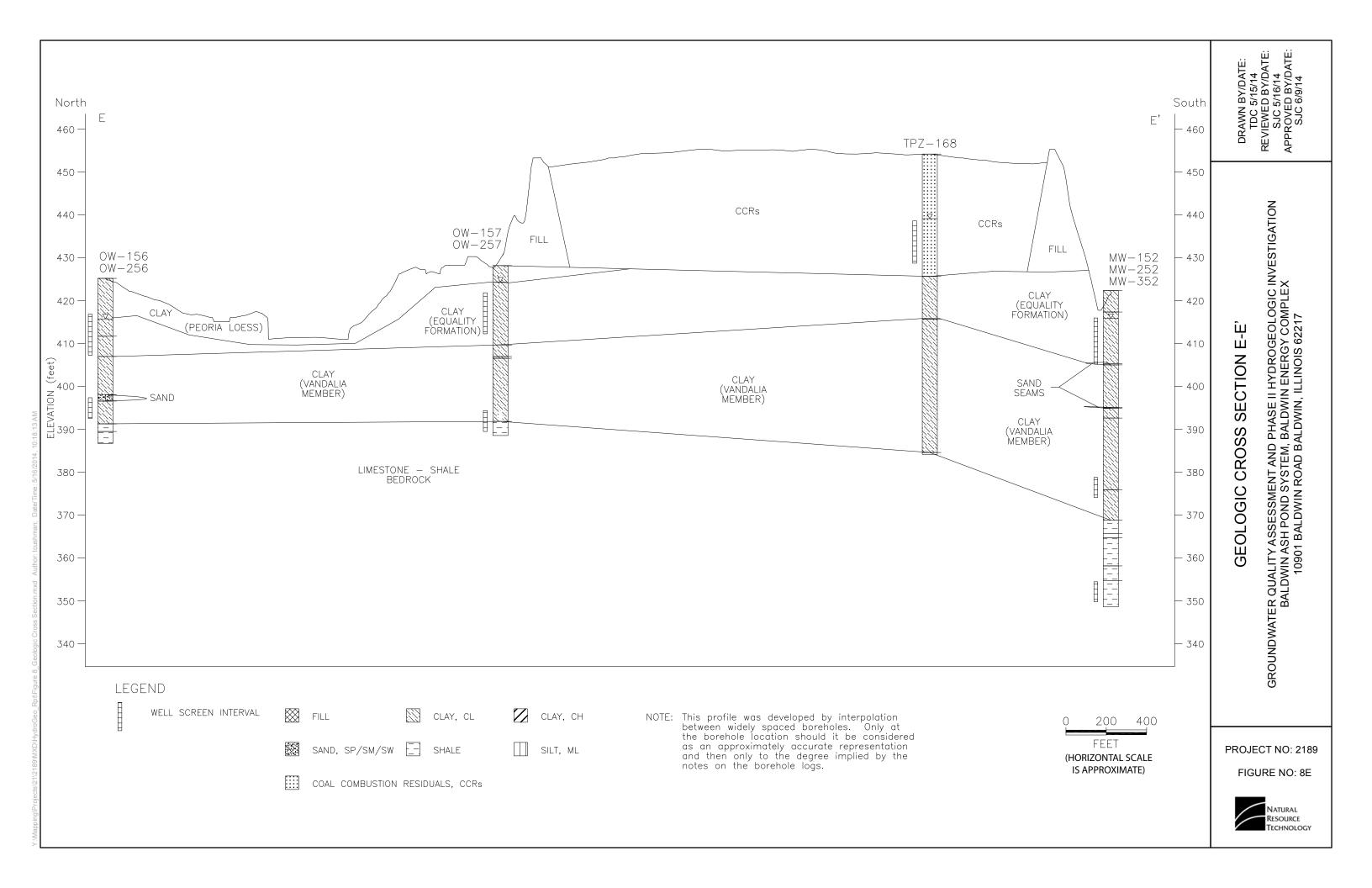
SAND, SP/SM/SW

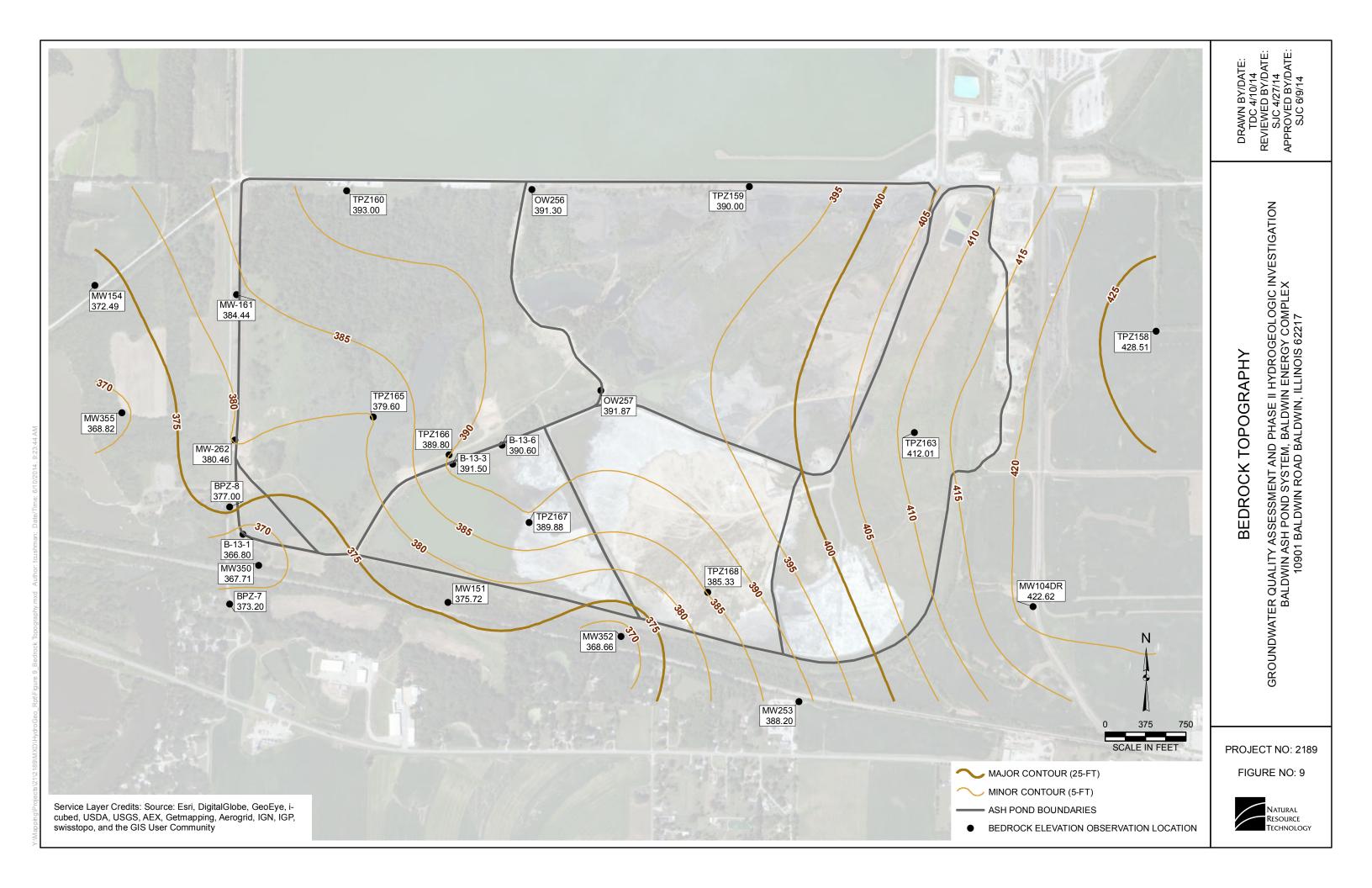
CLAY, CL

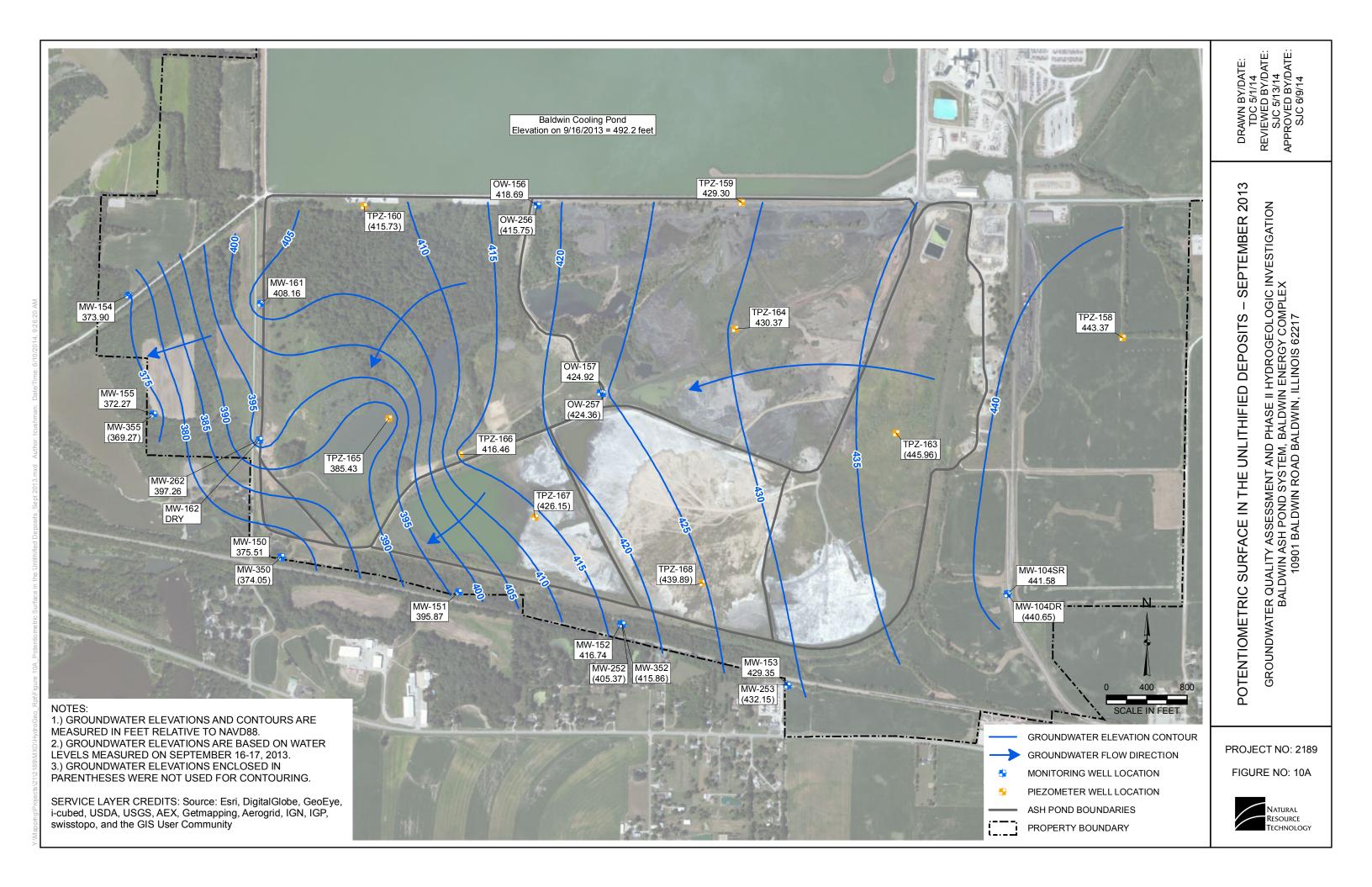
COAL COMBUSTION RESIDUALS, CCRs

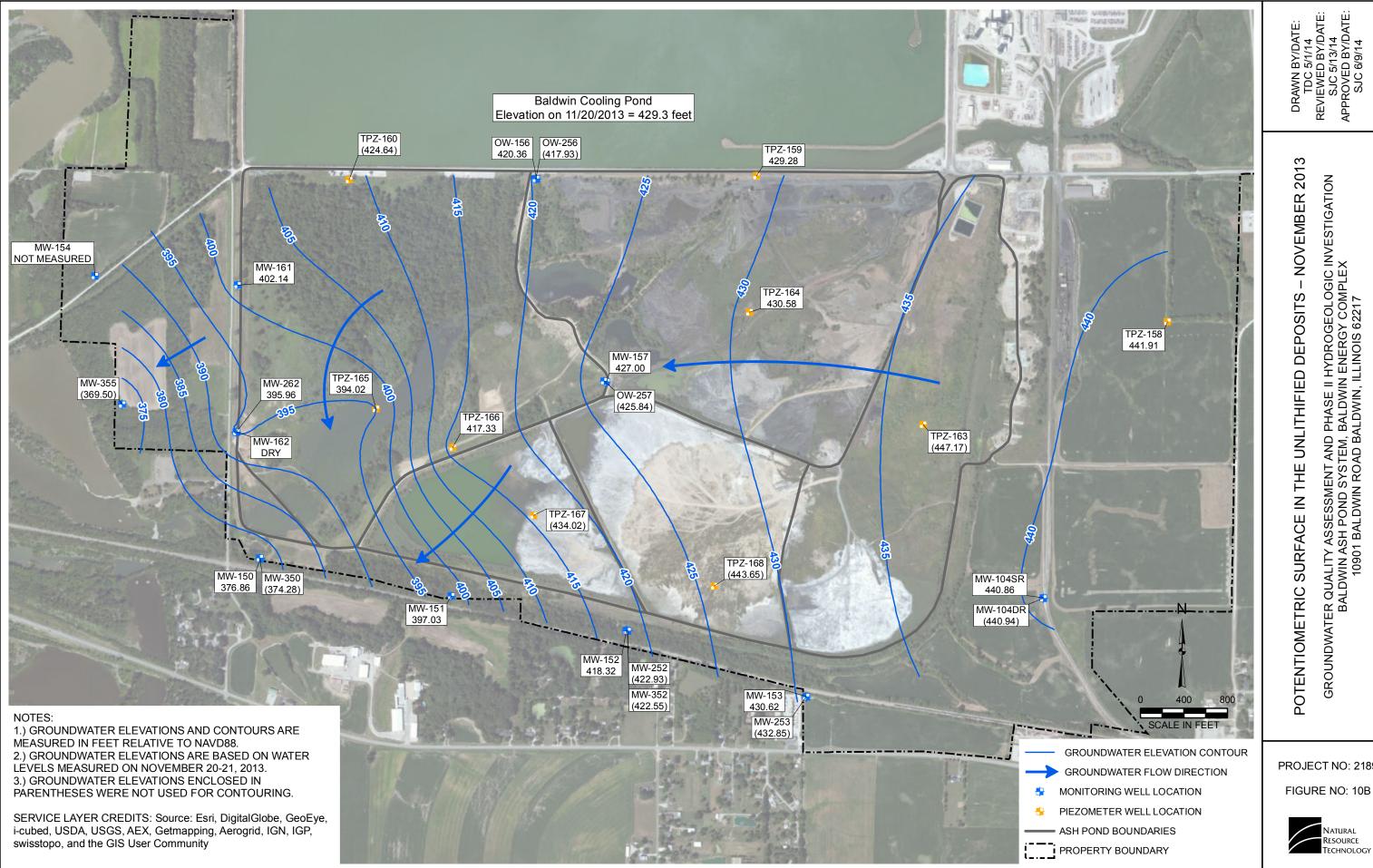
CLAY, CH

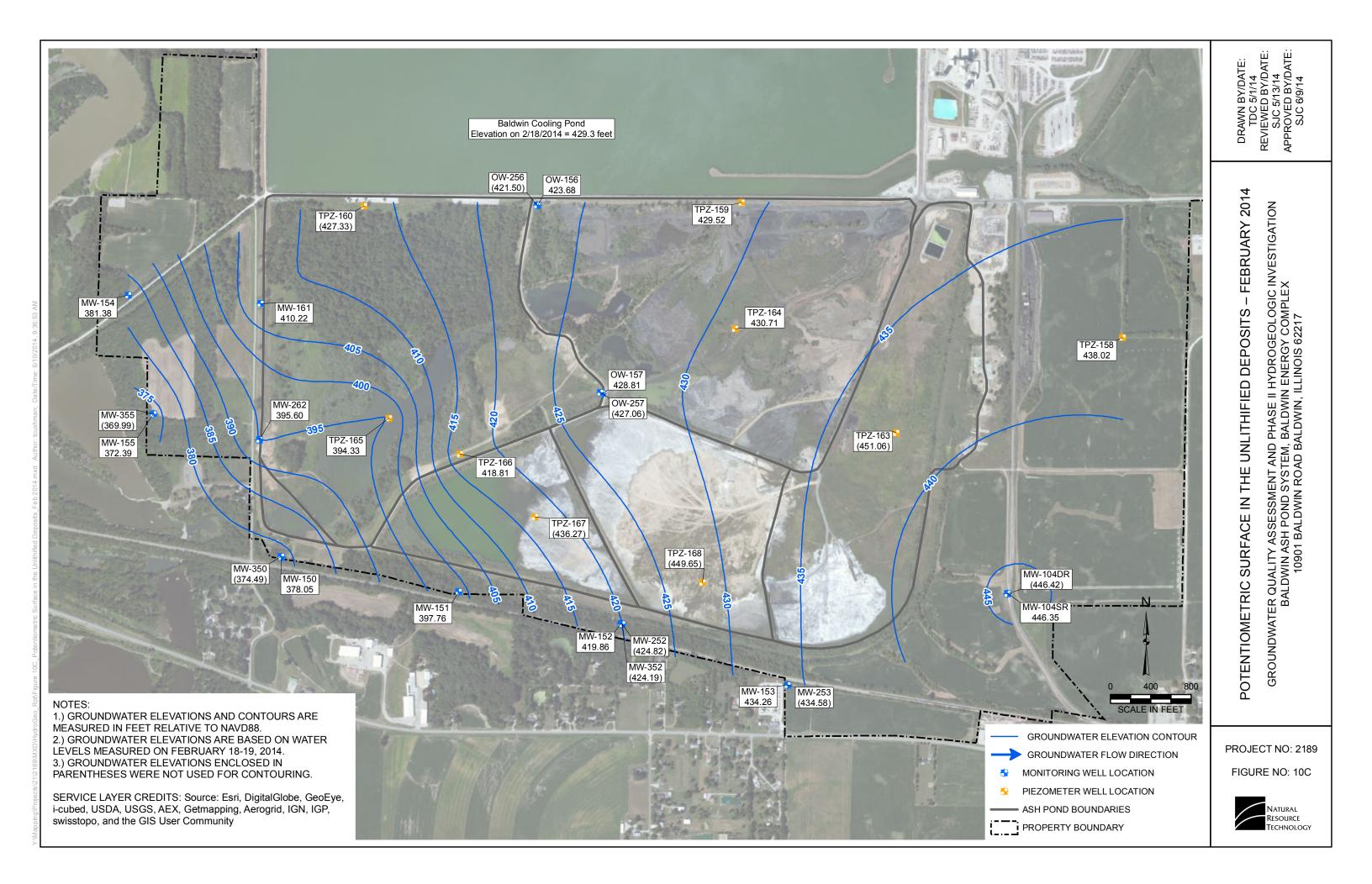

SILT, ML


NOTE: This profile was developed by interpolation between widely spaced boreholes. Only at the borehole location should it be considered as an approximately accurate representation and then only to the degree implied by the notes on the borehole logs.


150 300

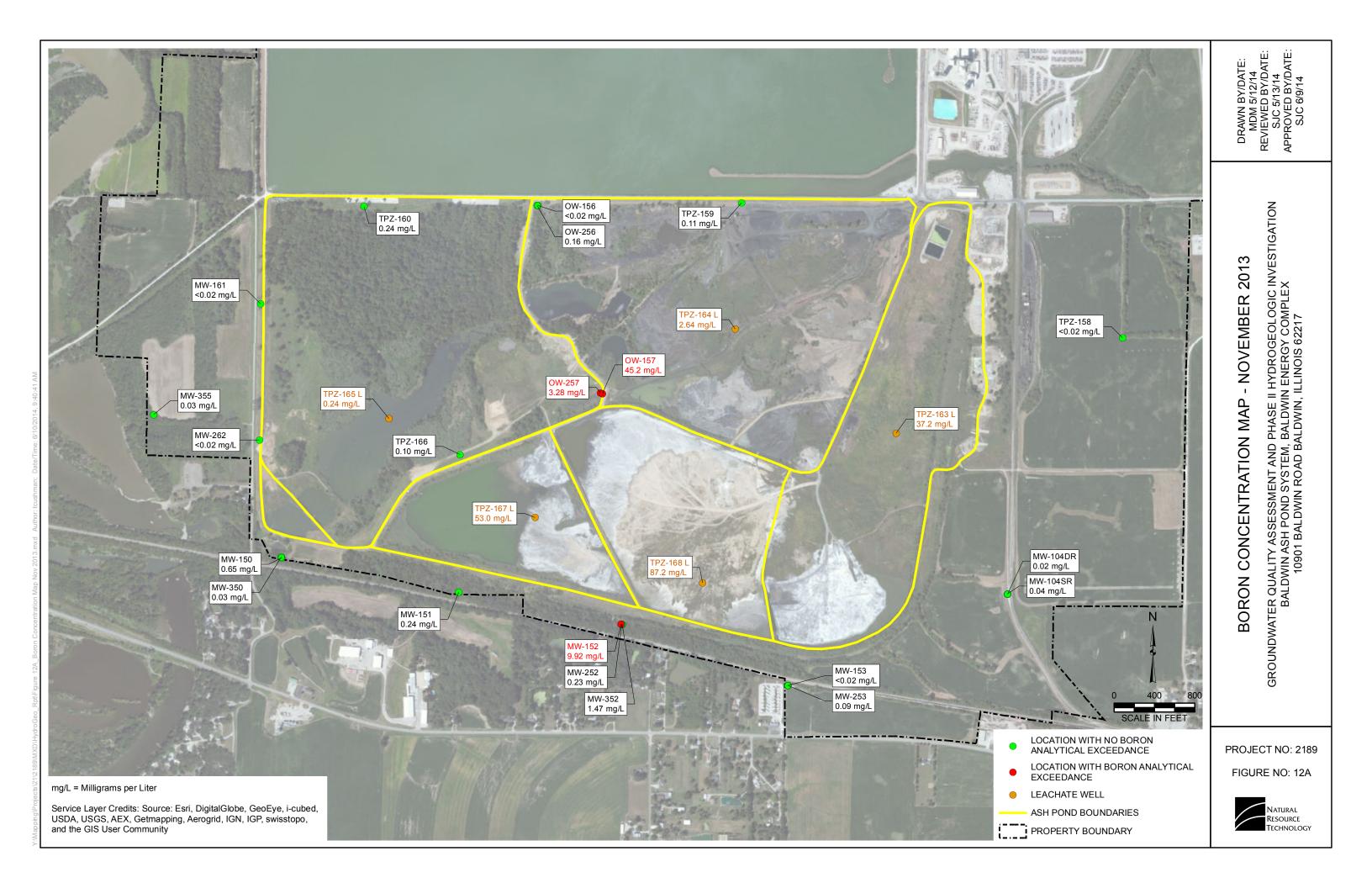

FEET

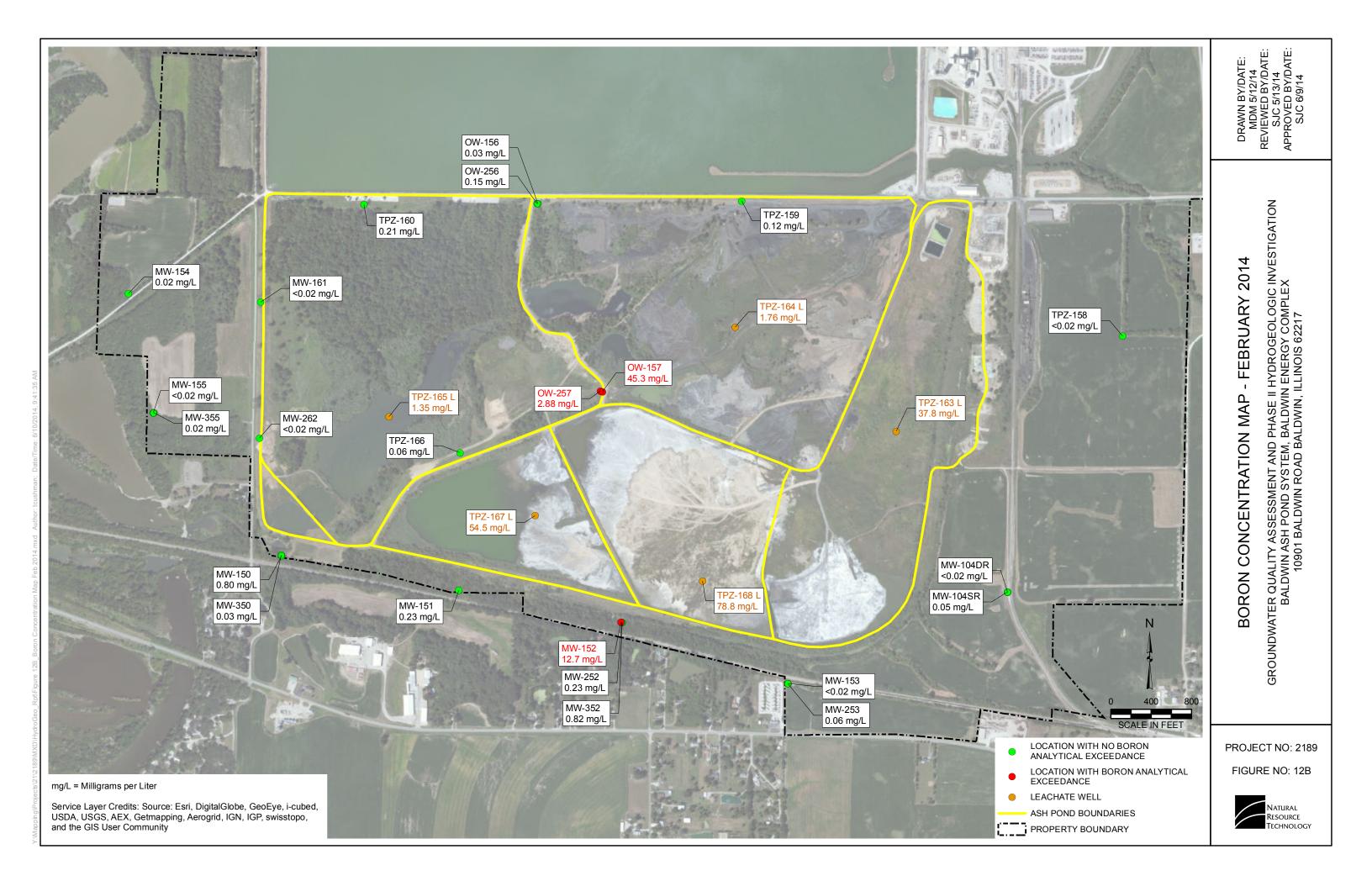

(HORIZONTAL SCALE IS APPROXIMATE)

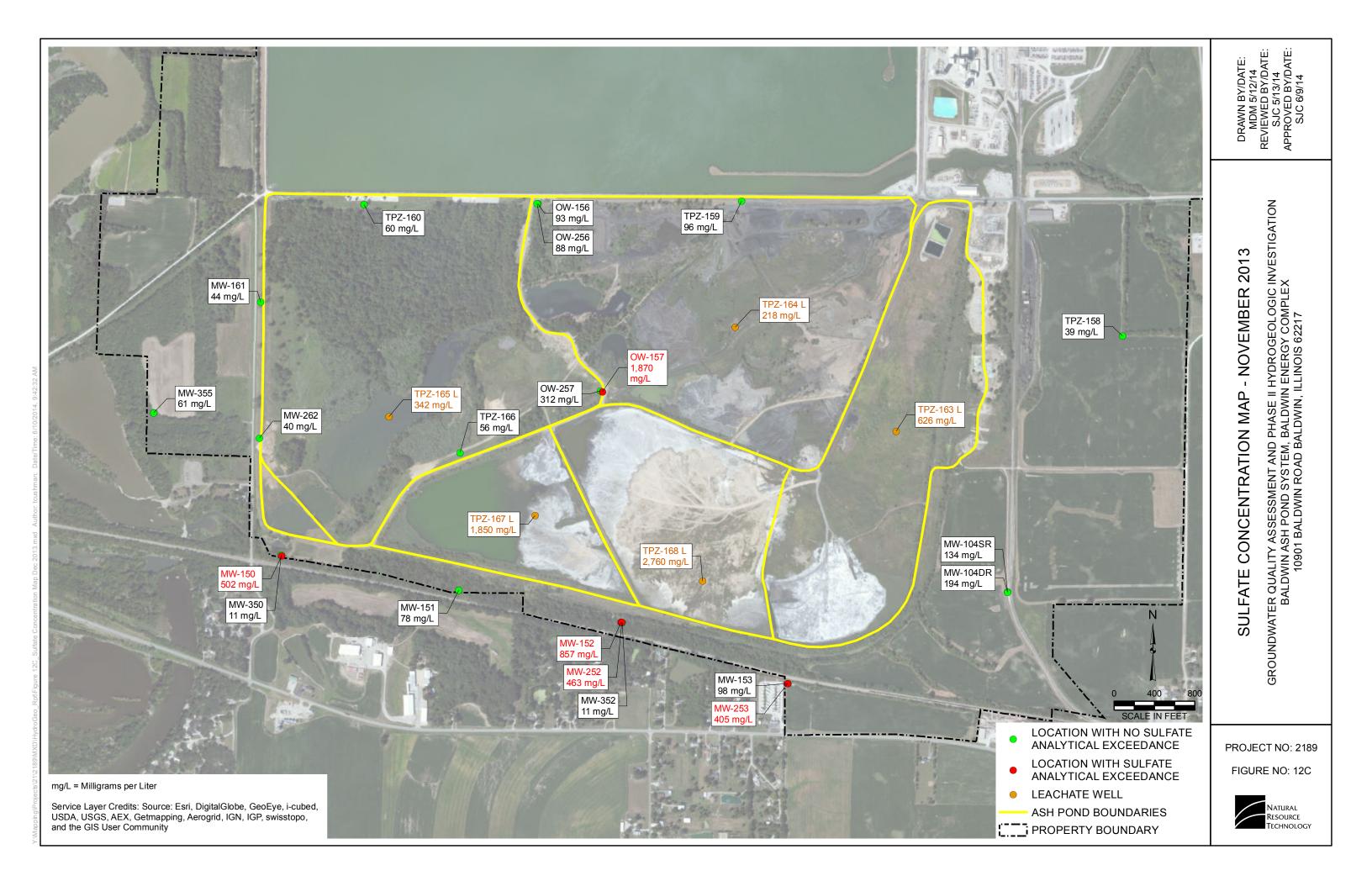


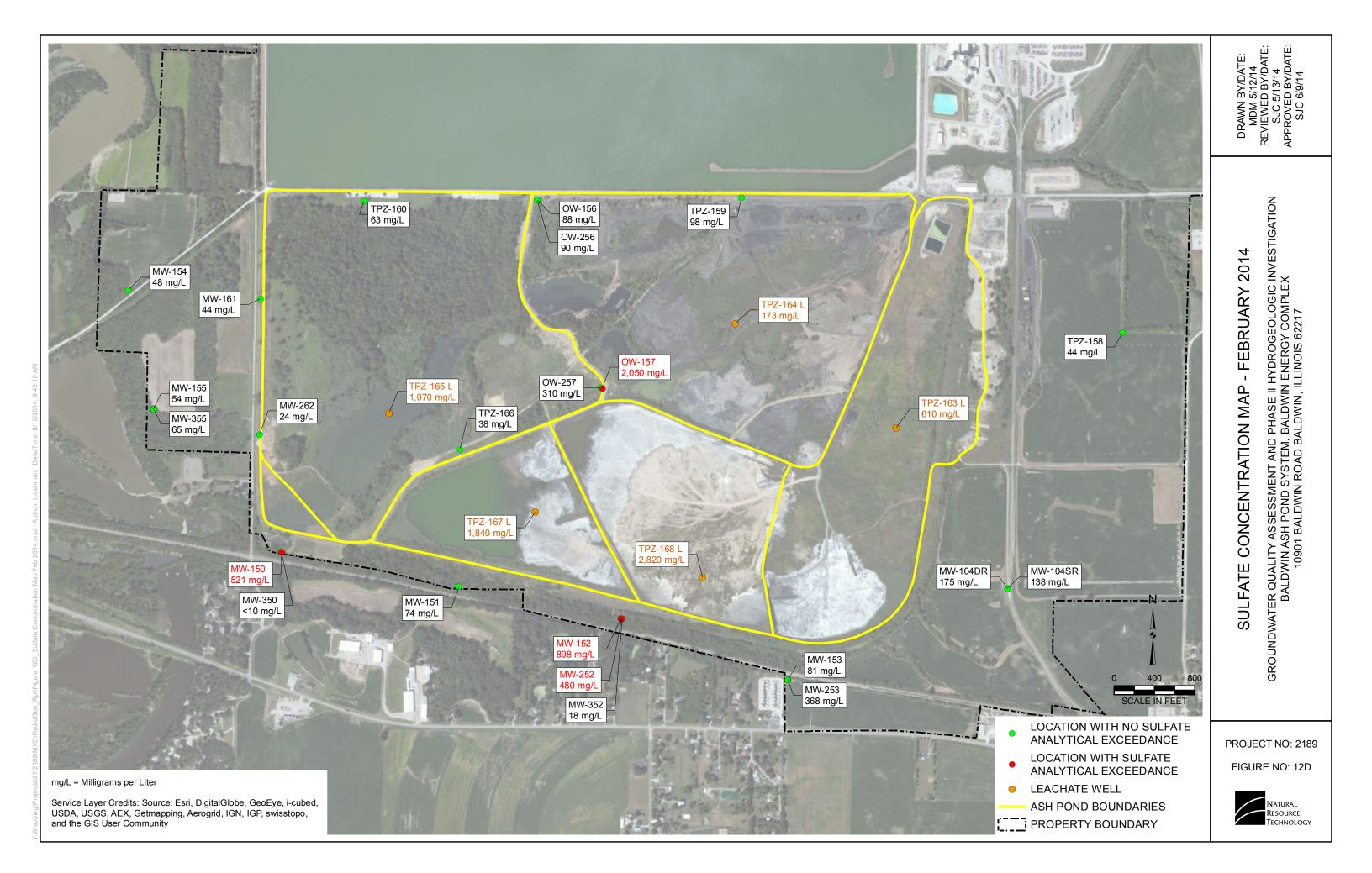
PROJECT NO: 2189

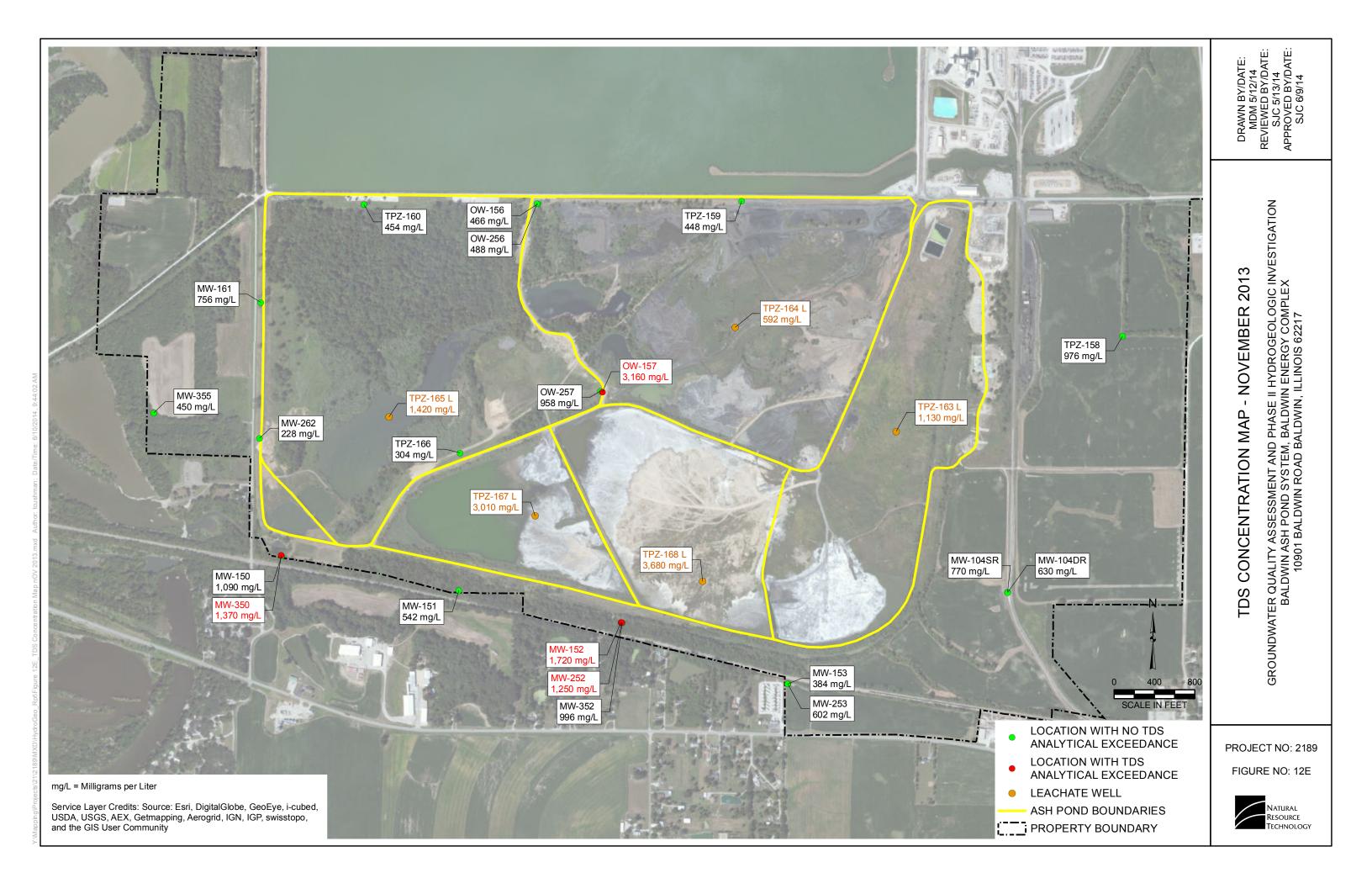
GROUNDWATER
DRAWN BY/DATE:
TDC 4/30/14
REVIEWED BY/DATE:
SJC 4/27/14
APPROVED BY/DATE:
SJC 4/27/14
APPROVED BY/DATE:
SJC 6/9/14


PIPER DIAGRAM OF MAJOR ION CHEMISTRY IN GROU


GROUNDWATER QUALITY ASSESSMENT AND PHASE II HYDROGEOLOGIC INVESTIGATION BALDWIN ASH POND SYSTEM, BALDWIN ENERGY COMPLEX 10901 BALDWIN ROAD BALDWIN, ILLINOIS 62217


NATURAL RESOURCE TECHNOLOGY


PROJECT NO: 2189


FIGURE NO: 11

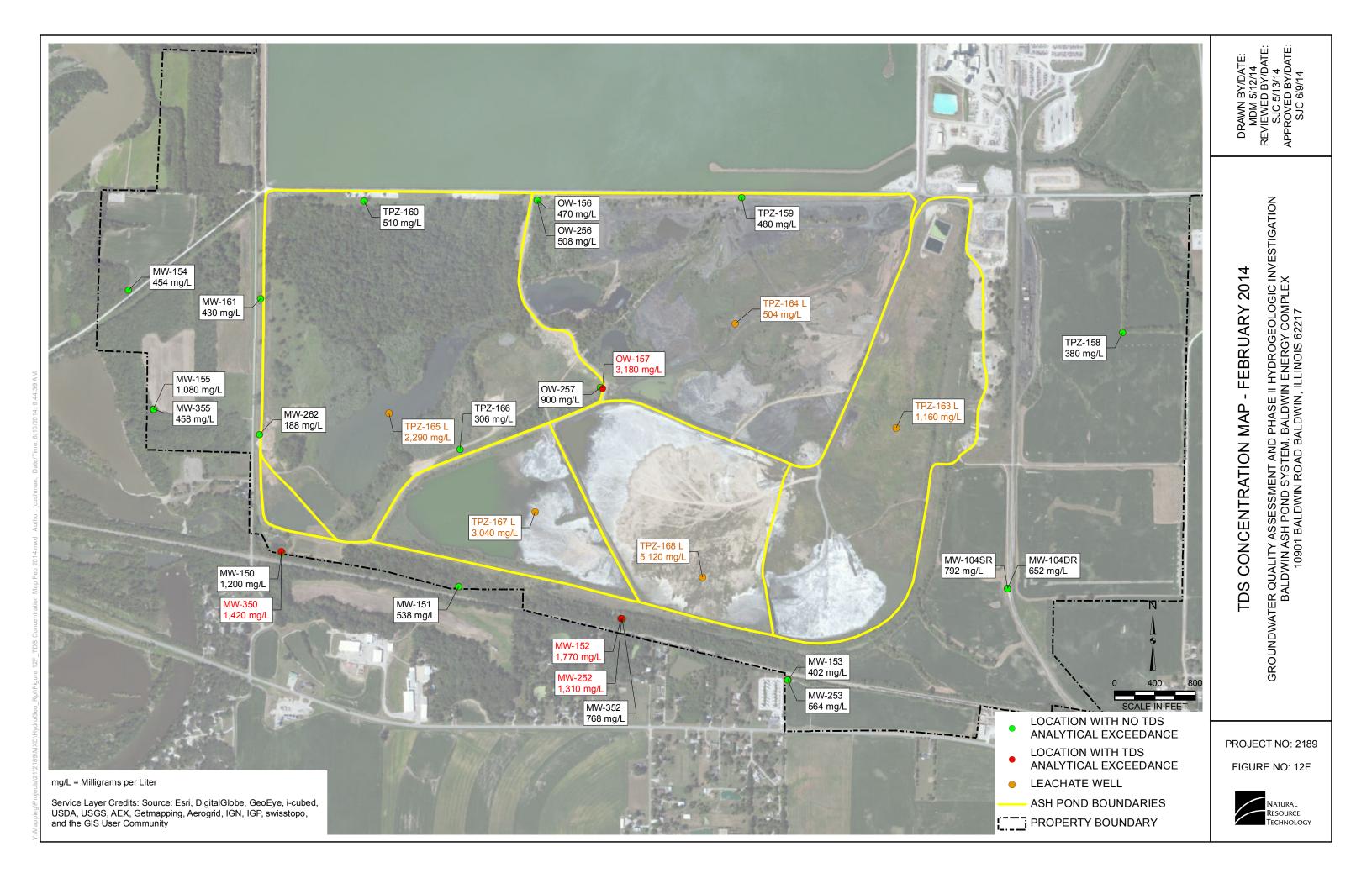


Table 1. Monitoring Well Construction Details

Well Number	Year Constructed	Driller	Gradient Position ¹	Well Top Elevation	Ground Elevation	Screen Top Depth (BGS)	Screen Bottom Depth (BGS)	Screen Top Elevation	Screen Bottom Elevation	Bottom of Boring Elevation	Slotted Screen Length	Screen Diameter (Inches)	Well Depth from Ground Surface	Well Depth from Top of Casing	Total Boring Depth	Monitored Hydrogeologic Unit
MW-104S ^A	Nov 1990	Burlington	u	455.27	452.69	4.86	14.86	447.83	437.83	438	10.00	2.0	14.86	17.44	15.0	2
MW-104D ^A	Nov 1990	Burlington	u	455.29	452.85	19.38	29.38	433.47	423.47	418	10.00	2.0	29.38	31.85	35.0	2
MW-154	Sept 2010	Terra Drill	d	387.76	384.99	7.52	12.15	377.47	372.84	372.24	4.63	2.0	12.66	15.43	12.8	2
MW-155	Sept 2010	Terra Drill	d	393.55	390.62	10.30	19.94	380.32	370.68	370.17	9.64	2.0	20.45	23.38	20.5	2
MW-355	Sept 2010	Terra Drill	d	393.69	390.82	27.40	32.03	363.42	358.79	358.28	4.63	2.0	32.54	35.41	32.6	3
MW-150	Sept 2010	Terra Drill	d	396.54	393.84	15.02	24.66	378.82	369.18	368.67	9.64	2.0	25.17	27.87	25.2	2
MW-350	Sept 2010	Terra Drill	d	396.80	394.11	41.59	46.22	352.52	347.89	347.38	4.63	2.0	46.62	49.31	46.7	3
MW-151	Sept 2010	Terra Drill	d	399.96	397.22	6.14	15.78	391.08	381.44	375.72	9.64	2.0	16.29	19.03	21.5	2
MW-152	Sept 2010	Terra Drill	d	424.99	422.18	7.46	16.71	415.11	405.47	404.48	9.64	2.0	17.22	20.03	17.7	2
MW-252	Sept 2010	Terra Drill	d	425.07	422.27	44.40	49.03	377.87	373.24	372.73	4.63	2.0	49.54	52.34	49.5	3
MW-352	Sept 2010	Terra Drill	d	425.04	422.36	67.90	72.53	354.46	349.83	348.56	4.63	2.0	73.04	75.72	73.8	3
MW-153	Sept 2010	Terra Drill	d	445.67	442.77	10.35	19.99	432.42	422.78	422.27	9.64	2.0	20.50	23.40	20.5	2
MW-253	Sept 2010	Terra Drill	d	445.84	442.70	29.86	34.49	412.84	408.21	407.70	4.63	2.0	35.04	38.18	35.0	2
MW-104SR	July 2011	Terra Drill	u	455.54	452.52	4.76	14.78	447.76	437.74	437.52	9.40	2.0	15.00	18.02	15.0	2
MW-104DR	July 2011	Terra Drill	u	455.62	452.62	23.18	28.23	429.44	424.39	417.62	4.52	2.0	28.45	31.45	35.0	2
OW-156	Sept 2010	Terra Drill	m	427.87	425.14	7.88	17.21	417.26	407.93	407.42	9.33	2.0	17.70	20.43	17.7	2
OW-157	Sept 2010	Terra Drill	m	432.64	429.90	7.80	17.13	422.10	412.77	412.26	9.33	2.0	17.64	20.38	17.6	2
MW-161	Aug 2013	Bulldog Drilling	d	431.27	428.74	23.33	32.78	405.41	395.96	384.0	9.45	2.0	33.35	35.88	44.7	2
MW-162	Aug 2013	Bulldog Drilling	d	433.20	430.83	15.88	25.33	414.95	405.50	404.9	9.45	2.0	25.90	28.27	25.9	2
MW-262	Aug 2013	Bulldog Drilling	d	433.21	430.86	42.13	46.63	388.73	384.23	379.9	4.50	2.0	47.21	49.56	51.0	2
OW-256	Aug 2013	Bulldog Drilling	m	427.70	425.20	27.99	32.49	397.21	392.71	389.2	4.50	2.0	33.07	35.57	36.0	2
OW-257	Aug 2013	Bulldog Drilling	m	431.02	428.17	33.98	38.48	394.19	389.69	388.6	4.50	2.0	39.06	41.91	39.6	2
TPZ-158	Aug 2013	Bulldog Drilling	u	456.26	453.26	9.22	18.28	444.04	434.98	434.3	9.06	1.25	18.86	21.86	19.0	2
TPZ-159	Aug 2013	Bulldog Drilling	m	447.64	444.69	19.95	29.01	424.74	415.68	394.7	9.06	1.25	29.59	32.54	50.0	2
TPZ-160	Aug 2013	Bulldog Drilling	m	431.49	428.59	9.76	18.82	418.83	409.77	393.6	9.06	1.25	19.40	22.30	35.0	2
TPZ-163	Aug 2013	Bulldog Drilling	m	458.41	455.51	8.63	18.13	446.88	437.38	410.5	9.50	2.0	18.68	21.58	45.0	1
TPZ-164	Aug 2013	Bulldog Drilling	m	435.10	432.50	5.18	9.68	427.32	422.82	422.2	4.50	2.0	10.26	12.86	10.3	1
TPZ-165	Aug 2013	Bulldog Drilling	m	398.85	396.10	7.76	16.82	388.34	379.28	378.7	9.06	1.25	17.40	20.15	17.4	1/2
TPZ-166	Aug 2013	Bulldog Drilling	m	425.18	422.33	15.25	24.70	407.08	397.63	396.8	9.45	2.0	25.27	28.12	25.5	2
TPZ-167	Aug 2013	Bulldog Drilling	m	441.38	438.63	21.44	30.94	417.19	407.69	389.9	9.50	2.0	31.51	34.26	48.8	1
TPZ-168	Aug 2013	Bulldog Drilling	m	457.53	454.93	15.76	25.26	439.17	429.67	384.9	9.50	2.0	25.81	28.41	70.0	1

Notes:

All depth and elevation measurements are in feet. Elevations as measured at time of installation.

u = upgradient, d = downgradient, m = midgradient, L = leachate well screened within coal combusion waste

Sealed and abandoned on 7/26/11 in accordance with regulations of the Illinois Department of Public Health (IDPH).

All wells constructed with 10-slot pre-pack screens except for OW156, OW157, MW-161, MW-162, and TPZ-166.

Bulldog Drilling Bulldog Drilling, LLC

Burlington Burlington Environmental, Inc.

Terra Drill Terra Drill, Inc.

Baldwin Report Table 1 ver3 5/29/2014

Table 2. Groundwater, Leachate, and Surface-Water Levels and Elevations

Groundwater Quality Assessment and Phase II Hydrogeologic Investigation - Baldwin Ash Pond System Baldwin Energy Complex, Baldwin, Illinois

Monitoring Well, Piezometer and	Ground Surface Elevation	Measuring Point Elevation	Gradient		r Coordinate n (feet)	Loca	ation	Groundwater of	or Leachate Dep LS)	oth (feet below	Groundwate	r or Leachate E NGVD)	levation (feet
Surface Water Points	(feet NGVD)	(feet NGVD)	Position ¹	Lambert X	Lambert Y	Latitude	Longitude	9/16-17/2013	11/20-21/2013	02/18-19/2014	9/16-17/2013	11/20-21/2013	02/18-19/2014
MW-104SR	452.52	455.54	u	2386609	554205	38°11'18.07"N	89°51'12.37"W	10.94	11.66	6.17	441.58	440.86	446.35
MW-104DR	452.62	455.62	u	2386609	554201	38°11'18.03"N	89°51'12.37"W	11.97	11.68	6.20	440.65	440.94	446.42
MW-150	393.84	396.54	d	2379413	554563	38°11'21.85"N	89°52'42.49"W	18.33	16.98	15.79	375.51	376.86	378.05
MW-350	394.11	396.80	d	2379410	554568	38°11'21.90"N	89°52'42.52"W	20.06	19.83	19.62	374.05	374.28	374.49
MW-151	397.22	399.96	d	2381171	554221	38°11'18.42"N	89°52'20.47"W	1.35	0.19	-0.54	395.87	397.03	397.76
MW-152	422.18	424.99	d	2382779	553906	38°11'15.25"N	89°52'00.35"W	5.44	3.86	2.32	416.74	418.32	419.86
MW-252	422.27	425.07	d	2382784	553904	38°11'15.23"N	89°52'00.28"W	16.90	-0.66	-2.55	405.37	422.93	424.82
MW-352	422.36	425.04	d	2382789	553901	38°11'15.19"N	89°52'00.23"W	6.50	-0.19	-1.83	415.86	422.55	424.19
MW-153	442.77	445.67	d	2384435	553298	38°11'09.18"N	89°51'39.64"W	13.42	12.15	8.51	429.35	430.62	434.26
MW-253	442.70	445.84	d	2384430	553298	38°11'09.19"N	89°51'39.69"W	10.55	9.85	8.12	432.15	432.85	434.58
MW-154	384.99	387.76	d	2377892	557163	38°11'47.60"N	89°53'01.44"W	11.09	>15.43 (dry)	3.61	373.90	below 372.33	381.38
MW-155	390.62	393.55	d	2378141	555983	38°11'35.93"N	89°52'58.36"W	18.35	>23.38 (dry)	18.23	372.27	below 370.17	372.39
MW-355	390.82	393.69	d	2378145	555980	38°11'35.91"N	89°52'58.33"W	21.55	21.32	20.83	369.27	369.50	369.99
OW-156	425.14	427.87	m	2381953	558055	38°11'56.29"N	89°52'10.53"W	6.45	4.78	1.46	418.69	420.36	423.68
OW-256	425.20	427.70	m	2381947	558054	38°11'56.28"N	89°52'10.60"W	9.45	7.27	3.70	415.75	417.93	421.50
OW-157	429.90	432.64	m	2382593	556189	38°11'37.82"N	89°52'02.58"W	4.98	2.90	1.09	424.92	427.00	428.81
OW-257	428.17	431.02	m	2382572	556198	38°11'37.91"N	89°52'02.84"W	3.81	2.33	1.11	424.36	425.84	427.06
MW-161	428.74	431.27	d	2379206	557078	38°11'46.71"N	89°52'44.97"W	20.58	26.60	18.52	408.16	402.14	410.22
MW-162	430.83	433.20	d	2379193	555725	38°11'33.34"N	89°52'45.19"W	>25.90 (dry)	>25.90 (dry)	>25.90 (dry)	below 404.93	below 404.93	below 404.93
MW-262	430.86	433.21	d	2379193	555729	38°11'33.38"N	89°52'45.19"W	33.60	34.90	35.26	397.26	395.96	395.60
TPZ-158	453.26	456.26	u	2387752	556741	38°11'43.11"N	89°50'57.95"W	9.89	11.35	15.24	443.37	441.91	438.02
TPZ-159	444.69	447.64	m	2383974	558081	38°11'56.48"N	89°51'45.21"W	15.39	15.41	15.17	429.30	429.28	429.52
TPZ-160	428.59	431.49	m	2380230	558046	38°11'56.26"N	89°52'32.11"W	12.86	3.95	1.26	415.73	424.64	427.33
TPZ-163 ^L	455.51	458.41	m	2385507	555798	38°11'33.86"N	89°51'26.10"W	9.55	8.34	4.45	445.96	447.17	451.06
TPZ-164 ^L	432.50	435.10	m	2383909	556829	38°11'44.11"N	89°51'46.07"W	2.13	1.92	1.79	430.37	430.58	430.71
TPZ-165 ^L	396.10	398.85	m	2380478	555940	38°11'35.43"N	89°52'29.08"W	10.67	2.08	1.77	385.43	394.02	394.33
TPZ-166	422.33	425.18	m	2381183	555587	38°11'31.92"N	89°52'20.27"W	5.87	5.00	3.52	416.46	417.33	418.81
TPZ-167 ^L	438.63	441.38	m	2381925	554963	38°11'25.72"N	89°52'11.00"W	12.48	4.61	2.36	426.15	434.02	436.27
TPZ-168 ^L	454.93	457.53	m	2383585	554314	38°11'19.25"N	89°51'50.24"W	15.04	11.28	5.28	439.89	443.65	449.65
Baldwin Lake	na	na	na	na	na	na	na	na	na	na	429.2 ²	429.3 ³	429.3 ⁴

Notes:
All depth and elevation measurements are in feet.

u = upgradient, d = downgradient, m = midgradient 2, 3, 4 As measured on September 16, 2013; November 20, 2013; February 18, 2014.

Piezometers measuring leachate depths and elevations.

Not Applicable. LS Land Surface.

- (negative) Indicates groundwater level is above ground surface.

Reported water level either not static, erroneously measured, or mis-transcribed.

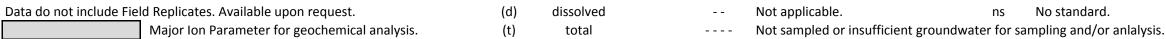
Table 3. Field and Laboratory Groundwater Monitoring Parameters

Field Parameter	s		Analysis Method ^{Phase I}	Analysis Method Phase II
Groundwater Elevation		in-situ	Electronic Water Level Indicator	Electronic Water Level Indicator
pH, Field	1	in-situ	SM 21st ed. 4500-H ⁺	SW-846 9040B
Specific Conductance, Field		in-situ	SM 21st ed. 2520-B	SW-846-9050A
Temperature, Field		in-situ	SM 21st ed. 2550 B	SM 21st ed. 2550 B
General Chemistry Par	an	<u>neters</u>	Analysis Method Phase I	Analysis Method Phase II
Alkalinity, total (CaCO3)	2	dissolved	EPA 310.1	
Chloride	1	dissolved	ASTM 4500-D	SW-846 9251
Total Cyanide	1	total	SW-846 9012A	
Fluoride	1	dissolved	EPA Method 74	
Nitrate as N	1	dissolved	SM 21st ed. 4500-NO ₃ E	-
Sulfate	1	dissolved	SM 21st ed. 4500-SO ₄ E	SW-846 9036
Total Dissolved Solids	1	dissolved	SM 21st ed 2540 C	SM 21st ed 2540 C
METALS ³			Analysis Method ^{Phase I}	Analysis Method ^{Phase II}
Antimony	1	dissolved	EPA Method 200.7	
Arsenic	1	dissolved	EPA Method 200.7	
Barium	1	dissolved	EPA Method 200.7	
Beryllium	1	dissolved	EPA Method 200.7	
Boron	1	dissolved	EPA Method 200.7	SW-846 3005A, 6010B by ICP
Cadmium	1	dissolved	EPA Method 200.7	
Calcium	2	dissolved	EPA Method 200.7	
Chromium	1	dissolved	EPA Method 200.7	
Cobalt	1	dissolved	EPA Method 200.7	
Copper	1	dissolved	EPA Method 200.7	
Iron	1	dissolved	EPA Method 200.7	SW-846 3005A, 6010B by ICP
Lead	1	dissolved	EPA Method 200.7	
Magnesium	2	dissolved	EPA Method 200.7	
Manganese	1	dissolved	EPA Method 200.7	SW-846 3005A, 6010B by ICP
Mercury	1	dissolved	EPA Method 200.7	
Nickel	1	dissolved	EPA Method 200.7	
Potassium	2	dissolved	EPA Method 200.7	
Selenium	1	dissolved	EPA Method 200.7	
Silver	1	dissolved	EPA Method 200.7	
Sodium	2	dissolved	EPA Method 200.7	
Thallium	1	dissolved	EPA Method 200.7	
Zinc	1	dissolved	EPA Method 200.7	

Notes:

^{- -} parameter not analyzed for the Phase II groundwater quality assessment and hydrogeologic investigation.

¹ Groundwater quality parameters for Class I: Potable Resource Groundwater (IAC 35 Part 620 Section 410).

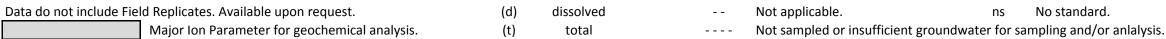

 $^{^2}$ Supplemental groundwater parameters for major anion and cation analyses. Quarter 1, 2011 - Q4, 2012.

 $^{^{\}rm 3}$ Samples field filtered through a 0.45 micron filter.

Table 4. Groundwater Quality Data Summary from Initial Hydrogeologic Investigation: 2010 - 2012

			Class I												
Parameter	Method Used	Units	Standard				04S/SR						4D/DR		
Date				11/16/10	03/23/11	06/07/11	09/13/11	12/08/11	03/08/12	11/16/10	03/23/11	06/07/11	09/13/11	12/08/11	03/08/12
pH-field	SM 21st ed. 4500-H ⁺	s.u.	6.5-9.0	6.58	6.55	6.50	6.44	6.90	6.88	6.98	7.01	6.88	6.71	6.79	7.65
Elevation		ft.		441.47	448.10	446.22	441.89	447.06	446.65	441.54	448.04	446.24	441.66	446.78	446.36
Spec Cond-field	SM 21st ed. 2520-B	micromhos/cm	ns	1,550	1,142	1,290	1,286	1,405	1,521	1,226	1,176	1,213	1,164	1,127	1,094
Temp-field	SM 21st ed. 2550	C°	ns	11.79	15.9	21.8	19.9	12.28	10.1	14.96	16.7	16.8	16.0	13.74	11.3
Sulfate (t)	SM 21st ed. 4500-SO ₄ E	mg/L	400.0	148	169	114	164	237	140	245	241	250	225	222	214
Chloride (d)	ASTM D512-04 C	mg/L	200.0	33.7	56	59	32	31	34	15.7	17	19	18	18	24
Fluoride (d)	EPA method 74	mg/L	4.0	0.629	0.40	0.56	0.54	0.523	0.549	0.469	0.422	0.379	0.370	0.400	0.310
Nitrate (d)	SM 21st ed. 4500-NO ₃ D	mg/L	10.0	<0.050	<0.050	0.067	0.37	0.14	0.09	0.0697	0.067	<0.050	0.071	0.060	0.550
TDS	SM 21st ed 2540 C	mg/L	1200	943	742	824	909	965	886	785	801	776	768	739	724
Alkalinity (t)	EPA 375.4	mg/L	ns		446	550	654	616	700		406	404	418	410	416
Cyanide (t)	SW-846 9012A	mg/L	0.2	< 0.007	<0.007	<0.008	<0.007	<0.007	<0.008	<0.007	<0.007	<0.007	<0.007	<0.007	<0.008
Antimony (d)	SW-846 3020A	mg/L	0.006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Arsenic (d)	SW-846 3005A, 6010B	mg/L	0.05*	0.032	0.0082	0.012	0.006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Barium (d)	SW-846 3005A, 6010B	mg/L	2.0	0.15	0.090	0.24	0.059	0.076	0.097	0.03	0.031	0.033	0.042	0.038	0.035
Beryllium (d)	SW-846 3005A, 6010B	mg/L	0.004	<0.005	<0.005	<0.005	<0.001	<0.004	<0.004	<0.005	<0.005	<0.005	<0.001	<0.004	<0.004
Boron (d)	SW-846 3005A, 6010B	mg/L	2.0	0.16	0.15	0.22	<0.050	<0.050	0.060	<0.02	0.021	0.019	<0.050	<0.050	<0.050
Cadmium (d)	SW-846 3005A, 6010B	mg/L	0.005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium (d)	SW-846 3005A, 6010B	mg/L	ns		106	121	157	167	168		143	134	134	137	145
Chromium (d)	SW-846 3005A, 6010B	mg/L	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cobalt (d)	SW-846 3005A, 6010B	mg/L	1.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Copper (d)	SW-846 3005A, 6010B	mg/L	0.65	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Iron (d)	SW-846 3005A, 6010B	mg/L	5.0	18	1.9	14	0.080	0.19	0.61	<0.010	<0.010	<0.010	0.024	0.025	0.011
Lead (d)	SW-846 3020A	mg/L	0.0075	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Magnesium (d)	SW-846 3005A, 6010B	mg/L	ns		42	46	65	70	77		58	58	49	52	58
Manganese (d)	SW-846 3005A, 6010B	mg/L	0.15	6.8	3.0	4.0	1.2	1.1	1.9	0.02	0.040	0.013	0.42	0.28	0.21
Mercury (d)	SW-846 7470A	mg/L	0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel (d)	SW-846 3005A, 6010B	mg/L	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Potassium (d)	SW-846 3005A, 6010B	mg/L	ns		<1.0	1.8	<1.0	<1.0	<1.0		<1.0	<1.0	2.2	1.5	1.3
Selenium (d)	SW-846 3020A	mg/L	0.05	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Silver (d)	SW-846 3005A, 6010B	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Sodium (d)	SW-846 3005A, 6010B	mg/L	ns		104	105	92	84	85		63	58	58	51	56
Thallium (d)	SW-846 3020A	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc (d)	SW-846 3005A, 6010B	mg/L	5.0	0.009	<0.005	0.0093	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Notes:

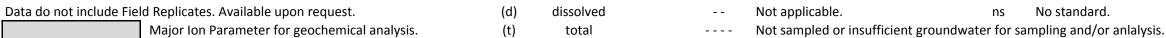


^{*} The Class I standard for arsenic was changed to 0.01 mg/L after these sample events were completed.

Table 4. Groundwater Quality Data Summary from Initial Hydrogeologic Investigation: 2010 - 2012

Dougraphou	Mathadilland	Heite	Class I Standard			5.414	/150					D. (1) A	/250		
Parameter	Method Used	Units	Stanuaru	11/15/10	02/22/11		/150	12/07/11	02/07/12	11 /15 /10	02/22/11		/350	12/07/11	02/07/12
Date				11/15/10	03/22/11	06/07/11	09/13/11	12/07/11	03/07/12	11/15/10	03/22/11	06/07/11	09/13/11	12/07/11	03/07/12
pH-field	SM 21st ed. 4500-H ⁺	s.u.	6.5-9.0	7.27	7.34	7.11	7.22	7.07	7.33	12.24	11.67	12.19	12.14	12.59	12.94
Elevation		ft.		337.11	380.04	380.44	376.01	379.00	378.74	372.52	375.84	379.37	374.3	374.62	374.40
Spec Cond-field	SM 21st ed. 2520-B	micromhos/cm	ns	1,467	1,681	1,910	1,620	1,744	1,704	629	1,268	5,144	4,508	5,529	7,057
Temp-field	SM 21st ed. 2550	C°	ns	13.52	15.3	16.7	14.4	13.11	16.1	11.43	18.7	16.4	18.4	7.02	14.0
Sulfate (t)	SM 21st ed. 4500-SO ₄ E	mg/L	400.0	507	555	696	513	585	584	53.7	30	43	46	41	62
Chloride (d)	ASTM D512-04 C	mg/L	200.0	65.4	65	58	66	77	69	21.4	27	26	34	31	32
Fluoride (d)	EPA method 74	mg/L	4.0	0.826	0.841	0.791	0.860	0.865	0.798	0.510	0.460	0.365	0.330	0.289	0.174
Nitrate (d)	SM 21st ed. 4500-NO ₃ D	mg/L	10.0	<0.050	0.057	0.058	0.054	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
TDS	SM 21st ed 2540 C	mg/L	1200	1,133	1,205	1,396	1,162	1,278	1,334	375	885	1,257	1,196	1,423	1,709
Alkalinity (t)	EPA 375.4	mg/L	ns		378	370	376	390	388		307	561	505	778	808
Cyanide (t)	SW-846 9012A	mg/L	0.2	<0.007	<0.008	<0.008	<0.007	<0.007	<0.007	<0.007	<0.007	<0.008	<0.007	<0.007	<0.007
Antimony (d)	SW-846 3020A	mg/L	0.006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.008	0.007	0.008
Arsenic (d)	SW-846 3005A, 6010B	mg/L	0.05*	0.005	0.0060	<0.005	<0.005	0.005	<0.005	<0.005	0.0079	<0.005	0.0060	0.011	0.005
Barium (d)	SW-846 3005A, 6010B	mg/L	2.0	0.02	0.016	0.017	0.017	0.019	0.015	0.23	0.46	0.87	0.76	1.2	1.6
Beryllium (d)	SW-846 3005A, 6010B	mg/L	0.004	<0.005	<0.005	<0.005	<0.001	<0.004	<0.004	<0.005	<0.005	<0.005	<0.001	<0.004	<0.004
Boron (d)	SW-846 3005A, 6010B	mg/L	2.0	0.31	0.47	0.40	0.36	0.47	0.56	0.60	0.42	0.26	0.21	0.13	0.056
Cadmium (d)	SW-846 3005A, 6010B	mg/L	0.005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium (d)	SW-846 3005A, 6010B	mg/L	ns		132	138	135	136	128		108	218	202	323	533
Chromium (d)	SW-846 3005A, 6010B	mg/L	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cobalt (d)	SW-846 3005A, 6010B	mg/L	1.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Copper (d)	SW-846 3005A, 6010B	mg/L	0.65	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Iron (d)	SW-846 3005A, 6010B	mg/L	5.0	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.011
Lead (d)	SW-846 3020A	mg/L	0.0075	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Magnesium (d)	SW-846 3005A, 6010B	mg/L	ns		95	105	82	92	108		<5.0	<5.0	<5.0	<5.0	<5.0
Manganese (d)	SW-846 3005A, 6010B	mg/L	0.15	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Mercury (d)	SW-846 7470A	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel (d)	SW-846 3005A, 6010B	mg/L	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Potassium (d)	SW-846 3005A, 6010B	mg/L	ns		<1.0	<1.0	1.0	<1.0	<1.0		84	89	70	57	43
Selenium (d)	SW-846 3020A	mg/L	0.05	<0.010	<0.010	<0.010	<0.010	0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Silver (d)	SW-846 3005A, 6010B	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0085	0.0073	0.0051	0.006	0.010
Sodium (d)	SW-846 3005A, 6010B	mg/L	ns		131	134	123	126	134		182	207	200	166	149
Thallium (d)	SW-846 3020A	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc (d)	SW-846 3005A, 6010B	mg/L	5.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Notes:

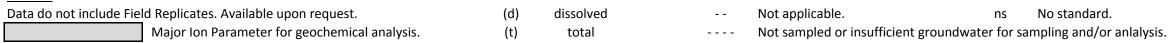


^{*} The Class I standard for arsenic was changed to 0.01 mg/L after these sample events were completed.

Table 4. Groundwater Quality Data Summary from Initial Hydrogeologic Investigation: 2010 - 2012

			Class I												
Parameter	Method Used	Units	Standard				/151						/152		
Date				11/15/10	03/22/11	06/08/11	09/13/11	12/08/11	03/07/12	11/15/10	03/22/11	06/08/11	09/13/11	12/06/11	03/07/12
pH-field	SM 21st ed. 4500-H ⁺	s.u.	6.5-9.0	7.11	6.93	6.87	6.77	7.84	8.07	7.05	7.37	7.30	7.18	6.48	6.72
Elevation		ft.		398.71	398.45	398.19	396.86	398.79	397.93	417.77	420.04	418.70	416.79	420.17	419.99
Spec Cond-field	SM 21st ed. 2520-B	micromhos/cm	ns	1,022	974	1,001	1,010	953	941	2,030	2,128	2,103	2,052	2,299	2,092
Temp-field	SM 21st ed. 2550	C°	ns	15.26	13.2	15.0	22.8	9.23	13.2	15.02	11.2	15.5	17.6	10.80	13.7
Sulfate (t)	SM 21st ed. 4500-SO ₄ E	mg/L	400.0	76.5	77	82	78	77	75	859	914	772	763	1,030	700
Chloride (d)	ASTM D512-04 C	mg/L	200.0	39.9	40	39	44	40	38	84.1	75	54	69	140	52
Fluoride (d)	EPA method 74	mg/L	4.0	0.536	0.531	0.483	0.530	0.540	0.479	0.348	0.268	0.274	0.300	0.281	0.258
Nitrate (d)	SM 21st ed. 4500-NO ₃ D	mg/L	10.0	<0.050	<0.050	<0.050	<0.050	<0.050	0.09	0.172	0.31	0.24	0.094	<0.050	0.25
TDS	SM 21st ed 2540 C	mg/L	1200	580	568	539	587	576	569	1,759	1,768	1,634	1,607	1,983	1,511
Alkalinity (t)	EPA 375.4	mg/L	ns		414	410	442	430	446		360	408	420	420	420
Cyanide (t)	SW-846 9012A	mg/L	0.2	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007
Antimony (d)	SW-846 3020A	mg/L	0.006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Arsenic (d)	SW-846 3005A, 6010B	mg/L	0.05*	0.007	<0.005	<0.005	<0.005	0.006	<0.005	0.008	0.007265	<0.005	<0.005	0.008	<0.005
Barium (d)	SW-846 3005A, 6010B	mg/L	2.0	0.05	0.040	0.040	0.041	0.049	0.039	0.01	0.011	0.010	0.010	0.014	0.009
Beryllium (d)	SW-846 3005A, 6010B	mg/L	0.004	<0.005	<0.005	<0.005	<0.001	<0.004	<0.004	<0.005	<0.005	<0.005	<0.001	<0.004	<0.004
Boron (d)	SW-846 3005A, 6010B	mg/L	2.0	0.25	0.23	0.22	0.22	0.25	0.22	12	9.0	3.6	7.8	18	3.7
Cadmium (d)	SW-846 3005A, 6010B	mg/L	0.005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium (d)	SW-846 3005A, 6010B	mg/L	ns		117	97	109	114	119		249	205	212	289	190
Chromium (d)	SW-846 3005A, 6010B	mg/L	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cobalt (d)	SW-846 3005A, 6010B	mg/L	1.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Copper (d)	SW-846 3005A, 6010B	mg/L	0.65	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Iron (d)	SW-846 3005A, 6010B	mg/L	5.0	<0.010	<0.010	<0.010	<0.010	0.011	<0.010	<0.010	0.040	0.026	<0.010	0.012	0.020
Lead (d)	SW-846 3020A	mg/L	0.0075	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Magnesium (d)	SW-846 3005A, 6010B	mg/L	ns		46	45	42	45	48		104	100	97	126	91
Manganese (d)	SW-846 3005A, 6010B	mg/L	0.15	0.14	0.064	0.032	0.059	0.021	0.01	0.05	0.021	0.013	0.072	0.018	0.009
Mercury (d)	SW-846 7470A	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel (d)	SW-846 3005A, 6010B	mg/L	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Potassium (d)	SW-846 3005A, 6010B	mg/L	ns		1.1	1.0	1.3	1.0	<1.0		1.4	1.0	1.1	<1.0	<1.0
Selenium (d)	SW-846 3020A	mg/L	0.05	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Silver (d)	SW-846 3005A, 6010B	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Sodium (d)	SW-846 3005A, 6010B	mg/L	ns		46	45	52	48	48		131	148	146	131	130
Thallium (d)	SW-846 3020A	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc (d)	SW-846 3005A, 6010B	mg/L	5.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Notes:

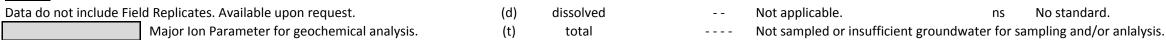


^{*} The Class I standard for arsenic was changed to 0.01 mg/L after these sample events were completed.

Table 4. Groundwater Quality Data Summary from Initial Hydrogeologic Investigation: 2010 - 2012

_			Class I												
Parameter	Method Used	Units	Standard		1		/252						/352		
Date				11/15/10	03/22/11	06/08/11	09/13/11	12/06/11	03/07/12	11/15/10	03/22/11	06/08/11	09/13/11	12/08/11	03/07/12
pH-field	SM 21st ed. 4500-H ⁺	s.u.	6.5-9.0	7.79	7.00	7.78	7.48	6.80	7.00	10.63	11.55	11.20	10.96	10.66	10.16
Elevation		ft.		419.07	425.07	425.07	422.82	425.07	423.13	362.98	419.06	421.29	422.84	422.14	423.54
Spec Cond-field	SM 21st ed. 2520-B	micromhos/cm	ns	1,730	1,845	1,833	1,806	1,745	1,910	1,102	1,877	1,922	1,704	1,426	1,381
Temp-field	SM 21st ed. 2550	C°	ns	13.79	15.3	14.0	14.9	9.75	21.6	13.21	16.8	23.8	28.1	5.85	20.1
Sulfate (t)	SM 21st ed. 4500-SO ₄ E	mg/L	400.0	528	559	578	510	490	576	12.6	14	15	16	14	11
Chloride (d)	ASTM D512-04 C	mg/L	200.0	52.8	61	61	52	50	49	521	535	514	603	642	611
Fluoride (d)	EPA method 74	mg/L	4.0	0.233	0.250	0.224	0.220	0.232	0.210	0.692	0.696	0.698	0.700	0.652	0.756
Nitrate (d)	SM 21st ed. 4500-NO ₃ D	mg/L	10.0	<0.050	0.059	0.053	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.056	<0.050	<0.050
TDS	SM 21st ed 2540 C	mg/L	1200	1,318	1,335	1,341	1,301	1,224	1,286	779	783	862	735	706	891
Alkalinity (t)	EPA 375.4	mg/L	ns		534	524	526	524	528		102	70	39	20	16
Cyanide (t)	SW-846 9012A	mg/L	0.2	<0.007	<0.007	<0.008	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007
Antimony (d)	SW-846 3020A	mg/L	0.006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Arsenic (d)	SW-846 3005A, 6010B	mg/L	0.05*	0.008	0.0060	<0.005	0.0060	0.007	<0.005	0.005	0.0066	<0.005	0.0080	0.009	<0.005
Barium (d)	SW-846 3005A, 6010B	mg/L	2.0	0.04	0.039	0.040	0.029	0.040	0.022	0.18	0.27	0.29	0.19	0.19	0.11
Beryllium (d)	SW-846 3005A, 6010B	mg/L	0.004	<0.005	<0.005	<0.005	<0.001	<0.004	<0.004	<0.005	<0.005	<0.005	<0.001	<0.004	<0.004
Boron (d)	SW-846 3005A, 6010B	mg/L	2.0	0.97	1.5	0.31	0.32	0.29	0.19	0.90	0.87	0.84	0.76	0.76	0.86
Cadmium (d)	SW-846 3005A, 6010B	mg/L	0.005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium (d)	SW-846 3005A, 6010B	mg/L	ns		232	210	206	221	225		93	79	60	70	45
Chromium (d)	SW-846 3005A, 6010B	mg/L	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cobalt (d)	SW-846 3005A, 6010B	mg/L	1.0	<0.005	<0.005	<0.005	<0.005	0.010	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Copper (d)	SW-846 3005A, 6010B	mg/L	0.65	<0.005	0.007154	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Iron (d)	SW-846 3005A, 6010B	mg/L	5.0	<0.010	<0.010	<0.010	<0.010	<0.010	0.026	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead (d)	SW-846 3020A	mg/L	0.0075	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Magnesium (d)	SW-846 3005A, 6010B	mg/L	ns		90	84	78	83	91		<5.0	<5.0	2.1	6.2	22
Manganese (d)	SW-846 3005A, 6010B	mg/L	0.15	1.7	0.93	0.61	0.97	1.2	0.44	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Mercury (d)	SW-846 7470A	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel (d)	SW-846 3005A, 6010B	mg/L	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Potassium (d)	SW-846 3005A, 6010B	mg/L	ns		5.3	2.1	3.0	1.9	1.4		19	15	12	9.6	6.3
Selenium (d)	SW-846 3020A	mg/L	0.05	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Silver (d)	SW-846 3005A, 6010B	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0070	<0.005	<0.005	<0.005	<0.005
Sodium (d)	SW-846 3005A, 6010B	mg/L	ns		100	99	104	99	99		182	180	185	190	200
Thallium (d)	SW-846 3020A	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc (d)	SW-846 3005A, 6010B	mg/L	5.0	<0.005	<0.005	<0.005	0.00659	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Notes:

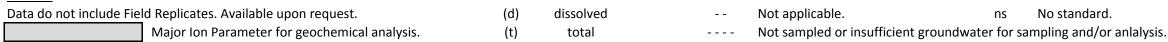


^{*} The Class I standard for arsenic was changed to 0.01 mg/L after these sample events were completed.

Table 4. Groundwater Quality Data Summary from Initial Hydrogeologic Investigation: 2010 - 2012

			Class I												
Parameter	Method Used	Units	Standard				/153						/253		
Date				11/16/10	03/23/11	06/07/11	09/14/11	12/08/11	03/08/12	11/16/10	03/23/11	06/07/11	09/14/11	12/08/11	03/08/12
pH-field	SM 21st ed. 4500-H ⁺	s.u.	6.5-9.0	7.14	7.36	7.50	6.94	7.02	7.34	6.89	7.69	11.34	9.79	7.38	10.97
Elevation		ft.		429.29	437.07	433.82	429.47	435.68	446.12	422.40	436.99	435.97	433.15	435.13	435.61
Spec Cond-field	SM 21st ed. 2520-B	micromhos/cm	ns	730	736	732	718	789	669	765	1,971	1,564	958	908	1,142
Temp-field	SM 21st ed. 2550	C°	ns	14.79	21.2	20.2	16.2	5.45	11.9	13.40	25.9	27.5	17.5	2.04	9.6
Sulfate (t)	SM 21st ed. 4500-SO ₄ E	mg/L	400.0	88.5	93	83	83	93	81	806	262	411	424	483	406
Chloride (d)	ASTM D512-04 C	mg/L	200.0	34.4	30	32	33	34	29	27.4	26	22	23	27	22
Fluoride (d)	EPA method 74	mg/L	4.0	0.440	0.383	0.388	0.400	0.410	0.394	0.408	0.119	0.369	0.290	0.349	0.246
Nitrate (d)	SM 21st ed. 4500-NO ₃ D	mg/L	10.0	13.2	14.9	12	18	15	12.9	0.3830	0.084	0.057	0.12	<0.050	<0.050
TDS	SM 21st ed 2540 C	mg/L	1200	462	430	449	446	451	416	1,441	854	698	639	744	634
Alkalinity (t)	EPA 375.4	mg/L	ns		192	200	194	206	200		580	187	46	105	115
Cyanide (t)	SW-846 9012A	mg/L	0.2	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.008	<0.007	<0.007	<0.007	<0.007
Antimony (d)	SW-846 3020A	mg/L	0.006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Arsenic (d)	SW-846 3005A, 6010B	mg/L	0.05*	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.008	0.0063	<0.005	<0.005	0.006	<0.005
Barium (d)	SW-846 3005A, 6010B	mg/L	2.0	0.03	0.025	0.025	0.025	0.028	0.024	0.02	0.066	0.054	0.031	0.026	0.036
Beryllium (d)	SW-846 3005A, 6010B	mg/L	0.004	<0.005	<0.005	<0.005	<0.001	<0.004	<0.004	<0.005	<0.005	<0.005	<0.001	<0.004	<0.004
Boron (d)	SW-846 3005A, 6010B	mg/L	2.0	<0.02	<0.02	0.014	<0.050	<0.050	<0.050	0.24	0.12	0.064	<0.050	0.11	0.076
Cadmium (d)	SW-846 3005A, 6010B	mg/L	0.005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium (d)	SW-846 3005A, 6010B	mg/L	ns		58	56	55	61	57		54	104	61	76	110
Chromium (d)	SW-846 3005A, 6010B	mg/L	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cobalt (d)	SW-846 3005A, 6010B	mg/L	1.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Copper (d)	SW-846 3005A, 6010B	mg/L	0.65	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Iron (d)	SW-846 3005A, 6010B	mg/L	5.0	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.013	0.014	<0.010
Lead (d)	SW-846 3020A	mg/L	0.0075	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0051	<0.005	<0.005	<0.005	<0.005
Magnesium (d)	SW-846 3005A, 6010B	mg/L	ns		24	24	23	26	24		1.0	<5.0	15	48	2.8
Manganese (d)	SW-846 3005A, 6010B	mg/L	0.15	<0.005	0.0091	0.0053	0.011	0.015	0.008	0.37	<0.005	<0.005	<0.005	0.007	<0.005
Mercury (d)	SW-846 7470A	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel (d)	SW-846 3005A, 6010B	mg/L	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Potassium (d)	SW-846 3005A, 6010B	mg/L	ns		<1.0	<1.0	<1.0	<1.0	<1.0		78	18	9.1	4.9	6.4
Selenium (d)	SW-846 3020A	mg/L	0.05	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Silver (d)	SW-846 3005A, 6010B	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0062	<0.005	<0.005	<0.005	<0.005
Sodium (d)	SW-846 3005A, 6010B	mg/L	ns		59	56	65	61	57		168	108	95	94	86
Thallium (d)	SW-846 3020A	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc (d)	SW-846 3005A, 6010B	mg/L	5.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Notes:



^{*} The Class I standard for arsenic was changed to 0.01 mg/L after these sample events were completed.

Table 4. Groundwater Quality Data Summary from Initial Hydrogeologic Investigation: 2010 - 2012

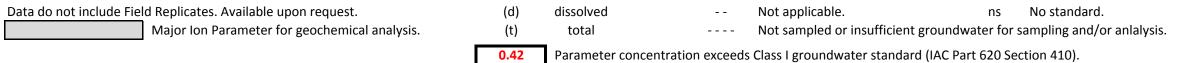
			Class I												
Parameter	Method Used	Units	Standard				/154						/155		
Date				11/16/10	03/23/11	06/06/11	09/12/11	12/07/11	03/06/12	11/16/10	03/23/11	06/06/11	09/12/11	12/07/11	03/06/12
pH-field	SM 21st ed. 4500-H ⁺	s.u.	6.5-9.0		7.25	7.09		6.71	7.09	7.1	7.08	7.10	6.82	6.90	6.90
Elevation		ft.			382.78	379.4	373.38	382.25	381.85	372.85	376.54	379.85	373.66	374.13	376.34
Spec Cond-field	SM 21st ed. 2520-B	micromhos/cm	ns		911	874		665	861	600	763	806	526	528	774
Temp-field	SM 21st ed. 2550	C°	ns		11.5	14.5		13.81	12.9	13.80	15.5	16.1	19.3	8.31	16.3
Sulfate (t)	SM 21st ed. 4500-SO ₄ E	mg/L	400.0		94	72		29	38	61.8	53	50	50	51	49
Chloride (d)	ASTM D512-04 C	mg/L	200.0		12	10		4	6	6.55	10	9	9.3	11	9
Fluoride (d)	EPA method 74	mg/L	4.0		0.623	0.501		0.525	0.516	0.390	0.398	0.385	0.380	0.417	0.401
Nitrate (d)	SM 21st ed. 4500-NO ₃ D	mg/L	10.0		1.28	0.53		0.25	4.49	4.46	2.0	1.4	2.1	2.0	1.85
TDS	SM 21st ed 2540 C	mg/L	1200		559	508		346	476	470	455	487	470	450	446
Alkalinity (t)	EPA 375.4	mg/L	ns		424	384		324	406		360	400	376	366	392
Cyanide (t)	SW-846 9012A	mg/L	0.2		<0.007	<0.007		<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.008
Antimony (d)	SW-846 3020A	mg/L	0.006		<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Arsenic (d)	SW-846 3005A, 6010B	mg/L	0.05*		0.00566	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Barium (d)	SW-846 3005A, 6010B	mg/L	2.0		0.073	0.076		0.100	0.080	0.03	0.024	0.024	0.022	0.023	0.019
Beryllium (d)	SW-846 3005A, 6010B	mg/L	0.004		<0.005	<0.005		<0.004	<0.004	<0.005	<0.005	<0.005	<0.001	<0.004	<0.004
Boron (d)	SW-846 3005A, 6010B	mg/L	2.0		0.026	0.026		<0.050	<0.050	<0.02	<0.02	0.012	<0.050	<0.050	<0.050
Cadmium (d)	SW-846 3005A, 6010B	mg/L	0.005		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium (d)	SW-846 3005A, 6010B	mg/L	ns		110	106		89	114		88	86	86	91	93
Chromium (d)	SW-846 3005A, 6010B	mg/L	0.1		<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cobalt (d)	SW-846 3005A, 6010B	mg/L	1.0		<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Copper (d)	SW-846 3005A, 6010B	mg/L	0.65		<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.016
Iron (d)	SW-846 3005A, 6010B	mg/L	5.0		<0.010	0.018		<0.010	<0.010	<0.010	<0.010	0.016	0.013	0.015	<0.010
Lead (d)	SW-846 3020A	mg/L	0.0075		<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Magnesium (d)	SW-846 3005A, 6010B	mg/L	ns		40	38		25	40		45	46	42	44	49
Manganese (d)	SW-846 3005A, 6010B	mg/L	0.15		<0.005	0.18		0.006	<0.005	0.038	0.28	0.062	0.37	0.18	0.081
Mercury (d)	SW-846 7470A	mg/L	0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel (d)	SW-846 3005A, 6010B	mg/L	0.1		<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Potassium (d)	SW-846 3005A, 6010B	mg/L	ns		1.2	<1.0		<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0
Selenium (d)	SW-846 3020A	mg/L	0.05		0.016	<0.010		<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Silver (d)	SW-846 3005A, 6010B	mg/L	0.05		<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Sodium (d)	SW-846 3005A, 6010B	mg/L	ns		53	28		22	20		24	25	28	26	28
Thallium (d)	SW-846 3020A	mg/L	0.002		<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc (d)	SW-846 3005A, 6010B	mg/L	5.0		<0.005	0.014		0.007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.014

Notes:

^{*} The Class I standard for arsenic was changed to 0.01 mg/L after these sample events were completed.

Table 4. Groundwater Quality Data Summary from Initial Hydrogeologic Investigation: 2010 - 2012

_			Class I												
Parameter	Method Used	Units	Standard				/355						156		
Date				11/16/10	03/23/11	06/06/11	09/12/11	12/07/11	03/06/12	11/15/10	03/23/11	06/06/11	09/12/11	12/08/11	03/06/12
pH-field	SM 21st ed. 4500-H ⁺	s.u.	6.5-9.0	6.95	7.06	7.17	6.70	6.78	6.83						
Elevation		ft.		369.97	372.70	379.09	370.03	370.66	371.08	420.57	424.75	422.21	419.56	424.29	423.86
Spec Cond-field	SM 21st ed. 2520-B	micromhos/cm	ns	934	848	841	824	812	879						
Temp-field	SM 21st ed. 2550	C°	ns	13.64	15.5	17.0	17.0	8.16	16.3						
Sulfate (t)	SM 21st ed. 4500-SO ₄ E	mg/L	400.0	56	36	46	53	48	50						
Chloride (d)	ASTM D512-04 C	mg/L	200.0	14	14	13	12	14	12						
Fluoride (d)	EPA method 74	mg/L	4.0	0.403	0.405	0.397	0.410	0.412	0.420						
Nitrate (d)	SM 21st ed. 4500-NO ₃ D	mg/L	10.0	0.947	0.56	0.21	1.6	0.82	2.05						
TDS	SM 21st ed 2540 C	mg/L	1200	532	486	491	490	486	447						
Alkalinity (t)	EPA 375.4	mg/L	ns		432	404	396	412	396						
Cyanide (t)	SW-846 9012A	mg/L	0.2		<0.007	<0.007	<0.007	<0.007	<0.008						
Antimony (d)	SW-846 3020A	mg/L	0.006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005						
Arsenic (d)	SW-846 3005A, 6010B	mg/L	0.05*	<0.005	0.006147	<0.005	0.007	<0.005	<0.005						
Barium (d)	SW-846 3005A, 6010B	mg/L	2.0	0.10	0.10	0.12	0.11	0.14	0.098						
Beryllium (d)	SW-846 3005A, 6010B	mg/L	0.004	<0.005	<0.005	<0.005	<0.001	<0.004	<0.004						
Boron (d)	SW-846 3005A, 6010B	mg/L	2.0	0.02	0.021	0.030	<0.050	<0.050	<0.050						
Cadmium (d)	SW-846 3005A, 6010B	mg/L	0.005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002						
Calcium (d)	SW-846 3005A, 6010B	mg/L	ns		96	85	87	105	88						
Chromium (d)	SW-846 3005A, 6010B	mg/L	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005						
Cobalt (d)	SW-846 3005A, 6010B	mg/L	1.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005						
Copper (d)	SW-846 3005A, 6010B	mg/L	0.65	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005						
Iron (d)	SW-846 3005A, 6010B	mg/L	5.0	1.6	0.60	0.41	0.55	0.59	0.26						
Lead (d)	SW-846 3020A	mg/L	0.0075	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005						
Magnesium (d)	SW-846 3005A, 6010B	mg/L	ns		45	43	41	46	46						
Manganese (d)	SW-846 3005A, 6010B	mg/L	0.15		0.45	0.20	0.34	0.43	0.13						
Mercury (d)	SW-846 7470A	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002						
Nickel (d)	SW-846 3005A, 6010B	mg/L	0.1	0.007	<0.005	<0.005	<0.005	<0.005	<0.005						
Potassium (d)	SW-846 3005A, 6010B	mg/L	ns		<1.0	<1.0	<1.0	<1.0	<1.0						
Selenium (d)	SW-846 3020A	mg/L	0.05	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010						
Silver (d)	SW-846 3005A, 6010B	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005						
Sodium (d)	SW-846 3005A, 6010B	mg/L	ns		32	30	34	33	29						
Thallium (d)	SW-846 3020A	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002						
Zinc (d)	SW-846 3005A, 6010B	mg/L	5.0	<0.005	<0.005	<0.005	<0.005	0.006	<0.005						


Notes:

* The Class I standard for arsenic was changed to 0.01 mg/L after these sample events were completed.

			Class I						
Parameter	Method Used	Units	Standard			ow	157		
Date				06/06/11	03/23/11	06/06/11	09/12/11	12/08/11	03/06/12
pH-field	SM 21st ed. 4500-H ⁺	s.u.	6.5-9.0						
Elevation		ft.		427.61	428.83	428.23	427.29	429.04	428.58
Spec Cond-field	SM 21st ed. 2520-B	micromhos/cm	ns						
Temp-field	SM 21st ed. 2550	C°	ns						
Sulfate (t)	SM 21st ed. 4500-SO ₄ E	mg/L	400.0						
Chloride (d)	ASTM D512-04 C	mg/L	200.0						
Fluoride (d)	EPA method 74	mg/L	4.0						
Nitrate (d)	SM 21st ed. 4500-NO ₃ D	mg/L	10.0						
TDS	SM 21st ed 2540 C	mg/L	1200						
Alkalinity (t)	EPA 375.4	mg/L	ns						
Cyanide (t)	SW-846 9012A	mg/L	0.2						
Antimony (d)	SW-846 3020A	mg/L	0.006						
Arsenic (d)	SW-846 3005A, 6010B	mg/L	0.05*						
Barium (d)	SW-846 3005A, 6010B	mg/L	2.0						
Beryllium (d)	SW-846 3005A, 6010B	mg/L	0.004						
Boron (d)	SW-846 3005A, 6010B	mg/L	2.0						
Cadmium (d)	SW-846 3005A, 6010B	mg/L	0.005						
Calcium (d)	SW-846 3005A, 6010B	mg/L	ns						
Chromium (d)	SW-846 3005A, 6010B	mg/L	0.1						
Cobalt (d)	SW-846 3005A, 6010B	mg/L	1.0						
Copper (d)	SW-846 3005A, 6010B	mg/L	0.65						
Iron (d)	SW-846 3005A, 6010B	mg/L	5.0						
Lead (d)	SW-846 3020A	mg/L	0.0075						
Magnesium (d)	SW-846 3005A, 6010B	mg/L	ns						
Manganese (d)	SW-846 3005A, 6010B	mg/L	0.15						
Mercury (d)	SW-846 7470A	mg/L	0.002						
Nickel (d)	SW-846 3005A, 6010B	mg/L	0.1						
Potassium (d)	SW-846 3005A, 6010B	mg/L	ns						
Selenium (d)	SW-846 3020A	mg/L	0.05						
Silver (d)	SW-846 3005A, 6010B	mg/L	0.05						
Sodium (d)	SW-846 3005A, 6010B	mg/L	ns						
Thallium (d)	SW-846 3020A	mg/L	0.002						
Zinc (d)	SW-846 3005A, 6010B	mg/L	5.0						

Notes:

* The Class I standard for arsenic was changed to 0.01 mg/L after these sample events were completed.

Table 5. Groundwater Quality Data Summary: December 2013 and February 2014

Groundwater Quality Assessment and Phase II Hydrogeologic Investigation - Baldwin Ash Pond System Baldwin Energy Complex; Baldwin, Illinois

	Class II												
Parameter	Standard	MW1	MW104SR		.04DR	MW	/150	MW	350	MW	/151	MW	/152
Date		11/20/13	1/20/13 02/18/14 1		02/18/14	11/20/13	02/19/14	11/20/13	02/19/14	11/20/13	02/19/14	11/20/13	02/19/14
Groundwater Elevation		440.86	446.35	440.94	446.42	376.86	378.05	374.28	374.49	397.03	397.76	418.32	419.86
рН	6.5-9.0	6.71	6.73	6.82	6.75	7.07	6.99	11.80	8.08	7.13	7.12	7.22	6.36
Sulfate (d)	400	134	138	194	175	502	521	11	<10	78	74	857	898
Chloride (d)	200	19	18	16	18	51	51	34	33	36	35	55	56
Total Dissoved Solids	1200	770	792	630	652	1,090	1,200	1,370	1,420	542	538	1,720	1,770
Boron (d)	2.0	0.04	0.05	0.02	<0.02	0.65	0.80	0.03	0.03	0.24	0.23	9.92	12.7
Iron (d)	5.0	1.44	<0.02	0.07	<0.02	0.07	<0.02	<0.02	<0.02	<0.02	<0.02	0.07	0.05
Manganese (d)	10	2.20	0.59	0.29	0.04	0.03	<0.005	< 0.005	<0.005	<0.005	<0.005	0.005	<0.005

Parameter	Class II Standard	MW	MW252		MW352		MW153		/253	MW	/154	MW155	
Date		11/20/13 02/19/14 11/2		11/20/13	02/19/14	11/21/13 02/19/14 1		11/21/13	02/19/14	11/21/13	02/19/14	11/21/13	02/19/14
Elevation		422.93	424.82	422.55	424.19	430.62	434.26	432.85	434.58	<372.33	381.38	<370.17	372.39
рН	6.5-9.0	7.07	8.05	7.34	6.51	6.58	7.16	8.60	7.85		7.40		7.02
Sulfate (t)	400	463	480	11	18	98	81	405	368		48		54
Chloride (t)	200	41	41	583 390		28	22	18	16		8		8
Total Dissoved Solids	1200	1,250	1,310	996	768	384	402	602	564		454		1,080
Boron (d)	2.0			1.47	0.82	<0.02	<0.02	0.09	0.06		0.02		<0.02
Iron (d)	5.0	0.07	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02		0.48
Manganese (d)	10	0.11	0.01	<0.005	<0.005	0.03	<0.005	<0.005	<0.005		<0.005		0.35

Parameter	Class II Standard	MW	MW355		OW156		157	MW	/161	MW	/162	MW262	
Date		11/21/13	1/21/13 02/19/14 11/2		02/18/14	11/20/13 02/18/14		11/21/13	02/18/14	11/21/13	02/19/14	11/21/13	02/19/14
Elevation		369.50	369.99	420.36	423.68	427.00	428.81	402.14	410.22	<404.93	<404.93	395.96	395.60
рН	6.5-9.0	7.24	7.05	6.61	6.82	6.37	6.63	7.08	6.95			7.15	7.48
Sulfate (t)	400	61	65	93	88	1,870	2,050	44	44			40	24
Chloride (t)	200	11	11	60 55		121	124	6	5			<5	<5
Total Dissoved Solids	1200	450	458	466	470	3,160	3,180	756	430			228	188
Boron (d)	2.0			<0.02	0.03	45.2	45.3	<0.02	<0.02			<0.02	<0.02
Iron (d)	5.0	0.62	0.03	0.06	<0.02	0.05	<0.02	0.09	<0.02			0.12	0.02
Manganese (d)	10	0.06	0.05	0.05	<0.005	0.14	0.13	1.28	0.83			0.01	0.020

	Class II												
Parameter	Standard	ow	OW256		OW257		TPZ158		159	TPZ160		TPZ166	
Date		11/21/13 02/18/14 11,		11/21/13	02/18/14	11/20/13 02/18/14 (11/21/13 02/18/14		11/21/13	02/18/14	11/20/13	02/18/14
Elevation		417.93	421.50	425.84	427.06	441.91	438.02	429.28	429.52	424.64	427.33	417.33	418.81
pH	6.5-9.0	6.63	6.77	7.07	7.12	7.27	6.73	6.47	6.55	7.30	7.02	7.77	7.24
Sulfate (t)	400	88	90	312	310	39	44	96	98	60	63	56	38
Chloride (t)	200	65	57	21	18	81	65	35	35	42	44	12	12
Total Dissoved Solids	1200	488	508	958	900	976	380	448	480	454	510	304	306
Boron (d)	2.0	0.16	0.15	3.28	2.88	<0.02	<0.02	0.11	0.12	0.24	0.21	0.10	0.06
Iron (d)	5.0 0.02 <0.02		0.02	<0.02	1.43	<0.02	0.06	<0.02	0.05	0.39	<0.02	<0.02	
Manganese (d)	10 0.13 <0.005 0.		0.68	0.01	0.35	<0.005	0.68	0.51	0.12	0.16	0.02	0.28	

Parameter	Class II Standard	TPZ	163 ^L	TPZ	164 ^L	TPZ	165 ^L	TPZ	167 [∟]	TPZ168 ^L		
Date		11/20/13	02/18/14	11/20/13	02/18/14	11/20/13	02/18/14	11/20/13	02/18/14	11/20/13	02/18/14	
Elevation		447.17	451.06	430.58	430.71	394.02	394.33	434.02	436.27	443.65	449.65	
рН	not applicable	8.81	7.59	7.46	7.32	7.18	6.45	8.15	7.70	9.17	8.08	
Sulfate (t)	not applicable	626	610	218	173	342	1,070	1,850	1,840	2,760	2,820	
Chloride (t)	not applicable	19	15	81	67	71	91	100	100	109	103	
Total Dissoved Solids	not applicable	1,130	1,160	592	504	1,420	2,290	3,010	3,040	3,680	5,120	
Boron (d)	not applicable	37.2	37.8	2.64	1.76	0.24	1.35	53.0	54.5	87.2	78.8	
Iron (d)	not applicable	<0.02	<0.02	6.86	5.52	< 0.02	3.89	<0.02	<0.02	<0.02	0.06	
Manganese (d)	not applicable	<0.005	<0.005	0.56	0.58	1.09	12.7	<0.005	<0.005	<0.005	<0.005	

Notes:

Data do not include Field Replicates. See laboratory analytical reports in appendix for all QA/QC data.

- ---- Water quality data not available on the date indicated. Water level was below bottom of well screen or well was dry.
- (d) dissolved
- (t) total
- L Leachate well; fully or partially screened within coal combustion residuals. Class II standards not compared to leachate wells.
- ns No standard.
- **0.42** Parameter concentration exceeds Class II groundwater standard (IAC Part 620 Section 420).

Table 6. Geologic Layers and Hydrogeologic Unit Designations

Groundwater Quality Assessment and Phase II Hydrogeologic Investigation - Baldwin Ash Pond System Baldwin Energy Complex; Baldwin, Illinois

		Lithologic Layers						Hydrogeologic l	Jnit Designations
ID	General Description	Borings where Layer Identified	Top Elevation (feet asl)	Lowest Elevation (feet asl)	Thickness Range (feet)	Thickness Average and Median (feet)	ID	Name	Description: Materials
	Ash Pond System: Out of Service Old East Fly Ash Pond, Out of Service East Fly Ash Pond, Active West Fly Ash Cell, Bottom Ash Pond. Miscellaneous fill - roads and berms	TPZ-163, TPZ-164, TPZ-167, TPZ-168 (note: TPZ-165 intercepted fill and ash within Secondary Pond; data from this boring not included in calculating elevations or thicknesses of ash)	455	407		Avg = 21.5 Median = 22.9	1	Fill Unit	Coal combustion residuals: Fly ash, Bottom ash, minor Slag. Fill deposits - clay and silt
2	Cahokia Alluvium Alluvial clay, sandy clay, and clayey sand	MW-151, MW-154, MW-155, MW-350,	394	368		Avg = 20.6 Median = 21.6			
3	Peoria Loess Silt and Silty Clay, minor fine sand	MW-104SR, MW-154, OW-156/256, OW-157, TPZ-158, MW-161, MW-162/262	453	406		Avg = 10.1 Median = 8.8		II INNAT (FRAIINGWATAR	Predominantly Clay with
4	Equality Formation Clay, sandy clay, and occasional sand seams and lenses	MW-153/253, OW-157/257, TPZ-159, TPZ-160, MW-161, MW-162/262, TPZ-163, TPZ-166, TPZ- 168, OW-256, MW-352	443	396		Avg = 13.1 Median = 12.2	2	Unit	Silt and Sand; Silt Layers; Occasional Sand Lenses
-	Vandalia Till Member of Glasford Formation Clay, clay with sand, and occasional sand seams and lenses	MW-104DR, TPZ-158, TPZ-159, TPZ-160, MW-161, TPZ-163, TPZ-165, TPZ-166, TPZ-167, TPZ-168, MW-253, OW-256, OW-257, MW-262, MW-352	451	369		Avg = 20.6 Median = 18.0			
6	Pennsylvanian and Mississippian Bedrock Interbedded and undifferentiated limestone and shale	MW-104DR, MW-151, MW-154, TPZ-158, MW-161, TPZ-163, TPZ-165, TPZ-166, TPZ-167, TPZ-168, MW-253, OW-256, OW-257, MW-262, MW-350, MW-352, MW-355,	429	347			3	Bedrock Confining Unit	Shale and Limestone

Notes:

ASL = above mean sea level (i.e., National Geodetic Vertical Datum).

Table 7. Geotechnical Analysis Summary of Ash Pond Deposits

Groundwater Quality Assessment and Phase II Hydrogeologic Investigation - Baldwin Ash Pond System Baldwin Energy Complex; Baldwin, Illinois

								Calculation	Calculation from Soil-Mass Relationsh						
Boring Number	Sample Depth BGS (feet)	USCS Soil Classification	Moisture Content (%)	Dry Bulk Density (pcf)	Hydraulic Conductivity (cm/sec)	Range of Hydraulic Gradient	Specific Gravity	Total Porosity (%)	Water Filled Porosity (%)	Air Filled Porosity (%)					
TPZ-163	1.5 - 3.5	ASH - Silty SAND (SM), fine grained, very dark brown	49.3	63.7	2.5E-04	0.4 - 3.5	2.66	61.7	50.2	11.5					
TPZ-164	30-50	ASH - Sandy SILT (ML), fine grained sand, very dark brown	22.5	91.7	6.5E-04	0.2 - 1.7	2.68	45.2	33.0	12.2					
TPZ-167	29.0 - 30.0	ASH - SILT (ML), very dark gray-brown	18.8**	99.9	9.7E-06	0.2 - 2.9	2.59	38.2	30.2	8.0					
TPZ-168	20 50	ASH - Sandy SILT (ML), fine-medium grained sand, olive-brown	56.0	63.0	4.2E-04	0.1 - 2.3	2.88	64.9	56.5	8.4					
		Average Value*	42.6	79.6	1.6E-04		2.70	52.5	42.5	10.0					

Notes:

All geotechnical data obtained from Geotechnology, Inc. report dated October 18, 2013 (Appendix X). USCS Soil Classification based on both visual, and particle size analysis with sieve and hydrometer.

* Hydraulic conductivity is calculated as geometric mean and not an average.

** Sample remolded in laboratory. As received moisture content = 31.1%

BGS below ground surface cm/sec centimeters per second pcf pounds per cubic foot

% percent

Table 8. Summary of Horizontal and Vertical Permeability Test Results

Groundwater Quality Assessment and Phase II Hydrogeologic Investigation - Baldwin Ash Pond System Baldwin Energy Complex; Baldwin, Illinois

Horizontal Hydraulic Conductivity: Field Test Results

Monitoring Well Number	Depth Interval Tested (feet)	Analysis Method	Lithologic Layer	Primary Lithologies within Screened Well Interval	Horizontal Hydraulic Conductivity (cm/sec)
Hydrogeolog	ic Unit 2: Unlit	hified Deposits			
MW-104DR	23.2 - 28.2	Bouwer-Rice	Vandalia Till Member	Sand (fine-medium), Sandy Clay, and Silty Clay	6.8E-04
MW-151	6.1 - 15.8	Bouwer-Rice	Cahokia Formation	Sandy Clay, Silty Clay and Clay	1.1E-05
MW-152	7.5 - 16.7	Bouwer-Rice	Equality Formation	Clay	7.0E-05
OW-156	7.9 - 17.2	Bouwer-Rice	Equality Formation	Clay and Silty Clay	4.3E-05
OW-157	7.8 - 17.1	Bouwer-Rice	Equality Formation	Clay and Silty Clay	1.3E-04
MW-161	23.3 - 32.8	Bouwer-Rice	Equality Formation	Silty Clay, Sand with Silt	8.1E-05
TPZ-166	15.3 - 24.7	Bouwer-Rice	Vandalia Till Member	Silty Clay	1.9E-05
MW-252	44.4 - 49.0	Bouwer-Rice	Vandalia Till Member	Clay	1.9E-06
MW-253	29.9 - 34.5	Bouwer-Rice	Vandalia Till Member	Clay, shaley	3.5E-07
OW-256	28.0 - 32.5	Bouwer-Rice	Vandalia Till Member	Silty Clay, Sand (fine-medium)	2.2E-04
OW-257	34.0 - 38.5	Bouwer-Rice / KGS Model	Vandalia Till Member	Silty Clay	3.3E-06
MW-262	42.1 - 46.6	Bouwer-Rice	Vandalia Till Member	Sand with Silt, Sand, Silty Clay	6.0E-04
				Geometric Mean Hydraulic Conductivity	3.2E-05
Hydrogeolog	ic Unit 3: Uppe	er Bedrock			
MW-350	41.6 - 46.2	Bouwer-Rice	Mississippian Bedrock	Limestone, massive, hard to very hard; RQD = 96% (Excellent)	2.1E-06
MW-352	67.9 - 72.5	Bouwer-Rice	Pennsylvanian or Mississippian Bedrock	Limestone, medium hard to hard; RQD = 57% (Fair)	1.7E-06
MW-355	27.4 - 32.0	Bouwer-Rice	Mississippian Bedrock	Limestone, medium soft, fossiliferous; RQD = 57% (Fair)	3.5E-05
				Geometric Mean Hydraulic Conductivity	5.0E-06

Vertical Hydraulic Conductivity: Laboratory Test Results

Boring ID	Depth Interval Tested (feet)	Geotechnical Laboratory (Analysis Date)	Lithologic Layer	Primary Lithologies within Screened Well Interval	Vertical Hydraulic Conductivity (cm/sec)
Hydrogeolog	ic Unit 1: Fill l	Jnit			
TPZ-163	1.5 - 3.5	Geotechnology (2013)	Ash Pond System: Fly Ash / Bottom Ash	Ash (USCS classification: Silty Sand, fine grained)	2.5E-04
TPZ-164	3.0 - 5.0	Geotechnology (2013)	Ash Pond System: Bottom Ash	Ash (USCS classification: Sandy Silt, fine grained sand)	6.5E-04
TPZ-167	29.0 - 30.0	Geotechnology (2013)	Ash Pond System: Fly Ash	Ash (USCS classification: Silt)	9.7E-06
TPZ-168	3.0 - 5.0	Geotechnology (2013)	Ash Pond System: Fly Ash	Ash (USCS classification: Sandy Silt, fine-medium grained sand)	4.2E-04
				Geometric Mean Hydraulic Conductivity	1.6E-04
Hydrogeolog	ic Unit 2: Unlit	hified Deposits			
MW-154	8.0 - 9.2	Shively Geotechnical (2010)	Cahokia Formation	Sandy Clay with gravel	7.8E-06
MW-350	18.0 - 20.0	Shively Geotechnical (2010)	Cahokia Formation	Clay	3.4E-07
TPZ-164	10.0 - 12.0	Geotechnology (2013)	Equality Formation	Clay	1.3E-06
MW-252	44.0 - 46.0	Shively Geotechnical (2010)	Vandalia Member	Clay	6.3E-09
MW-262	33.5 - 35.5	Geotechnology (2013)	Vandalia Member	Clay	9.9E-09
TPZ-163	28.0 - 30.0	Geotechnology (2013)	Vandalia Member	Clay, trace fine sand	4.2E-04
TPZ-165	8.0 - 10.0	Geotechnology (2013)	Vandalia Member	Clay, trace sand	5.3E-06
TPZ-167	32.0 - 34.0	Geotechnology (2013)	Vandalia Member	Clay with sand	6.2E-07
				Geometric Mean Hydraulic Conductivity	8.6E-07

Notes: cm/sec

cm/sec centimeters per second.

Reference:

Bouwer-Rice Bouwer and Rice Analytical Method for Unconfined Aquifers, 1976. (note: also used for Confined Aquifers).

KGS Model KGS overdamped slug test analysis model (Hyder et al., 1994).

Shively Geotechnical (2010): see Appendix D Geotechnology (2013): see Appendix D

Table 9. Vertical Hydraulic Gradients

Groundwater Quality Assessment and Phase II Hydrogeologic Investigation - Baldwin Ash Pond System Baldwin Energy Complex; Baldwin, Illinois

Monitoring Gradient Calcu	g Wells for ulations across									Ground	lwater Le	vel Measu	rements (Elevation	in Feet)						
	Screened Hydrogeologic Units Shallow			11/15-1	6/2010	3/22-23/2011		6/6-8/2011		9/12-14/2011		12/6-8	12/6-8/2011		2012	9/16-17/2013		11/20-21/2013		02/18-19/2014	
Shallow	Deep	Shallow	Deep	Shallow	Deep	Shallow	Deep	Shallow	Deep	Shallow	Deep	Shallow	Deep	Shallow	Deep	Shallow	Deep	Shallow	Deep	Shallow	Deep
MW-104SR	MW-104DR	442.83	428.47	441.54	441.54	448.10	448.04	446.22	446.24							441.58	440.65	440.86	440.94	446.35	446.42
MW-153	MW-253	427.60	410.53	429.29		437.07	436.99	433.82	435.97	429.47	433.15	435.68	435.13			429.35	432.15	430.62	432.85	434.26	434.58
MW-152	MW-252	410.29	375.56	417.77	419.07	420.04	425.07	418.70	425.07	416.79	422.82	420.17	425.07	419.99	423.13	416.74		418.32	422.93	419.86	424.82
MW-252	MW-352	375.56	352.15	419.07		425.07	419.06	425.07	421.29	422.82	422.84	425.07	422.14	423.13	423.54		415.86	422.93	422.55	424.82	424.19
MW-150	MW-350	374.00	350.21	377.11	372.52	380.04	375.84	380.44	379.37	376.01	374.30	379.00	374.62	378.74	374.40	375.51	374.05	376.86	374.28	378.05	374.49
MW-155	MW-355	375.50	361.11	372.85	369.97	376.54	372.70	379.85	379.09	373.66	370.03	374.13	370.66	376.34	371.08	372.27	369.27		369.50	372.39	369.99
OW-156	OW-256	412.60	394.96													418.69	415.75	420.36	417.93	423.68	421.50
OW-157	OW-257	417.44	391.94													424.92	424.36	427.00	425.84	428.81	427.06

Monitoring	Monitoring Wells for dient Calculations across							Vert	ical Groundwater G	radient Between De	signated Units (fee	t/feet)			Average Groundwater
		Monitored	d Geologic		geologic it***	11/15-16/10	03/22-23/11	06/6-8/11	09/12-14/11	12/6-8/11	03/6-8/12	9/16-17/2013	11/20-21/2013	2/18-19/2014	Gradient (feet/feet)
Shallow	Deep	Shallow	Deep	Shallow	Deep					$\times \times \times \times \times \times$					
MW-104SR	MW-104DR	Vandalia	Vandalia	2	2				0.015	0.018	0.018	0.065	-0.006	-0.005	0.02
MW-153	MW-253	Vandalia	Vandalia	2	2		0.005	-0.126	-0.236*	0.032		-0.164	-0.131	-0.019	-0.07
MW-152	MW-252	Equality	Vandalia	2	2	-0.037	-0.145	-0.183	-0.174	-0.141	-0.090		-0.133	-0.143	-0.13
MW-252	MW-352	Vandalia	Bedrock	2	3		0.027	0.017	-0.001	0.125	-0.018		0.016	0.027	0.03
MW-150	MW-350	Cahokia	Bedrock	2	3	0.012*	0.177	0.045	0.076*	0.184	0.183*	0.004*	0.007*	0.010*	0.08
MW-155	MW-355	Cahokia	Bedrock	2	3	0.008*	0.010*	0.002*	0.276*	0.307*	0.424*	0.008*		0.006*	0.13
OW-156	OW-256	Equality	Vandalia	2	2							0.167	0.138	0.124	0.14
OW-157	OW-257	Equality	Vandalia	2	2							0.022	0.045	0.069	0.05

Notes

-0.02 Vertical gradient is upwards between the screened well intervals and formations indicated.

0.04 Vertical gradient is downwards between the screened well intervals and formations indicated.

* Water level in shallow well was below top of screen. Midpoint elevation calculated based on water level elevation and bottom of screen.

- - No data collected on date, water level not static, or incorrectly measured/transcribed.

- - - Deep wells OW-256 and OW-257 not constructed until August 2014.

** Monitored Geologic Unit Designations

Bedrock Pennsylvanian or Mississippian age limestone and shale.

Cahokia Cahokia Formation.

Equality Equality Formation.

Vandalia Vandalia Till Member.

*** Hydrogeologic Unit Designations

2 Upper Groundwater Unit

Bedrock Confining Unit

5/30/2014

APPENDIX A BORING AND WELL CONSTRUCTION LOGS: 1990-2013

KELRON ENVIRONMENTAL LOG OF BORING MW-150 **INCORPORATED** (Page 1 of 1) Date Completed : 09/08/2010 Driller Ash Pond System Monitoring Well Network : Matt Cooper Hole Diameter : 8 1/2"OD; 4 1/4" ID Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 393.84 Location: Twp 04S, Rng 07W, 16 SE, NW, NE Sampling Method : MacroCore (60") Top of Casing Elevation 396.54 **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2379413, 554563 Well: MW-150 GRAPHIC Samples Elev.: 396.54 Depth Surf. Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF Feet 393.84 Cover 0 Continous boring - no soil sampling conducted. Concrete 393 Refer to boring log for adjacent nested well MW-350 for a description of subsurface materials 5 388 Seal Bentonite Chips Riser (Sch 40 PVC) 10 383 15 378 Filter Pack c:\powerp~1\baldwin\ashmon~1\bec150~1.bor 20 373 Screen (pre-pack) END BOREHOLE AT 25.2 FEET BLS 25 **Bottom Cap** - 368 01-14-2011 30

KELRON ENVIRONMENTAL LOG OF BORING MW-350 **INCORPORATED** (Page 1 of 2) Ash Pond System Monitoring Well Network **Date Completed** : 09/07/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID: 3 7/8" rock Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 394.11 Location: Twp 04S, Rng 07W, 16 SE, NW, NE Sampling Method : MacroCore (60")/NX Core Top of Casing Elevation 396.80 **Drilling Company** : PSC X,Y Coordinates : 2379410, 554568 Well: MW-350 GRAPHIC Elev.: 396.80 Depth Surf. Samples Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF Feet 394.11 Cover 394 CLAY, very stiff to hard, brown, grayish-brown (10YR 5/2) mottled yellowish brown (10YR 5/8), dry 19/54 4.5 Concrete 2 2.25 3 4 5 47/60 4.5 389 - grain size analysis @ 5 - 6 ft: СН 5 2.3% sand, 42.4% silt, 55.3% clay 3.5 6 3.25 7 4.0 8 60/60 2.75 10 384 9 2.75 CLAY, brown to olive brown, moist 10 grain size analysis @ 11 - 12 ft: 8.4% sand, 39.3% silt, 52.3% clay Grout 11 1.75 Bentonite Slurry CL/CH 12 20 Riser (Sch 40 PVC) 15 379 CLAY, soft, high plasticity, dark yellow brown, moist; c:\powerp~1\baldwin\ashmon~1\bec350~1.bor 1-2" sand seams at 17' and 19' 13 45/60 - grain size analysis @ 18 - 20 ft: 1.8% sand, 21.9% silt, 76.3% clay - very stiff to hard, high plasticity 20 374 СН 14 60/60 01-14-2011 15 23/23 25

KELRON LOG OF BORING MW-350 **ENVIRONMENTAL INCORPORATED** (Page 2 of 2) Ash Pond System Monitoring Well Network **Date Completed** : 09/07/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID: 3 7/8" rock Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 394.11 Location: Twp 04S, Rng 07W, 16 SE, NW, NE : MacroCore (60")/NX Core Top of Casing Elevation 396.80 Sampling Method **Drilling Company** : PSC X,Y Coordinates : 2379410, 554568 Well: MW-350 GRAPHIC Elev.: 396.80 Depth Surf Samples Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF Feet 394.11 25 `⊢ 369 Grout 15 23/23 CL Bentonite Slurry - Auger refusal at 26.4 feet bgs LIMESTONE and SHALE, interbedded, banded, solid, LS/SH very soft, light to dark gray; slightly weathered LS LIMESTONE, banded, medium bedded, solid, hard, medium gray; unweathered LIMESTONE and SHALE, interbedded; limestone is banded, medium bedded, hard, medium gray; shale is very soft to medium soft, dark gray 30 364 Borehole diameter from 26.4 to 46.7 feet bgs = 3 7/8" 16 116/120 Seal LS/SH Bentonite Chips RQD for 26.4 - 36.4' = 72% (Fair) Recovery = 116/120" 35 359 SHALE, banded, medium bedded, solid, soft to medium Riser (Sch 40 PVC) soft, dark gray SH 40 354 LIMESTONE, banded, massive, solid, hard to very hard, light to medium gray 17 118/120 c:\powerp~1\baldwin\ashmon~1\bec350~1.bor -Filter Pack LS RQD for 36.4 - 46.4' = 96% (Excellent) 45 Screen (pre-pack) 349 Recovery = 118/120" Bottom Cap **END BOREHOLE AT 46.7 FEET BLS** 01-14-2011 50

KELRON **LOG OF BORING MW-151 ENVIRONMENTAL INCORPORATED** (Page 1 of 1) Ash Pond System Monitoring Well Network Date Completed : 09/21/2010 Driller : Matt Cooper Hole Diameter : Brendon Wilder (PSC) **Baldwin Energy Complex** : 8 1/2"OD; 4 1/4" ID Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 397.22 Location: Twp 04S, Rng 07W, 16 SE, NE, NE : MacroCore (60") Top of Casing Elevation 399.96 Sampling Method **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2381171, 554221 Well: MW-151 GRAPHIC Elev.: 399.96 Depth Surf Samples Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF 397.22 Feet Cover SILTY CLAY, light brown, dry 397 31/48 Concrete 2 1.5 CL 3 1.0 Seal Bentonite Chips 4 1.5 5 32/60 SANDY CLAY, dark gray (10YR 4/1) Riser (Sch 40 PVC) 392 6 1.0 - moist 7 0.5 - moist to wet CL 8 - very dark gray-brown; grain size analysis @7.5-8 1.0 ft: 39% sand, 41.8% silt, 19.2% clay 9 2.5 10 46/60 2.5 SILTY CLAY, yellowish-brown (10YR 5/1) 10 387 11 3.0 Screen (pre-pack) 12 2.75 CL 13 - two small light gray sandy seams 2.5 Filter Pack 14 2.75 - 2-inch layer of dusky red CLAY (10R 3/2) 15 58/60 2.5 CLAY, low plasticity, medium soft 15 382 16 2.5 - shaley, light olive brown (2.5Y 5/4) grading to **Bottom Cap** olive gray; grain size analysis @16-17 ft:: 17 3.5 c:\powerp~1\baldwin\ashmon~1\bec151~1.bor 1%sand, 28.5% silt, 70.5% clay - platy/laminated 18 2.75 CH 19 2.75 20 24/27 2.5 20 377 21 Refusal in bedrock at 21.5 feet BLS 4.5-**END BOREHOLE AT 21.5 FEET BLS** 22 LIMESTONE, no recovery Drove split-spoon to 21.75 feet BLS - no recovery 01-14-2011 25

KELRON ENVIRONMENTAL LOG OF BORING MW-152 INCORPORATED (Page 1 of 1) : 09/22/10 Ash Pond System Monitoring Well Network Date Completed Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 422.18 Location: Twp 04S, Rng 07W, 16 SE, NE, NE Sampling Method : MacroCore (60") Top of Casing Elevation 424.99 **Drilling Company** : PSC X,Y Coordinates : 2382779, 553906 Well: MW-152 GRAPHIC Samples Elev.: 424.99 Depth Surf. Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF Feet 422.18 Cover 0 422 Continuous boring - no soil sampling conducted. Concrete Refer to boring log for adjacent nested well MW-352 for a description of subsurface materials. Seal Bentonite Chips Riser (Sch 40 PVC) 5 417 10 412 Filter Pack Screen (pre-pack) c:\powerp~1\baldwin\ashmon~1\bec152~1.bor 15 407 **END BOREHOLE AT 17.7 FEET BLS Bottom Cap** 01-14-2011 20

KELRON ENVIRONMENTAL **LOG OF BORING MW-252 INCORPORATED** (Page 1 of 1) : 09/22/10 Ash Pond System Monitoring Well Network Date Completed Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 422.27 Location: Twp 04S, Rng 07W, 16 SE, NE, NE Sampling Method : MacroCore (60") Top of Casing Elevation 425.07 **Drilling Company** : PSC X,Y Coordinates : 2382784, 553904 Well: MW-252 GRAPHIC Samples Elev.: 425.07 Depth Surf. Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF Feet 422.27 Cover 0 422 Concrete Continuous boring - no soil sampling conducted. Refer to boring log for adjacent nested well MW-352 for a description of subsurface materials. 5 417 10 412 15 407 Grout 20 402 Bentonite Slurry 25 397 Riser (Sch 40 PVC) 30 392 c:\powerp~1\baldwin\ashmon~1\bec252~1.bor 35 387 40 382 Seal Bentonite Chips 45 377 Filter Pack 01-14-2011 Screen (pre-pack) END BOREHOLE AT 49.54 FEET BLS Bottom Cap 50

KELRON ENVIRONMENTAL **LOG OF BORING MW-352 INCORPORATED** (Page 1 of 3) Ash Pond System Monitoring Well Network Date Completed : 09/16/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID: 3 7/8" rock Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 422.36 Location: Twp 04S, Rng 07W, 16 SE, NE, NE Sampling Method : MacroCore (60")/NX Core Top of Casing Elevation 425.04 **Drilling Company** : PSC X,Y Coordinates : 2382789, 553901 Well: MW-352 GRAPHIC Samples Elev.: 425.04 Depth Surf. Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF 422.36 Feet Cover SILTY CLAY, very stiff to hard, yellow brown (10YR 422 Concrete 5/6), dry 1 46/48 4.5+ CL 2 60/60 3.5 CLAY, trace sand and fine gravel, very stiff, high 417 3 4.0 plasticity, few black organic material 4 2.75 5 3.0 60/60 2.75 10 - medium hard 412 CL 7 2.0 - soft 8 1.0 Grout Bentonite Slurry 9 1.25 Riser (Sch 40 PVC) 10 15 60/60 1.5 407 - medium hard 11 2.5 c:\powerp~1\baldwin\ashmon~1\bec352~1.bor SAND, poorly graded, loose, wet (4-inch thick) 12 2.75 SANDY CLAY, trace fine gravel, yellow brown to olive brown (2.5Y 5/3) 13 3.5 20 14 60/60 4.5+ 402 CL 15 2.5 16 2.5 17 01-14-2011 2.75 18 48/60 2.5 25

KELRON ENVIRONMENTAL **LOG OF BORING MW-352 INCORPORATED** (Page 2 of 3) Ash Pond System Monitoring Well Network Date Completed : 09/16/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID: 3 7/8" rock Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 422.36 Location: Twp 04S, Rng 07W, 16 SE, NE, NE Sampling Method : MacroCore (60")/NX Core Top of Casing Elevation 425.04 **Drilling Company** : PSC X,Y Coordinates : 2382789, 553901 Well: MW-352 GRAPHIC Elev.: 425.04 Depth Surf Samples Recovery inches Qp in **DESCRIPTION** Elev. TSF Feet 422.36 25 397 CL - grain size analysis @ 26.5 - 27.5 ft: 33.7% sand, 27.1% silt, 39.2% clay 18 48/60 2.5 SP SAND with few gravel, yellow brown CLAY, some sand and fine gravel, hard to very hard, high plasticity, dark yellow brown (10YR 4/6) CL 19 60/60 3.0 30 CLAY, lean to fat 392 20 3.0 21 - grain size analysis @ 32 - 33 ft: 3.5 13.2% sand, 43.9% silt, 42.8% clay 22 3.0 23 35 48/60 1.5 387 - medium hard, high plasticity, gray brown to light olive brown (2.5 Y 5/2-5/3) 24 1.5 - trace silt, dark yellow brown (10YR 4/4) Grout 25 1.75 Bentonite Slurry CL/CH 26 1.5 Riser (Sch 40 PVC) 27 40 54/60 1.75 382 28 2.0 c:\powerp~1\baldwin\ashmon~1\bec352~1.bor 29 2.5 30 2.5 31 57/60 2.0 45 32 377 1.75 33 1.75 CLAY, medium hard, low plasticity, olive brown (2.5Y 5/4) 34 2.5 CL 35 1.75 01-14-2011 36 3/3 50

KELRON ENVIRONMENTAL **LOG OF BORING MW-352 INCORPORATED** (Page 3 of 3) Ash Pond System Monitoring Well Network Date Completed : 09/16/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID: 3 7/8" rock Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 422.36 Location: Twp 04S, Rng 07W, 16 SE, NE, NE : MacroCore (60")/NX Core Top of Casing Elevation 425.04 Sampling Method **Drilling Company** : PSC X,Y Coordinates : 2382789, 553901 Well: MW-352 GRAPHIC Samples Elev.: 425.04 Depth Surf. Recovery inches Qp in **DESCRIPTION** Elev. TSF 422.36 Feet 50 372 CL - Auger refusal at 53.7 feet bgs LIMESTONE, weathered, thinly laminated, medium 37 5/5 hard to hard, gray 38 8/27 55 LS 367 Grout Bentonite Slurry SHALE, clayey, gray SH LIMESTONE, occasional shale partings 39 19/60 60 362 LS Riser (Sch 40 PVC) - laminated, fossiliferous, medium gray Seal 40 54/60 Bentonite Chips SHALE, soft, dark gray 65 357 SH c:\powerp~1\baldwin\ashmon~1\bec352~1.bor LIMESTONE, medium hard to hard, light gray 41 59/60 -Filter Pack 70 Borehole diameter from 53.7 to 73.8 feet bgs = 3 7/8" 352 LS RQD for 53.8 - 73.8' = 57% (Fair) Screen (pre-pack) Recovery = 173/240" 42 33/34 Bottom Cap 01-14-2011 END BOREHOLE AT 73.8 FEET BLS

75

KELRON ENVIRONMENTAL LOG OF BORING MW-153 **INCORPORATED** (Page 1 of 1) Date Completed : 09/22/2010 Ash Pond System Monitoring Well Network Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 442.77 Location: Twp 04S, Rng 07W, 15 SW, SW, NE Sampling Method : MacroCore (60") Top of Casing Elevation 445.67 **Drilling Company** : PSC X,Y Coordinates : 2384435, 553298 Well: MW-153 GRAPHIC Samples Elev.: 445.67 Depth Surf. Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF Feet 442.77 Cover 0 Continuous boring - no soil sampling conducted Concrete 442 Refer to boring log for adjacent nested well MW-253 for a description of subsurface materials Seal 5 Bentonite Chips 437 Riser (Sch 40 PVC) 10 432 -Filter Pack 15 427 Screen (pre-pack) c:\powerp~1\baldwin\ashmon~1\bec153~1.bor 20 END BOREHOLE AT 20.5 FEET BLS Bottom Cap - 422 01-14-2011 25

KELRON ENVIRONMENTAL LOG OF BORING MW-253 **INCORPORATED** (Page 1 of 2) Ash Pond System Monitoring Well Network Date Completed : 09/20/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 442.70 Location: Twp 04S, Rng 07W, 15 SW, SW, NE Sampling Method : MacroCore (60") Top of Casing Elevation 445.84 **Drilling Company** : PSC X,Y Coordinates : 2384430, 553298 Well: MW-253 GRAPHIC Elev.: 445.84 Depth Surf. Samples Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF 442.70 Feet Cover 0 SILTY CLAY, trace gravel, hard, light brown, dry Concrete 442 25/48 4.5+ 2 4.5-- hard, medium plasticity, gray (2.5Y 6/1) with yellow-brown mottling (10YR 5/6), moist 5 3 47/60 4.5 CL 437 4 4.5 5 4.5 Riser (Sch 40 PVC) 10 6 53/60 4.5 432 CLAY (fat) with SAND, trace gravel, dark yellow brown Grout 7 4.0 with light gray mottling, mottling decreases with depth Bentonite Slurry grain size analysis @ 11 - 12 ft: 0.7% gravel, 16.4% sand, 41.4% silt, 41.4% clay 8 4.0 c:\powerp~1\baldwin\ashmon~1\bec253~1.bor 9 3.0 15 10 52/60 4.5 СН 427 11 3.5 12 3.5 - soft 13 2.0 01-14-2011 CLAY (lean) with SAND, trace gravel, stiff to hard, CL medium plasticity, dark yellow brown 14 60/60 20

KELRON ENVIRONMENTAL LOG OF BORING MW-253 **INCORPORATED** (Page 2 of 2) Ash Pond System Monitoring Well Network Date Completed : 09/20/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 442.70 Location: Twp 04S, Rng 07W, 15 SW, SW, NE Sampling Method : MacroCore (60") Top of Casing Elevation 445.84 **Drilling Company** : PSC X,Y Coordinates : 2384430, 553298 Well: MW-253 GRAPHIC Elev.: 445.84 Depth Surf. Samples Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF 442.70 Feet 20 grain size analysis @ 19 - 19.5 ft: 0.7% gravel, 26.9% sand, 38.1% silt, 34.3% clay 422 14 60/60 CL Grout Bentonite Slurry Riser (Sch 40 PVC) 25 - small fine sand seams from 25 to 27 feet 417 15 60/60 Seal Bentonite Chips CLAY (fat), shaley, platy/laminated, soft, low plasticity, light yellow brown (10YR 6/4) 16 3.5 - stiff to very stiff, light olive brown (2.5Y 5/4) - grain size analysis @ 29 - 30 ft: 17 3.0 6.7% sand, 21.6% silt, 71.7% clay 30 18 60/60 4.5 412 СН Filter Pack 19 3.5 Screen (pre-pack) c:\powerp~1\baldwin\ashmon~1\bec253~1.bor 20 3.0 - Drove split-spoon 2-inches into bedrock: 34.5 to 34.7 feet bls 21 2/2 LIMESTONE with SHALE LS/SH **Bottom Cap** Auger refusal at 35.0 feet END BOREHOLE AT 35.0 FEET BLS - 407 01-14-2011 40

KELRON **LOG OF BORING MW-154 ENVIRONMENTAL INCORPORATED** (Page 1 of 1) Ash Pond System Monitoring Well Network Date Completed : 09/20/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD; 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 384.99 Location: Twp 04S, Rng 07W, 09 SW, NE, SW : MacroCore (60") Top of Casing Elevation 387.76 Sampling Method **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2377892, 557163 Well: MW-154 GRAPHIC Elev.: 387.76 Depth Surf. Samples Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF 384.99 Feet Cover 0 SILTY CLAY, hard, very dark gray (10YR 3/1), dry Concrete 384 CL 1 35/48 CLAY, black, moist Seal Bentonite Chips CH Riser (Sch 40 PVC) 5 379 2 44/60 SANDY CLAY with gravel, very stiff to hard, low plasticity, dark gray with yellow-brown mottling, dry - grain size analysis @ 8-9.2 ft: 17.4% gravel, 30.5 %sand, 18.8% silt, 33.4% clay CL Filter Pack c:\powerp~1\baldwin\ashmon~1\bec154~1.bor 10 3 24/42 374 CLAY, shaley, gray with light olive-brown mottling - grain size analysis @ 11-12 ft: 12.5% sand, 23% silt, 64.5% clay Screen (pre-pack) CH Refusal in bedrock at 12.5 feet BLS **Bottom Cap** 4 LIMESTONE Drove split-spoon to 12.75 feet BLS - 1-inch recovery END BÖREHOLE AT 12.75 FEET BLS 01-14-2011 15

KELRON ENVIRONMENTAL **LOG OF BORING MW-155 INCORPORATED** (Page 1 of 1) Ash Pond System Monitoring Well Network Date Completed : 09/10/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD; 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 390.62 Location: Twp 04S, Rng 07W, 09 SW, SE, SW Sampling Method : MacroCore (60") Top of Casing Elevation 393.55 **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2378141, 555983 Well: MW-155 GRAPHIC Elev.: 393.55 Depth Surf Samples Recovery inches Qp in **DESCRIPTION** Elev. TSF 390.62 Feet Cover SILTY CLAY, hard, reddish brown, dry 40/48 Concrete 390 2 CL 3 4 4.5 CLAY (lean), hard, low plasticity, pale brown (10YR 6/3), grading to Fat CLAY 5 53/60 5 Bentonite Chips 6 385 CL/CH 7 4.5 Riser (Sch 40 PVC) - grain size analysis @ 7 - 8 ft: 8 2.5% sand, 47.2% silt, 50.3% clay SANDY CLAY, dry 9 0.75 CL SP SAND, 4-inch seam, poorly graded, loose 10 44/60 CLAY with sand grading to SANDY CLAY, very soft, 10 11 380 12 1.5 13 CL 14 1.5 15 50/60 -Filter Pack 15 16 0.5 375 17 c:\powerp~1\baldwin\ashmon~1\bec155~1.bor Screen (pre-pack) CLAYEY SAND, poorly graded, dark yellow brown 18 1.5 - grain size analysis @ 18.5 - 19.5 ft: 19 SC 53.9 %sand, 28.1% silt, 18.0% clay 20 20 **Bottom Cap END BOREHOLE AT 20.5 FEET BLS** 370 01-14-2011 25

KELRON ENVIRONMENTAL **LOG OF BORING MW-355 INCORPORATED** (Page 1 of 2) Ash Pond System Monitoring Well Network Date Completed : 09/14/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID; 3 7/8" rock Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 390.82 Location: Twp 04S, Rng 07W, 09 SW, SE, SW : MacroCore (60")/NX Core Top of Casing Elevation 393.69 Sampling Method **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2378145, 555980 Well: MW-355 GRAPHIC Elev.: 393.69 Depth Surf. Samples Recovery inches Qp **USCS DESCRIPTION** Elev. TSF 390.82 Feet Cover Continuous boring to 20 feet below ground surface. Concrete Refer to boring log for adjacent well MW-155 for 390 description of subsurface materials to 20 feet. 5 385 10 Grout 380 Riser (Sch 40 PVC) 15 375 c:\powerp~1\baldwin\ashmon~1\bec355~1.bor 20 CLAYEY SAND, poorly graded, dark yellow brown, wet SC 370 23/23 3.5 CLAY, lean, very stiff, gray with yellow-brown mottling CL - Auger refusal at 22.1 feet bgs LIMESTONE, lightly weathered, fine grained, slightly fossiliferous, medium soft, light gray banded with light Seal red staining along horizontal fractures; three small **Bentonite Chips** 2 108/124 LS 01-14-2011 shale lenses within 31 inch interval - coarse grained, medium soft to hard Filter Pack 25

KELRON ENVIRONMENTAL LOG OF BORING MW-355 INCORPORATED (Page 2 of 2) : 09/14/2010 Ash Pond System Monitoring Well Network Date Completed Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID; 3 7/8" rock Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 390.82 Location: Twp 04S, Rng 07W, 09 SW, SE, SW Sampling Method : MacroCore (60")/NX Core Top of Casing Elevation 393.69 **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2378145, 555980 Well: MW-355 GRAPHIC Samples Elev.: 393.69 Depth Surf. Recovery inches Qp in **DESCRIPTION** Elev. TSF 390.82 Feet 25 365 Riser (Sch 40 PVC) - fine grained, slightly fossiliferous, light gray Borehole diameter from 22.1 to 32.6 feet bls = 3 7/8" 2 LS 108/124 -Filter Pack RQD for 22.1 - 32.6' = 57% (Fair) 30 Screen (pre-pack) 360 Bottom Cap END BOREHOLE AT 32.6 FEET BLS 35 - 355 40 - 350 c:\powerp~1\baldwin\ashmon~1\bec355~1.bor 45 - 345 01-14-2011 50

KELRON ENVIRONMENTAL **LOG OF BORING OW-156** Incorporated (Page 1 of 1) Date Completed : 09/10/2010 Driller : Matt Cooper Ash Pond System Monitoring Well Network **Baldwin Energy Complex** Hole Diameter : 8 1/2"OD; 4 1/4" ID Geologist : Brendon Wilder (PSC) Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 425.14 Location: Twp 04S, Rng 07W, 10 NW, NW, SW Sampling Method : MacroCore (60") Top of Casing Elevation: 427.87 **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2378141, 555983 Cover Surf. Elev.425.15 Well: OW-156 GRAPHIC Recovery inches Elev.: 427.87 Samples Depth Qp **DESCRIPTION** in TSF Feet 0 425 SILTY CLAY, stiff, medium brown, dry Concrete 32/48 2.5 2 1.5 3 3.5 Seal Bentonite Chips 1.75 5 56/60 2.0 5. - stiff to very stiff, low plasticity 420 Riser (Sch 40 PVC) 6 1.75 - dark gray-brown (10YR 3/3) with light brown mottling (10YR 6/3) 7 1.75 8 1.75 9 2.25 CL 10-CLAY (lean) with Sand, soft to medium, light brown 10 60/60 1.0 - 415 (10YR 6/3) with brown-yellow mottling (10YR 6/6), moist 1.5 11 -Filter Pack 12 1.75 13 1.75 1.5 Screen (10-slot) 15 50/60 2.25 15 - 410 16 2.0 17 2.5 **Bottom Cap** END BOREHOLE AT 17.7 FEET BLS 18 1.25 04-09-2014 19 Terminated probing with MacroCore at 19.5 feet bls 20

KELRON ENVIRONMENTAL **LOG OF BORING OW-157 INCORPORATED** (Page 1 of 1) Ash Pond System Monitoring Well Network Date Completed : 09/9/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD; 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 432.64 Location: Twp 04S, Rng 07W, 10 SE, SW, SW Sampling Method : MacroCore (60") Top of Casing Elevation 429.90 **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2382593, 556189 Well: OW-157 GRAPHIC Samples Elev.: 432.64 Depth Surf. Recovery inches Qp **DESCRIPTION** Elev. TSF Feet 429.90 Cover 0 SILTY CLAY with Fly Ash, dark gray-brown, dry Concrete 429 CL/FL 1 48/48 Seal Bentonite Chips CLAY with Silt, hard, medium plasticity, light olive brown, moist 5 Riser (Sch 40 PVC) 424 2 60/60 СН 10 CLAY with Sand, stiff, wet 419 CL CLAY, trace to some Sand, very stiff to hard, medium Filter Pack 3 60/60 to high plasticity c:\powerp~1\baldwin\ashmon~1\bec157~1.bor Screen (10-slot) 15 CL/CH 414 60/60 **Bottom Cap END BOREHOLE AT 17.5 FEET BLS** 01-14-2011 Terminated probing with MacroCore at 19.5 feet bls 20

KELRON ENVIRONMENTAL LOG OF BORING MW-104SR **INCORPORATED** (Page 1 of 1) Ash Pond System Monitoring Well Network Date Completed : 07/26/11 Driller : Matt Cooper Hole Diameter : 7 3/4"OD; 3 3/4" ID : Stu Cravens (Kelron) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 452.52 Location: Twp 04S, Rng 07W, 10 SE, SE, SE Sampling Method : MacroCore (60") Top of Casing Elevation 455.54 **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2386609, 554205 Well: MW-104SR GRAPHIC Samples Elev.: 455.54 Depth Surf. Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF 452.52 Feet Cover 0 Continuous boring - no soil sampling conducted Concrete Refer to boring log for adjacent nested well MW-104DR for a description of subsurface materials Seal Bentonite Chips 450 Riser (Sch 40 PVC) 5 445 Screen (10 Slot) c:\powerp~1\baldwin\ashmon~1\bec104sr.bor 10 (Slotted screen interval = 9.40 ft) Filter Pack 440 - groundwater level at completion = 14.06' bls 08-12-2011 END BOREHOLE AT 15 FEET BLS **Bottom Cap** 15

KELRON LOG OF BORING MW-104DR **ENVIRONMENTAL** INCORPORATED (Page 1 of 2) Ash Pond System Monitoring Well Network Date Completed : 07/25/11 Driller : Matt Cooper Hole Diameter : 7 3/4"OD; 3 3/4" ID **Baldwin Energy Complex** Geologist : Stu Cravens (Kelron) Dynegy Midwest Generation, Inc. **Drilling Method** Land Surface Elevation: 452.62 : Hollow-Stem (CME-550) Location: Twp 04S, Rng 07W, 10 SE, SE, SE Top of Casing Elevation 455.62 Sampling Method : MacroCore (60") **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2386609, 554201 Well: MW-104DR GRAPHIC Elev.: 455.62 Depth Surf Samples Recovery inches Qp JSCS in **DESCRIPTION** Elev. TSF 452.62 Feet Cover SILTY CLAY, trace sand, med plasticity, organics and Concrete roots, dry hard, light gray (Gley1-7/1) with brown mottling (Fe-oxidation) (10YR 3/1), dry 2 3 60/60 3.5 450 CL - moist 4 2.5 5 2.5 5 6 2.5 CLAY (Fat) with Silt, high plasticity, soft to very soft, 7 2.5 high organics and roots, dark gray grading to gray with brown mottling, moist 8 60/60 445 - groundwater level at completion = 8.03' bls 9 10 CH - medium hardness 10 11 1.75 12 2.25 - light gray (GLEY1-7/1) with yellow-brown Fe-oxid mottling (10%) Riser (Sch 40 PVC) 13 60/60 2.25 440 14 3.0 CLAY (lean) with Silt, medium plasticity, light gray with Seal CL 15 yellow-brown mottling (10%) Bentonite Chips 2.5 15 CLAY with Silt, trace sand and fine gravel, high 16 3.75 plasticity, medium to stiff, light gray with brown mottling 17 (20%) 2.75 18 60/60 3.5 435 19 3.5 CH 20 3 20 c:\powerp~1\baldwin\ashmon~1\bec104dr.bo - trace sand and gravel, medium to high plasticity, 21 3 medium to stiff hardness, mottling 25 to 50% 22 2.5 23 60/60 2.5 430 24 2.5 SANDY FAT CLAY, fine sand, trace fine gravel, high CH plasticity, greenish gray (GLEY-6/1), moist 25 2.5 25 SAND (fine to medium), trace gravel, poorly graded, 26 light gray, wet - brown Screen (10 Slot) SP (Slotted screen interval = 4.52 ft) 27 2.5 Filter Pack 28 425 60/60 SILTY CLAY, trace sand and gravel (angular), medium plasticity, very stiff, olive brown (2.5Y 4/4) with light 08-12-2011 **Bottom Cap** 29 4.0 CL gray mottling <20%, moist (TILL) 30 4.5 30

KELRON LOG OF BORING MW-104DR ENVIRONMENTAL INCORPORATED (Page 2 of 2) Date Completed : 07/25/11 Driller Ash Pond System Monitoring Well Network : Matt Cooper Hole Diameter : 7 3/4"OD; 3 3/4" ID Geologist : Stu Cravens (Kelron) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 452.62 Location: Twp 04S, Rng 07W, 10 SE, SE, SE Sampling Method : MacroCore (60") Top of Casing Elevation 455.62 **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2386609, 554201 Well: MW-104DR GRAPHIC Samples Elev.: 455.62 Depth Surf. Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF Feet 452.62 30 CL SHALE, highly weathered; Clay with Silt, platy /laminated, medium to high plasticity, very stiff, moist 31 3.0 32 33 60/60 SH 420 34 3.5 - unweathered, light gray, fissile, dry 35 35 END BOREHOLE AT 35 FEET BLS - 415 40 - 410 45 - 405 c:\powerp~1\baldwin\ashmon~1\bec104dr.bor 50 - 400 55 - 395 08-12-2011

60

RECORD OF SUBSURFACE EXPLORATION

MONITORING WELL BAMW-104D

PROJECT: IP BALDWIN

PHASE II

JOB NO.: 122487

DATE DRILLED: 11/26/90

DRILLING METHOD: H.S.A.

DRILLED BY: Brotcke GROUNDWATER: During Drilling - 17.5 Feet

LOGGED BY: Duncan At completion - 11.3 Feet

MONITORING WELL INSTALLED: Yes 0.3 Hours after completion - 13.5 Feet

ELEVATION DEPTH	SOIL SYMBOLS SAMPLER SYMBOLS AND FIELD TEST DATA	uscs	DESCRIPTION	REMARKS	RECOVERY RATIO in/in	PENETROMETER, HAND, tsf
[0 - -		ĊL	Gray-Brown Silty CLAY Trace Sand		53/60	
- 5	-	CL.	Gray-Brown CLAY w/Silt Trace Sand Gray-Brown Silty CLAY Trace Sand		22/24	
10			-Trace Grave] 7.5-9.0		36/36	
-		CH	Gray-Brown CLAY w/Silt Trace Sand Gray-Brown Silty CLAY Trace		12/24	
- - - 15	*	СН	Gray-Brown CLAY W/Silt Trace		41/36	
<u> </u>	Σ	CL (S	Gray-Brown Silty CLAY Trace Sand		62/60	
– 20 -		sc (Gray-Brown Clayey SAND Trace		60/60	
25 			0.10.2002 s	Particle Size Curve No. 9 Liquid Limit = 26 llastic Limit = 15 lastic Limit = 15 lastic Limit = 6.4% brganic Content = 8.4% ppacific Gravity = 2.66 lote: Above analysis run on lample from 23 5-24 0	62/60	
- 30	Boring Continues	SL G	ray-Brown Silty CLAY Trace and			
	L					

BURLINGTON ENVIRONMENTAL INC.

RECORD OF SUBSURFACE EXPLORATION

MONITORING WELL BAMW-104D

PROJECT: IP BALDWIN

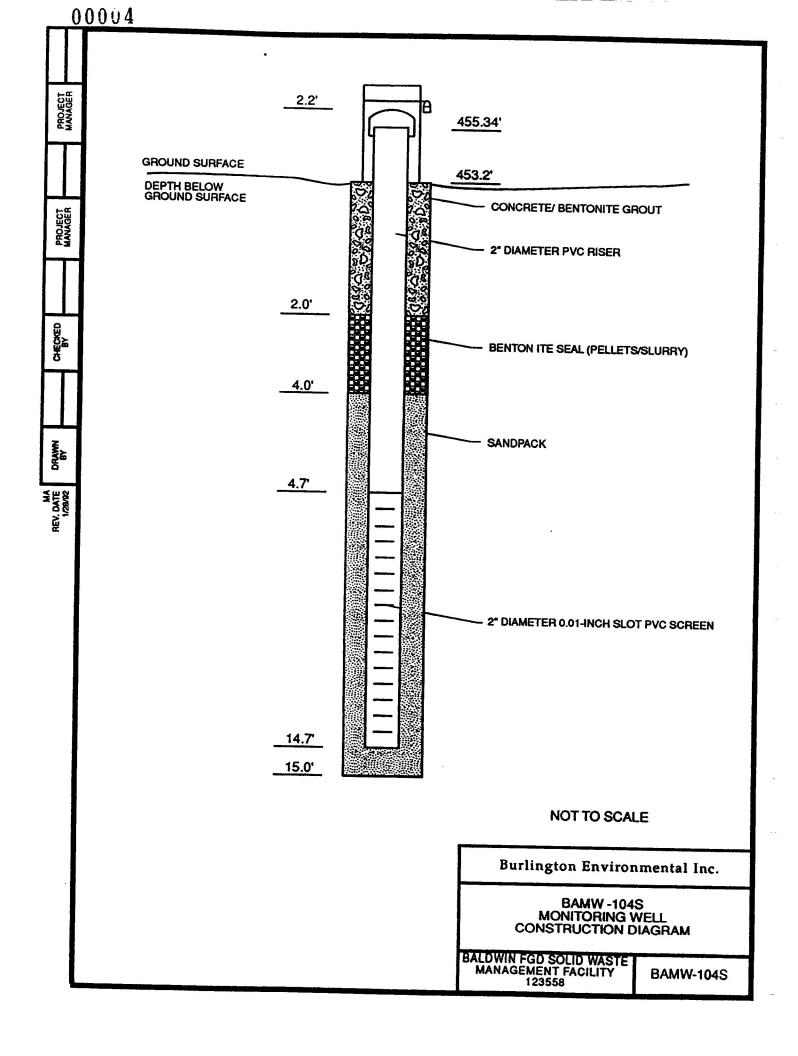
PHASE II

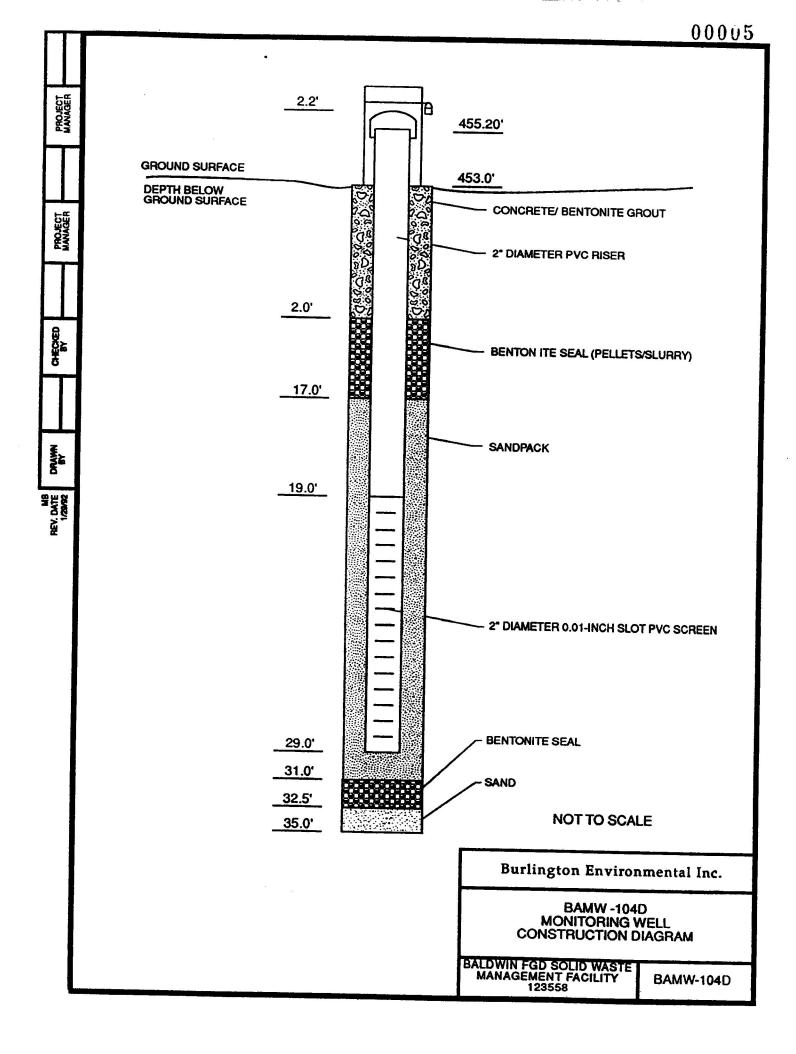
JOB NO .: 122487

DATE DRILLED: 11/26/90

DRILLING METHOD: H.S.A.

DRILLED BY: Brotcke


GROUNDWATER: During Drilling - 17.5 Feet


LOGGED BY: Duncan

At completion - 11.3 Feet

MONITORING WELL INSTALLED: YES 0 3 Hour

DEPTH AND FIEL	SYMBOLS ER SYMBOLS D TEST DATA	DESCRIPTION	REMARKS	RECOVERY RATIO in/in	PENETROMETER, HAND, tsf
DEPTH AND FIEL		Gray-Brown Highly Weathered Clayey SHALE	REMARKS	RECOVERY RATIO in/in 60/60	PENETROMETER, HAND, tsf

	KELRON ENVIRONMENTAL Incorporated		LOC	G O	F PF	ROB	EHC	DLE '	TPZ	'-158 (Page 1 of 2)	
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	e Diameter : 4" OD Geologist : Stuart C ing Method : Solid Flight Auger (CME-55LC) Ground Elevation : 453.26 opling Method : MacroCore (60") Casing (MP) Elevation : 456.26								
Depth in Feet	DESCRIPTION		Surf. Elev. 453.26	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		: TPZ-158 .: 456.26 — Cover	
0-	Silty Loam with roots, stiff, non-plastic, p 6/3), dry	pale brown (10YR		1	60/60	2				Concrete	
-	- dark brown (10YR 3/3)			2		2.75	CL				
_	Silty CLAY, very stiff, low plasticity, gray yellowish-brown mottling, moist	(10YR 5/1) with		3		3.75					
-			- 450	4		3.5					
-										Seal Bentonite Chips	
5-	- 25-50% mottling w/ black oxidation - high plasticity, <25% mottling	staining		5		4.5					
-	ingriplasticity, \2578 including			6	60/60	2.5				Riser (Sch 40 PVC)	
=				7		2.5					
-				8		1.25					
-			- 445	9		1.25	CL				
-				10		1.75					
10-				11	60/60	1.75					
-					00/60	1.75				Filter Pack	
-	- trace fine-medium sand, brownish y (10YR 6/8)	vellow mottling		12		3.5					
-	- trace fine-coarse sand and fine grav sub-angular)	vel (angular to		13		2.25				Screen (pre-pack) 1.25" diam; 9.06' op	
-	- few to little sand and gravel, very st mottling	iff, 50-75%	- 440	14		2.75					
-				15		2.5					

	KELRON ENVIRONMENTAL Incorporated		LOC	O	F PI	ROE	BEHC	LE	TPZ-	158 (Page 2 of 2)
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/27/ : 4" OD : Solid : Macro : Bulldo	Flight Core	(60")		G 5LC) G C	asing (Elevation	: John Gates : Stuart Cravens (Kelro : 453.26 ation : 456.26 : 2387752, 556741
Depth in Feet	DESCRIPTION		Surf. Elev. 453.26	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		TPZ-158 456.26
15 [—]	- high plasticity			16	60/60	1.0				
-	- trace fine to medium sand, soft, ligh with 50-75% brownish-yellow mottli			17		0.75	CL			
_	Sandy CLAY (fine to medium sand) with gravel (<1"), very soft	trace fine-coarse		18						Filter Pack
_	SAND, fine to coarse, well graded, brow 6/8), wet	nish-yellow (10YR	- 435	16			sw			Screen (pre-pack) 1.25" diam; 9.06' op
-	Sandy CLAY (fine-coarse sand) with gra- non-plastic, moist	avel, hard,	- 400	19		>4.5				Bottom Cap
-	Silty CLAY with trace sand and gravel, h high plasticity, very pale brown (10YR 7	nard, medium to		20		>4.5	CL			
20-	- very soft, high plasticity	,		21	60/60	<0.5				
-	SAND, fine to coarse, well graded, yello 5/8), wet	wish-brown (10YR		22						
_				22						Seal of MacroCore h Bentonite Chips
_			- 430	23			sw			
-				24						
-	Silty CLAY with trace fine to coarse san brownish-yellow (10YR 6/6), moist	d, hard,		25		4.0	CL SH			
25 [—] -	SHALE, weathered, gray (10YR 6/1), dr - platy/laminated, dark gray (10YR 4/	y at 24.75' (1), at 24.9'				•				_
- -	- top of bedrock = 24.75' bls END BOREHOLE AT 25 FEET BLS									
_										
-			- 425							
- -			-							
_										

Phase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc. Depth Depth In Peter III Description Feet Description Peter III - Silty CLAY with some clay and silt, soft, loose, dry with variable brown to gray mottling Phase II Hydrogeologic Investigation Baldwin Energy Complex Drilling Method Sampling Method Sampling Method Drilling Company Surf. Solid Flight Auger (CME-SSLC) Cound Elevation: 444.48 Scale (Go') Casing (MP) Elevation: 447.64 X,Y Coordinates : 2383974, 558081 Depth In Peter III - Silty CLAY with some clay and silt, soft, loose, dry with variable brown to gray mottling FILL - Bottom Ash with some clay and silt, soft, loose, dry with variable brown to gray mottling FILL - Silty CLAY with some bottom ash, sand, and gravel, hard, low-medium plasticity, yellowish brown (10YR 5/4) with variable brown to gray mottling - 440 2 7/42 FL/CL - few bottom ash, very stiff, high plasticity, moist FL/CL - few bottom ash, very stiff, high plasticity, moist - 435 Brill - 3.0 Driller (Solid Flight Auger (CME-SSLC)) Cound Elevation: 1.44 4.46 Second Elevation: 2.50 Art 6.4 4.46 Second Elevation: 2.50 Art 6.4 4.46 Second Elevation: 2.50 Art 6.4 Ar		KELRON ENVIRONMENTAL Incorporated		LOC	G O	F PF	ROE	BEHC	DLE	TPZ	-159 (Page 1 of 3)
DESCRIPTION Surf. Flet DESCRIPTION Surf. Flet DESCRIPTION Surf. Flet O FILL - Bottom Ash with some clay and silt, soft, loose, dry FILL - Silty CLAY with some bottom ash, sand, and gravel, hard, low-medium plasticity, yellowish brown (10VR 5/4) with variable brown to gray mottling - 440 2 7/42 - Few bottom ash, very stiff, high plasticity, moist - 435 Silty CLAY, trace fine-coarse sand, stiff, med plasticity, light yellowish brown (10VR 6/4), moist - 430 5 60/60 2.5 6 7 1.75 CL		Baldwin Energy Complex	Hole Diameter Drilling Method Sampling Method	: 4" OD : Solid : Macro	: 4" OD : Solid Flight Auger (CME-55LC) : MacroCore (60")			G 5LC) G C	eologis round E asing (I	Elevation MP) Elev	: Stuart Cravens (Kelro : 444.69 ation : 447.64
FILL - Bottom Ash with some clay and silt, soft, loose, dry FILL - Silty CLAY with some bottom ash, sand, and gravel, hard, low-medium plasticity, yellowish brown (10YR 5/4) 1 49/60 1 49/60 1 49/60 FL/CL - few bottom ash, very stiff, high plasticity, moist - 435 Silty CLAY, trace fine-coarse sand, stiff, med plasticity, light yellowish brown (10YR 6/4), moist - 430 Silty CLAY, trace fine-coarse sand, stiff, med plasticity, light yellowish brown (10YR 6/4), moist - 430 Silty CLAY, trace fine-coarse sand, stiff, med plasticity, light yellowish brown (10YR 6/4), moist	in Feet	DESCRIPTION		Elev.	Samples	Recovery inches		nscs	GRAPHIC		447.64
2 7/42 - few bottom ash, very stiff, high plasticity, moist - 435 3 8/18 3.0 FL/CL - Seal Bentonite Chips Riser (Sch 40 PVC) 4 0/60 Silty CLAY, trace fine-coarse sand, stiff, med plasticity, light yellowish brown (10YR 6/4), moist - 430 5 60/60 2.5 6 3.25 7 1.75 CL	0 — - - - - -	FILL - Silty CLAY with some bottom ash, hard, low-medium plasticity, yellowish bro	sand, and gravel,		1	49/60		AR			Concrete
- few bottom ash, very stiff, high plasticity, moist - 435 3 8/18 3.0 - Seal Bentonite Chips - Riser (Sch 40 PVC - R	5- - - - - -			- 440	2	7/42		FL/CI			
Silty CLAY, trace fine-coarse sand, stiff, med plasticity, light yellowish brown (10YR 6/4), moist 5 60/60 2.5 7 1.75 CL	- - 10 - - -	- few bottom ash, very stiff, high plasti	city, moist	- 435	3	8/18	3.0			-	
- - 1.75 CL	- - - - 15	Silty CLAY, trace fine-coarse sand, stiff, r light yellowish brown (10YR 6/4), moist	med plasticity,	- 430 -							
- high plasticity, gray (10YR 5/1) with <10% yellowish-brown mottling	- - - - -	- high plasticity, gray (10YR 5/1) with	<10%		7		1.75	CL			- Filter Pack

	KELRON ENVIRONMENTAL Incorporated		LOC	9 O	F PF	ROE	3EH	OLE	TPZ-159 (Page 2 of 3)
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/23, : 4" OD : Solid : Macro : Bulldo	Flight a	(60")		5LC)	Casing (: John Gates st : Stuart Cravens (Kelron Elevation : 444.69 (MP) Elevation : 447.64 ordinates : 2383974, 558081
Depth in Feet	DESCRIPTION		Surf. Elev. 444.69	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: TPZ-159 Elev.: 447.64
20-	Silty CLAY, trace fine-coarse sand, stiff, light yellowish brown (10YR 6/4), moist	med plasticity,							
- - -				10	16/60				
- 25- -	- soft to medium hardness, yellowish with black manganese staining	-brown mottling	- 420	11	32/60	1.5			Filter Pack Screen (pre-pack) 1.25" diam; 9.06' oper
- - -	- high plasticity, brown (10YR 5/3)			12		1.25			
30-	- trace fine-medium sand, very stiff, o with 10-25% yellowish-brown mottl		- 415	14		1.25 2.75	CL		Bottom Cap
- -	- no sand, brown			16	49/60	1.5			
- -	- trace sand, gray (10YR 6/1) with 10)-25%		18		1.0			
- - -	yellowish-brown mottling - trace fine-coarse sand and gravel (sub-rounded)	sub-angular to	- 410	20		2.0			
35 — - -	- stiff, medium plasticity, pale brown <10% gray mottling	(10YR 6/3) with		21	60/60	2.5			— Seal of MacroCore h Bentonite Chips
- - -				22		2.0			
-				24		0.5			
40-	 few fine-coarse sand and fine grave yellowish brown (10YR 5/8) hard, non-plastic, dry 	el, very stiff,	- 405	25		3.0			

	KELRON ENVIRONMENTAL Incorporated		LOC	9 O	F PI	ROE	BEH(OLE	TPZ-′	159 (Page 3 of 3)
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/23/ : 4" OD : Solid : Macro : Bulldo	Flight Core	(60")		5LC) (it Elevation MP) Elevati	: John Gates : Stuart Cravens (Kelron) : 444.69 ion : 447.64 : 2383974, 558081
Depth in Feet	DESCRIPTION		Surf. Elev. 444.69	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: T Elev.: 4	PZ-159 147.64
40	- trace sand and gravel, very stiff, hig (10YR 5/3) to pale brown (10YR 6/3	gh plasticity, brown		26	50/60		CL			
- - 45 - - - -	SAND, fine to coarse, well graded, gree (10Y 5/1), wet (2.4 inch seam) Silty CLAY, trace sand, hard grading to plasticity grading to high plasticity, dark moist [TILL]	very stiff, low	- - - 400	29		<0.5 >4.5	SW			—Seal of MacroCore hold Bentonite Chips
			- 395	31	5/60	3.25	CL			
50 —	END BOREHOLE AT 50 FEET BLS									
- 55 — - - -			- 390							
- - - - - -			- 385							

KELRON LOG OF PROBEHOLE TPZ-160 **ENVIRONMENTAL** Incorporated (Page 1 of 2) : 08/21/2013 **Date Completed** Driller : John Gates Phase II Hydrogeologic Investigation Hole Diameter : 4" OD Geologist : Stuart Cravens (Kelron) Baldwin Energy Complex Dynegy Midwest Generation, Inc. **Drilling Method** : Solid Flight Auger (CME-55LC) **Ground Elevation** : 428.59 Sampling Method : MacroCore (60") Casing (MP) Elevation: 431.49 **Drilling Company** : Bulldog Drilling, LLC X,Y Coordinates : 2380230, 558046 Well: TPZ-160 GRAPHIC Recovery inches Elev.: 431.49 Depth Surf. Samples Qp USCS DESCRIPTION Elev. in TSF Feet 428.59 Cover 0 Silty CLAY with grass / roots, hard, non-plastic, pale 58/60 4.5 Concrete brown (10YR 6/3), dry gray (10YR 6/1) with reddish-brown mottling and 2 3.25 black oxidation staining very stiff, low plasticity, brown (10YR 4/3), moist high plasticity, grayish brown (10YR 5/2) with 10-25% reddish-brown mottling' 3 3.0 4 3.0 425 5 2.25 Seal CL Bentonite Chips 5 11-08-2013 C:\Consulting A\Power Plants\Baldwin\Baldwin 2013 Hydrogeologic Study\Field Work Phase\Boring Logs\BEC160.BOR 6 58/60 1.5 - gray (10YR 6/1), <10% mottling Riser (Sch 40 PVC) 7 1.0 8 1.0 - 10-25% mottling, black organics 9 1.0 420 10 1.0 Sandy SILT, fine sand, very soft, non-plastic, light brownish gray (10YR 6/2), wet 11 41/60 Clayey SILT, trace fine sand, very soft, medium plasticity, ML12 <0.5 gray (10YR 6/1) 13 < 0.5 14 < 0.5 415 Silty CLAY, medium to high plasticity, gray with trace CL Screen (pre-pack) reddish-brown mottling, moist 15 1.25 1.25" diam; 9.06' open - 1-inch weathered zone with 75% yellowish-brown 15-(10YR 5/8) mottling @ 14.5' SILT, gray (10YR 7/1), wet @ 14.9' Filter Pack 16/60 16 ML 17 1.25 410 CLAY, medium hardness, brown (10YR 5/3), moist - greenish gray (Gley1 10GY 5/1) CL **Bottom Cap** 18 1.5 20

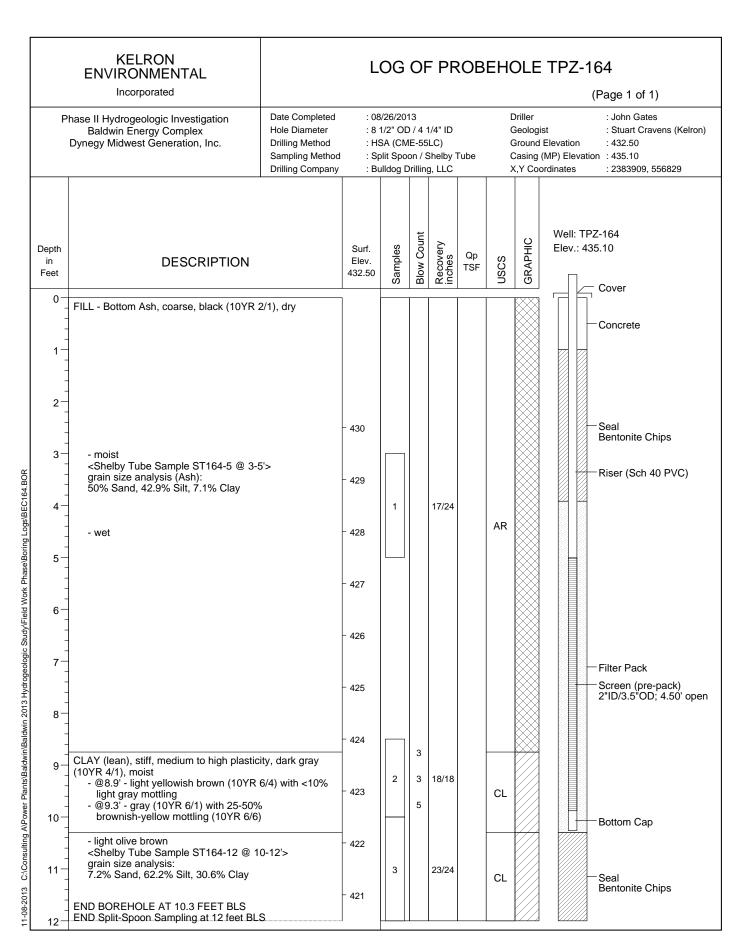
	KELRON ENVIRONMENTAL Incorporated		LOC	ΘO	F PF	ROE	BEHC	LE	TPZ-16	0 age 2 of 2)
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 4" OD : Solid : Macro	: 08/21/2013 : 4" OD : Solid Flight Auger (CME-5 : MacroCore (60") : Bulldog Drilling, LLC				asing (st Elevation (MP) Elevation	: John Gates : Stuart Cravens (Kelron : 428.59
Depth in Feet	DESCRIPTION		Surf. Elev. 428.59	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: TPZ Elev.: 431	
20				19	24/60					
- - - 25 —	- gray (10YR 6/1) - very soft, brown (10YR 5/3) - soft, greenish gray		- 405	20		<0.5 1.25	CL			
- - -				22	27/60					
- - -			- 400	23 24 25 26		0.75 1.0 1.5 2.5				Seal of MacroCore H Bentonite Chips
30-	Silty CLAY with fine-coarse sand and fir (sub-angular to sub-rounded), very stiff, with reddish-brown mottling [TILL]	ne gravel greenish gray		27	27/60					
- - - -	 very soft, high plasticity, yellowish-b medium plasticity, greenish gray wiyellowish-brown mottling, moist 	,	- 395	28 29 30		0.5 0.5	CL			
35 — - - -	Sandy CLAY, stiff, dark yellowish-brown <25% greenish-gray mottling, dry END BOREHOLE AT 35 FEET BLS	n (10YR 4/4) with	7				-CL-	\		
- - -			- 390							

	KELRON ENVIRONMENTAL Incorporated		LOC	G O	FP	ROE	BEHC	DLE	MW	-161 (Page 1 of 3)
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: HSA (: Macro			G G Ca	asing (I	levation	: John Gates : Stuart Cravens (Kelron : 428.74 vation : 431.27 : 2379206, 557078	
Depth in Feet	DESCRIPTION		Surf. Elev. 428.74	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		: MW-161 :: 431.27
- 0	FILL - Silt with clay, organics (roots), stiff yellowish brown (10YR 6/4), dry	f, non-plastic, light		1	38/42		FL/CL			Concrete
- - -	SILT with clay, roots, hard, brownish yell	ow (10YR 6/6)		3		>4.5 3.0	ML			
- - -	Silty CLAY with roots, very stiff, medium reddish-brown mottling and manganese	plasticity, with staining, moist	- 425	4	60/60	2.0				
5 - -	- medium hardness, medium to high ր brownish gray (10YR 6/2) with mott manganese staining	plasticity, light ling and		6		2.25	CL			
- - -	SILT, stiff, non-plastic, brownish yellow (10YR 6/6)		8		2.51.75				100 100 100 100 100 100 100 100 100 100
-	- with clay, very soft, medium plasticit		- 420	9	60/60	1.0	ML			
10-	Silty CLAY, stiff to very stiff, high plasticing gray (10YR 6/2) with reddish brown and grading to light gray, moist	ty, light brownish black mottling		10		2.5	CL			─Seal Bentonite Grout
-	SILT, very soft, non-plastic, light brownis	h gray (10YR 6/2)		12		0.75	ML			Riser (Sch 40 PVC)
-	Silty CLAY, stiff, medium plasticity, gray	(10YR 6/1), moist	- 415	13		2.0				
- 15-	- soft to medium hardness, high plasti brown (10YR 5/6)	icity, yellowish	710	14	60/60	1.5				200 200 200 200 200 200 200 200 200 200
- - -	- <25% mottling			16		1.5	CL			100 000 000 000 000 000 000
-				17		1.25 2.25				
- -			- 410	19	60/60	2.25				100 100 100 100 100 100 100 100 100 100
20-				20		1.0				

	KELRON ENVIRONMENTAL Incorporated		LOC	3 O	F PI	ROE	BEHC	LE	ΜV		161 (Page 2 of 3)
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/21/ : 8 1/2" : HSA (: Macro	OD / 4 CME- Core	55LC) (60")		Ge Gi Ca	riller eologis round E asing (I Y Coor	levatic ИР) Еlе	on evati	: John Gates : Stuart Cravens (Keln : 428.74 ion : 431.27 : 2379206, 557078
Depth in Feet	DESCRIPTION		Surf. Elev. 428.74	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC			IW-161 I31.27
20-				20		1.0	CL				
-	SILT with clay, stiff, low plasticity, browr	nish yellow (10YR	-	21		2.0					Seal Bentonite Chips
-	6/8)			22		2.0	ML				3
-	- soft, yellowish brown (10YR 5/4), w Silty CLAY, stiff, low to medium plasticit		-								
-	(10YR 6/3) with reddish-brown mottling,	moist		23		1.0					Riser (Sch 40 PVC)
-	- soft to very soft, high plasticity, light - brown (10YR 5/3) with <10% reddis	-	- 405	24	60/60	0.75					
25				25							
-				26			CL				
-											
_	- with fine sand			27		1.0					Filter Pack
-				28							Screen 2"ID, 9.45' open
-	SAND with Silt, fine grained, gray-browr	n, wet	400	29	53/60						, , , , , , , , , , , , , , , , , , , ,
30-				30							
JU -							SP/SM				
-	<sample 31.5-32.5'="" @="" mc161-32=""> grain size analysis: 89.8% Sand, 10</sample>	0.2% Silt		31							
-		. ,		32							
-	- pale green (Gley1 5G 6/2) CLAY (lean), trace fine-medium sand, h	ard, low plasticity,		33		3.0					Bottom Cap
-	greenish-gray (10GY 5/1), moist [TILL] - medium to stiff, medium to high pla	sticity	- 395	34	60/60	2.5			,,,,	_ ,,,,,	
-											
35 [—]				35		1.25					
-				36		1.5	CL				
_				37		1.75					Seal
-				38		3.0					Bentonite Chips
-	- trace sand, stiff to hard		- 390								
-	1			39	44/60	2.0					

	KELRON ENVIRONMENTAL Incorporated		LO	G O	F PI	ROE	BEHC	DLE	MW-1	61 Page 3 of 3)
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 8 1/2" : HSA (: Macro	08/21/2013 3 1/2" OD / 4 1/4" ID HSA (CME-55LC) MacroCore (60") Bulldog Drilling, LLC			Driller Geologist Ground Elevation Casing (MP) Elevatio X,Y Coordinates			: John Gates : Stuart Cravens (Kelron) : 428.74
Depth in Feet	DESCRIPTION		Surf. Elev. 428.74	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: MV Elev.: 43	
40 —	Sandy SILT, medium hardness, non-plate Silty CLAY with shale and fine-coarse limit (rounded to sub-rounded up to 1.5"), still greenish gray (Gley1 10Y 5/1) SHALE, laminated, hard, weathered (to 44.3' bls) END BOREHOLE AT 44.7 FEET BLS Refusal of Macrocore and Auger on top bedrock	mestone gravel ff to very stiff, p of bedrock =	- 385	40 41 42 43 44	14/14	1.5 2.0 1.5 2.0 >4.5	CL ML CL SH			[−] Seal Bentonite Chips
50—			- 380							
 55 - - - -			- 375							
- - - 60			- 370							

	KELRON ENVIRONMENTAL Incorporated		LOC	G O	F PF	ROE	BEHC	DLE	MW-	162 (Page 1 of 2)
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/20 : 8 1/2" : HSA (: Macro	55LC) 60")		G G C	riller eologis round E asing (I ,Y Cool	: John Gates : Stuart Cravens (Kelro : 430.83 ation : 433.20 : 2379193, 555725		
Depth in Feet	DESCRIPTION		Surf. Elev. 430.83	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		MW-162 433.20 <i>─</i> Cover
0-	Continous Boring - no soil sampling con Descriptions of subsurface materials on adjacent boring log for well MW-262.	ducted. this log are from	430							Concrete
-	Silty Clay with gravel, roots, stiff, non-pl (10YR 6/3), dry	astic, pale brown								
-	- brownish yellow (10YR 6/6), moist									
5 —	- medium stiff, high plasticity	14. h (4.0)/D	- 425				CL			—Seal Bentonite Grout —Riser (Sch 40 PVC)
-	SILT, very soft, non-plastic, light yellowi 6/4), moist [LOESS]	Sn brown (101R								
10	- clayey, soft to medium hardness, lo plasticity	w to medium	- 420				ML			
-	- soft, yellowish brown (10YR 5/4)									Seal Bentonite Chips
-	- non-plastic									Filter Pack


	KELRON ENVIRONMENTAL Incorporated		LOC	j ()	F PI	ROE	BEHC)LE	MW-162 (Page 2 of 2)
Phase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.		Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/20 : 8 1/2" : HSA (: Macro	55LC) 60")		G G	asing (I	: John Gates st : Stuart Cravens (Kelro Elevation : 430.83 MP) Elevation : 433.20 rdinates : 2379193, 555725	
Depth in Feet	DESCRIPTION		Surf. Elev. 430.83	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: MW-162 Elev.: 433.20
15 — - -			- 415				ML		Riser (Sch 40 PVC)
-	Sandy CLAY (lean), medium hardness, plasticity, yellowish brown, moist	low to medium					CL		
- 20- - - -	SILT, very soft, non-plastic, brownish ye moist	ellow (10YR 6/6),	- 410				ML		Filter Pack Screen 2"ID; 9.45' open
- - - - 25-	Silty CLAY, very soft, low plasticity - medium plasticity, wet						CL		
- - - -	END BOREHOLE AT 25.9 feet BLS		405						Bottom Cap
-									

KELRON LOG OF PROBEHOLE TPZ-163 **ENVIRONMENTAL** Incorporated (Page 1 of 2) Date Completed : 08/27/2013 Driller : John Gates Phase II Hydrogeologic Investigation Hole Diameter : 8 1/2" OD / 4 1/4" ID Geologist : Stuart Cravens (Kelron) Baldwin Energy Complex Dynegy Midwest Generation, Inc. **Drilling Method** : HSA (CME-55LC) **Ground Elevation** : 455.51 Sampling Method : Split Spoon / Shelby Tube Casing (MP) Elevation: 458.41 : Bulldog Drilling, LLC X,Y Coordinates : 2385507, 555798 **Drilling Company** Well: TPZ-163 **Blow Count** GRAPHIC Recovery inches Samples Elev.: 458.41 Depth Surf. Qp **USCS DESCRIPTION** Elev. in TSF Feet 455.51 Cover 0 FILL - Silty clay loam with roots, loose, pale brown FL/CL Concrete (10YR 6/3), dry (13" thick soil cover) FILL - Fly Ash, silty, loose very dark gray (10YR 3/1) <Shelby Tube Sample ST163-3 @1.5-3.5'> 1 9/24 grain size analysis (Ash - very dark brown): 51% Sand, 45.8% Silt, 3.2% Clay Seal Bentonite Chips 5 450 Riser (Sch 40 PVC) 11-08-2013 C:\Consulting A\Power Plants\Baldwin\Baldwin 2013 Hydrogeologic Study\Field Work Phase\Boring Logs\BEC163.BOR - very soft, wet 2 0 18/18 < 0.5 AR 10 445 Filter Pack 3 18/18 < 0.5 0 Screen (pre-pack) 2"ID/3.5"OD; 9.50' open 15 440 Bottom Cap Silty CLAY (lean to fat), trace fine sand, stiff, medium 4 3 17/18 2.75 to high plasticity, gray (10YR 6/1) with 10-25% yellowish-brown mottling (10YR 6/8), moist 20 435 CL/CH Seal of HSA hole Bentonite Chips 5 2 18/18 2.25 - very stiff

25

KELRON LOG OF PROBEHOLE TPZ-163 **ENVIRONMENTAL** Incorporated (Page 2 of 2) Date Completed : 08/27/2013 Driller : John Gates Phase II Hydrogeologic Investigation Hole Diameter : 8 1/2" OD / 4 1/4" ID Geologist : Stuart Cravens (Kelron) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : HSA (CME-55LC) **Ground Elevation** : 455.51 Sampling Method : Split Spoon / Shelby Tube Casing (MP) Elevation: 458.41 Drilling Company : Bulldog Drilling, LLC X,Y Coordinates : 2385507, 555798 Well: TPZ-163 **Blow Count** GRAPHIC Recovery inches Samples Elev.: 458.41 Depth Surf. Qp **USCS DESCRIPTION** Elev. in TSF Feet 455.51 25 - dark yellowish brown <Shelby Tube Sample ST163-30 @ 28-30'> grain size analysis: 6 24/24 CL/CH 10.6% Sand, 51.2% Silt, 38.2% Clay 30 425 11-08-2013 C:\Consulting A\Power Plants\Baldwin\Baldwin 2013 Hydrogeologic Study\Field Work Phase\Boring Logs\BEC163.BOR Silty CLAY with trace fine-coarse sand and fine 2 gravel, stiff to very stiff, high plasticity, brownish-yellow (10YR 6/6), moist [TILL] 7 2 18/18 2.5 5 35 Seal of HSA hole Bentonite Chips 420 - medium plasticity, pale brown (10YR 6/3) CL 8 5 18/18 3.5 - brownish-yellow (10YR 6/6) with 10-25% light 40 gray mottling (10YR 6/1) 415 SHALE, platy/laminated with weathered clay layers; hard, gray (10YR 5/1) with 25-50% olive yellow 9 7 18/18 >4.5 SH clayey layers (2.5Y 6/6) (top of bedrock = 43.5' bls) 45 END BOREHOLE AT 45 FEET BLS - 410 50

405

	KELRON ENVIRONMENTAL Incorporated		LOC	9 O	F PF	ROE	BEHC	LE -	TPZ	-165 (Page 1 of 1)		
Phase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.		Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/19/2013 Driller : John Gates : 4" OD Geologist : Stuart Cravens : Solid Flight Auger (CME-55LC) Ground Elevation : 396.10 : MacroCore (60") Casing (MP) Elevation : 398.85 : Bulldog Drilling, LLC X,Y Coordinates : 2380478, 5559									
Depth in Feet	DESCRIPTION		Surf. Elev. 396.10	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		TPZ-165 : 398.85 — Cover		
0- - -	FILL - Fly Ash, silty, stiff, non-plastic to I dark grayish-brown (10YR 3/2), moist	ow plasticity, very	- 395	1 2	41/60	1.75 0.75	AR			Concrete		
- - - -	FILL - Silty Clay with Fly Ash, very soft, 4/1)	dark gray (10YR		3 4 5			FL/CL			—Seal Bentonite Chips		
5 -	Silty CLAY (lean) with organics and root plasticity, dark gray - gray (10YR 5/1)	s, soft, high	- 390	6	60/60	1.5				Riser (Sch 40 PVC)		
- - - -	- trace sand, very dark gray brown <shelby @<br="" sample="" st165-10="" tube="">grain size analysis: 11.2% Sand, 59.2% Silt, 29.6% Clay</shelby>			9		2.752.51.25	CL					
10 — - - -			- 385	11	49/60	2.0				Filter Pack		
- - -	Silty CLAY (lean) with trace fine-coarse gravel, very soft, medium to high plastic (10YR 4/1), moist [TILL]	sand and fine ity, dark gray		13		1.0				Screen (pre-pack) 1.25" diam; 9.06' ope		
15 — - -			- 380	15 16	18/18	0.5	CL					
- - - -	LIMESTONE, hard, light gray, hammer auger refusal at 17.4' bls (top of bedrock END BOREHOLE AT 17.4 FEET BLS	refusal at 16.5', k)					LS			Bottom Cap		

	KELRON ENVIRONMENTAL Incorporated		LOC	3 O	F PF	ROE	BEHC	LE	TPZ	Z-166 (Page 1 of 2)
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: HSA (OD / (CME- oCore			Ge Gi Ca	riller eologist round E asing (N Y Coor	levatio ИР) Ele	evation: 425.18
Depth in Feet	DESCRIPTION		Surf. Elev. 422.33	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		l: TPZ-166 /.: 425.18 Cover
-0	FILL - Silty CLAY, trace roots, very stiff, brown gray (10YR 6/2), dry	non-plastic, light		1	60/60	2.75				Concrete
-	- medium plasticity, pale brown (10Y manganese and iron oxide staining very stiff, yellowish brown (10YR 5/	1	- 420	2		2.75				
-	reddish-brown mottling			4		3.751.5	FL/CL			
-	- very stiff, low plasticity			5		2.75				
5- - -	- gray mottling - 1-inch silt lense with high organics, Silty CLAY, very stiff, medium plasticity, with reddish-brown mottling and mangar	gray (10YR 6/1)		6	60/60	1.5				
-	- medium to stiff, high plasticity, 25-5 staining	· ·	- 415	7		2.751.75				Seal
-	- no manganese staining			9		2.5				Bentonite Chips Riser (Sch 40 PVC)
10-				10		2.5				, , , , , , , , , , , , , , , , , , , ,
-				11	60/60	1.5 1.5	CL			
-	- stiff, medium plasticity, yellowish br with 10-25% reddish-brown mottlin	own (10YR 5/4) g, moist	- 410	13		2.25	OL.			
-		.		14		2.0				
15-				15		2.5				
-	- very soft, high plasticity - very stiff, medium plasticity			16	60/60	3.0				
-	Silty CLAY with trace fine-coarse sand a	and fine gravel.	405	18		3.0				Filter Pack
-	very stiff, medium plasticity, yellowish br with <10% reddish-brown mottling, mois - hard, gray (10YR 6/1) with 10-25% mottling	own (10YR 5/4) t [TILL]		19		3.5	CL			Screen 2"ID, 9.45' open

	ENVIRONMENTAL Incorporated									(Page 2 of 2)	
Phase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.		Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/16 : 8 1/2" : HSA (: Macro	55LC) (60")		G G C	asing (Elevation	: John Gates : Stuart Cravens (Kelron : 422.33 ion : 425.18 : 2381183, 555587		
Depth in Feet	DESCRIPTION		Surf. Elev. 422.33	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: T Elev.: 4	PZ-166 425.18	
20 — - - -	END BOREHOLE TPZ-166 AT 22' BLS.			21	24/24	>4.5 >4.5	CL				
- - - - - - 25	CONTINUE LOG USING URS BORING B-13-5 FROM 08/01/2013	B-13-4 and	- 400							Filter Pack Screen 2"ID, 9.45' open Bottom Cap	
- - - -			- 395				CL				
30	CUAL F. colonia of the president highly		390								
- - - 35 — - -	SHALE, calcareous, fine grained, highly weak, brown-gray to gray (top of bedroo elevation = 389.8 ft NAVD88)	weathered, very k = 32.53' bls;					SH				
- -			- 385								

	KELRON ENVIRONMENTAL Incorporated		L	OG (OF	PR	OB	EHC	DLE	TPZ	-167 (Page 1 of 3)
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	ameter : 8 1/2" OD / 4 1/4" ID Method : HSA (CME-55LC) ig Method : Split Spoon / Shelby Tube						asing (Elevation	: John Gates : Stuart Cravens (Kelron)
Depth in Feet	DESCRIPTION		Surf. Elev. 438.63	Samples	Blow Count	Recovery inches	Qp TSF	nscs	GRAPHIC		TPZ-167 : 441.38 Cover
0—	FILL - Fly Ash, silty to clayey with coars size, soft, medium to high plasticity, dark 4/N), moist - very soft, non-plastic, wet	e sand grain k gray (Gley 1	- 435	1		18/18					Concrete
	- dark greenish gray (10Y 4/1)		- 430	2	2 2 1	18/18		AR		1000	─ Seal Bentonite Grout ─ Riser (Sch 40 PVC)
10-	- silty with sand grain size, very dark gray (10Y 3/1)	greenish	- 425	3	0 0 1	18/18					
- - - 20-			- 420								Seal Bentonite Chips Filter Pack

	KELRON ENVIRONMENTAL Incorporated		L	OG	OF	PR	ОВ	EHC	DLE	TPZ-	167 (Page 2 of 3)
Phase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.		Date Completed : 08/14/2013 Hole Diameter : 8 1/2" OD / 4 1/4" ID Drilling Method : HSA (CME-55LC) Sampling Method : Split Spoon / Shelby Tube Drilling Company : Bulldog Drilling, LLC							asing (Elevation	: John Gates : Stuart Cravens (Kelron : 438.63 ation : 441.38 : 2381925, 554963
Depth in DESCRIPTIO Feet			Surf. Elev. 438.63	Samples	Blow Count	Recovery inches	Qp TSF	nscs	GRAPHIC		TPZ-167 441.38
25	- very dark gray brown - Sample SS167-30 @ 29-30'> grain size analysis (Ash): 1.5% Sand, 77.6% Silt, 20.8% Clay Silty CLAY (lean) with sand and trace fir angular to sub-angular), very stiff, medic plasticity, light gray (10Y 7/N) with 15-50 brown mottling, dry [TILL] - Shelby Tube Sample ST167-34 @ 3 grain size analysis: 15.7% Sand, 52.6% Silt, 31.7% Clay	um to high 0% reddish 32-34'>	- 415 - 410	5	0 0 1 0 0 0	18/18		AR			Riser (Sch 40 PVC) Filter Pack Screen (pre-pack) 2"ID/3.5"OD; 9.50' op Bottom Cap Seal of HSA hole Bentonite Chips
40			- 400	7	3 4 6	16/18	3.5				

	KELRON ENVIRONMENTAL Incorporated		LO	OG	OF	PR	OB	EHC)LE	TPZ-1	167 (Page 3 of 3)
Phase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.		Date Completed : 08/14/2013 Hole Diameter : 8 1/2" OD / 4 1/4" ID Drilling Method : HSA (CME-55LC) Sampling Method : Split Spoon / Shelby Tube Drilling Company : Bulldog Drilling, LLC							asing (st Elevation	: John Gates : Stuart Cravens (Kelro : 438.63 ion : 441.38 : 2381925, 554963
Depth in Feet	DESCRIPTION		Surf. Elev. 438.63	Samples	Blow Count	Recovery inches	Qp TSF	USCS	GRAPHIC	Well: T Elev.: 4	
40—	- soft, brownish-yellow (10YR 6/6), m - laminated, hard, non-plastic, black organic-rich layer) CLAY (lean to fat) with sand, stiff to very to high plasticity, greenish gray (10YR 6 - with sand and fine gravel (angular) SHALE, weathered; clay (laminated) with micaceous layer and limestone parting, (Gley1 4/N), dry (top of bedrock = 48.75 END BOREHOLE (Auger Refusal) at 48 END Split-Spoon Sampling at 49.15 fee	(3/4" thick y stiff, medium (1), dry th platy and dark gray bls)	- 395 - 390	9 10 11	2 2 2 5 5 5 50 50 53	18/18 18/18 3/3 5/5		CL/CH			—Seal of HSA hole Bentonite Chips
 55—- 			- 385 - 380								

KELRON LOG OF PROBEHOLE TPZ-168 **ENVIRONMENTAL** Incorporated (Page 1 of 2) Date Completed : 08/15/2013 Driller : John Gates Phase II Hydrogeologic Investigation Baldwin Energy Complex Hole Diameter : 8 1/2" OD / 4 1/4" ID Geologist : Stuart Cravens (Kelron) Dynegy Midwest Generation, Inc. Drilling Method : HSA (CME-55LC) **Ground Elevation** : 454.93 Sampling Method : Split Spoon / Shelby Tube Casing (MP) Elevation: 457.53 : Bulldog Drilling, LLC X,Y Coordinates : 2383585, 554314 **Drilling Company** Well: TPZ-168 Blow Count GRAPHIC Recovery inches Elev.: 457.53 Depth Surf. Qр USCS **DESCRIPTION** Elev. in TSF Feet 454.93 Cover 0 FILL - Fly Ash, silt size, greenish gray (10Y 5/1), moist Concrete <Shelby Tube Sample ST168-5 @ 3-5'> 1 21/24 grain size analysis: 450 5 29.4% Sand, 50.2% Silt, 20.4% Clay Seal Bentonite Grout - wet 2 18/18 445 10 Riser (Sch 40 PVC) 11-08-2013 C:\Consulting A\Power Plants\Baldwin\Baldwin 2013 Hydrogeologic Study\Field Work Phase\Boring Logs\BEC168.BOR Seal Bentonite Chips - silty with coarse sand grain size, greenish black 3 AR 16/18 (1ÓY 2.5/1) 15 440 4 0/24 435 Filter Pack Screen (pre-pack) 2"ID/3.5"OD; 9.50' open 5 3/18 430 25 **Bottom Cap** Silty CLAY, medium to stiff, high plasticity, light gray 6 18/18 2.0 (10YR 7/1) with 10-50% reddish-brown mottling 30 425 Seal of HSA hole CL Bentonite Chips 420 35 CL 7 18/18 3.5 415 40

	KELRON ENVIRONMENTAL Incorporated		L(JG	UΗ	· PK	KOB	⊨H(JLE	E TPZ-	·168 (Page 2 of 2)
Baldwin Energy Complex Dynegy Midwest Generation, Inc.		Date Completed : 08/15/2013 Hole Diameter : 8 1/2" OD / 4 1/4" ID Drilling Method : HSA (CME-55LC) Sampling Method : Split Spoon / Shelby Tube Drilling Company : Bulldog Drilling, LLC							Casing	d Elevation	: John Gates : Stuart Cravens (Kelron : 454.93 ttion : 457.53 : 2383585, 554314
Depth in Feet	DESCRIPTION		Surf. Elev. 454.93	Samples	Blow Count	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: T Elev.: 4	PZ-168 457.53
40-	Silty CLAY, trace sand and fine gravel (sub-angular), stiff to very stiff, 10-25% mottling, moist [TILL]	angular to eddish-brown									
45 <u> </u>			- 410								
50	- light yellowish-brown (10YR 6/4) wi gray mottling Clay, black (1/2" thick organic-rich layer surrounded by highly weathered zone w reddish-brown mottling)	- 405	8	3 7 10	18/18	3.5				
55 <u> </u>			- 400					CL			Seal of HSA hole Bentonite Chips
60-	- medium to stiff, high plasticity, yello (10YR 5/4) - with 25-50% light gray mottling	wish brown	- 395	9	3 4 8	18/18	2.0				
65 —			- 390								
70-	- with sand seams, very stiff, medium gray (10YR 4/1) SHALE, laminated, hard, dark gray (top (69.6' bls) END BOREHOLE AT 70 FEET BLS		- 385	10	10 16 18	18/18	>4.5	SH			
75 —			- 380								

	KELRON ENVIRONMENTAL Incorporated		LOC	G O	F PI	ROE	BEHC)LE (OW-256 (Page 1 of 2)
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/22 : 8 1/2" : HSA (: Macro : Bulldo	OD / 4 CME-5 Core (55LC) 60")		G G C		Elevation : 425.20 MP) Elevation : 427.70
Depth in Feet	DESCRIPTION		Surf. Elev. 425.20	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: OW-256 Elev.: 427.70
0-	Continuous boring to 13.5 feet below granger Refer to boring log for adjacent well OW	ound surface. -156.	- 425						Concrete
- - - 5 - - - - -			- 420				CL		
- 10 — - - -			- 415						Seal Bentonite Chips Riser (Sch 40 PVC)
- - 15 — - -	CLAY (lean), very stiff, high plasticity, pa 6/3),moist - 25% reddish-brown mottling with bl staining - light gray (10YR 7/1) with 10-25% r	ack manganese	- 410	2 3	60/60	3.0 2.25 2.0	CL		
-	Silty CLAY, trace fine to coarse sand [T	ILL]	_	5	60/60	1.75	CL		

	ase II Hydrogeologic Investigation Baldwin Energy Complex									(Page 2 of 2)
	ynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/22/ : 8 1/2" : HSA (: Macro	OD / 4 CME- Core	55LC) (60")		Ge Gi Ca		evation IP) Elevat	: John Gates : Stuart Cravens (Kelro : 425.20 ction : 427.70 : 2381947, 558054
Depth in Feet	DESCRIPTION		Surf. Elev. 425.20	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		OW-256 427.70
20			405	8		1.0 1.75				
- - - -	- trace fine-coarse gravel (angular to granite piece of 1 1/4"), 50-75% yel	sub-angular;		10		1.75	CL			—Seal Bentonite Chips
25	(10YR 6/8) mottling - few sand and gravel, stiff, high plast 6/1) with 25-75% mottling - <25% mottling		- 400	12	60/60	2.0				
-	- with sand (fine-medium) SAND (fine-medium), well graded, brown	nish vellow (10YR	_	13		1.0				Riser (Sch 40 PVC
_ 6 	Silty CLAY (lean) with sand (fine-mediur medium plasticity, brownish yellow, wet		_	15	35/60		SW			
30		v (10VP 6/2)	- 395	17		>4.5				Filter Pack
-	 hard, non plastic, light brownish gramoist [Vandalia Till @ 31.5'] little sand (fine-coarse) and gravel (sub-angular to sub-rounded), low to gray (10YR 5/1) 	fine-coarse,		19		Z4.0	CL			Screen (pre-pack) 2"ID/3.5"OD; 4.50'c
	SHALE and CLAY, semi-competent, lam		-	20	54/60	3.0				Bottom Cap
	up to 1/2-inch thick layers of hard shale, of weathered bedrock at 33.9 feet below		- 390	22		4.0	SH/CL			Seal of HSA hole Bentonite Chips
- 8	SHALE with intermittent clay layers, hard	d, gray		23		>4.5 >4.5	SH		<i>V/////</i>	<u> </u>
-				25		>4.5	JI1			

	KELRON ENVIRONMENTAL Incorporated		LOC	3 O	F PI	ROE	BEHC)LE (OW-29	5 7 Page 1 of 2)
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/16 : 8 1/2" : HSA (: Macro	OD / 4 CME-5 Core (55LC) (60")		G G	riller eologist round El asing (M Y Coord	evation IP) Elevatio	: John Gates : Stuart Cravens (Kelro : 428.17 n : 431.02 : 2382572, 556198
Depth in Feet	DESCRIPTION		Surf. Elev. 428.17	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: O Elev.: 4	31.02
0	Continuous boring to 18.5 feet below gr Refer to boring log for adjacent well OW	ound surface. /-157.								─ Cover ─ Concrete
- - - - 5			- 425							
-										
10			- 420				CL			
-										─Seal Bentonite Grout ─Riser (Sch 40 PVC
15—			⁻ 415							
- - -										
-	Silty CLAY, trace sand and gravel, stiff, gray (10YR 6/1) with 25-50% reddish-br moist [TILL]	high plasticity, own mottling,	- 410	1	56/60	3.0	CL			

	KELRON ENVIRONMENTAL Incorporated		LOC	O ė	FPI	≺OE	3EHC)LÉ (OW-2	257 (Page 2 of 2)
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/16/ : 8 1/2" : HSA (: Macro : Bulldo	OD / 4 CME- Core	55LC) (60")		G G C	riller eologist round El asing (M Y Coord	evation P) Elevati	: John Gates : Stuart Cravens (Kelru : 428.17 on : 431.02 : 2382572, 556198
Depth in Feet	DESCRIPTION		Surf. Elev. 428.17	Samples	Recovery inches	Qp TSF	USCS	GRAPHIC		OW-257 431.02
20 — - - -	- >50% mottling - Sandy CLAY with gravel (fine-coarse, so piece of 1.5"), brownish yellow (10YR 6/	ub-angular; granite /6), wet		3		2.75 2.5	CL			
- - -	Silty CLAY, trace sand and gravel, soft, yellowish brown (10YR5/6) with 10-25% - very soft, brownish yellow with <10	light gray mottling	- 405	5	60/60	1.5				
25 — -	- with trace pyrite crystals	76 Motuling		7		1.0				Seal Bentonite Grout
-	- medium hardness grading to stiff			9		2.0				
- -			- 400	10	60/60	3.25 1.5	CL			Riser (Sch 40 PVC
30-	- stiff, high plasticity, gray with <10% mottling, moist	reddish-brown		12		3.5 2.75				— Seal Bentonite Chips
- -	- very stiff, dark gray (10YR 4/1)			14		2.0				
- - -			- 395	15	60/60	2.0				
35- - -	- low plasticity, very dark gray (10YR			17		2.0				Filter Pack
- - -	SHALE and CLAY (fat), intermittent lam dark gray, moist [note: top of weathered feet below ground surface]	ination, hard, very bedrock at 36.3		19		3.0	SH/CL			Screen (pre-pack) 2"ID/3.5"OD; 4.50
-			- 390	21	13/13	77.0	5. ,, 52			Bottom Cap

	KELRON ENVIRONMENTAL Incorporated		LOC	G O	F PI	ROE	BEHC	DLE	MW	-262 (Page 1 of 3)
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: HSA (OD / CME- Core			G G Ca	asing (Elevation	: John Gates : Stuart Cravens (Kelron: 430.86 vation: 433.21 : 2379193, 555729
Depth in Feet	DESCRIPTION		Surf. Elev. 430.86	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		: MW-262 :: 433.21 — Cover
0-	Silty Clay with gravel, roots, stiff, non-pla (10YR 6/3), dry	astic, pale brown	430	1	60/60	2.5				Concrete
-			430	2		>4.5				
_	- brownish yellow (10YR 6/6), moist			3		3.25				
-				4		2.5				
5-				5		2.25	CL			
-	- medium stiff, high plasticity		- 425	6	42/42	1.5				
-				7		1.75				
-				8		2.0				
-	SILT, very soft, non-plastic, light yellowi 6/4), moist [LOESS]			9	60/60	1.0				
10-	 clayey, soft to medium hardness, lo plasticity 	w to medium		10		1.5				Riser (Sch 40 PVC)
-			- 420	11		1.25				Bentonite Grout
-				12		1.5	ML			
-				13		1.5	IVIL			
- - - , _	- soft, yellowish brown (10YR 5/4) - non-plastic			14	60/60	1.0				
15 - -			- 415	15		1.25				
-				17		1.25				
-	Sandy CLAY (lean), medium hardness, plasticity, yellowish brown, moist	low to medium		18		2.0	CL			
-	SILT, very soft, non-plastic, brownish ye	ellow (10YR 6/6),		19	60/60	2.0	B 41			
-	moist	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		19	60/60	2.0	ML			

	KELRON ENVIRONMENTAL Incorporated		LOC	9 O	F PI	ROE	BEHC	DLE	MW-2	262 (Page 2 of 3)
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/19/ : 8 1/2" : HSA (: Macro	OD / 4 CME-5 Core (55LC) 60")		Ge Gr Ca	asing (Elevation	: John Gates : Stuart Cravens (Kelror : 430.86 tion : 433.21 : 2379193, 555729
Depth in Feet	DESCRIPTION		Surf. Elev. 430.86	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: N Elev.:	//W-262 433.21
20			- 410	20 21 22			ML			
- - -	Silty CLAY, very soft, low plasticity - medium plasticity, wet			23	60/60	0.75 0.75				
25 — - - -	- high plasticity, yellowish brown (10Y	′R 5/4)	- 405	25 26 27		0.75 0.75	CL			
- - -	- moist			28	53/60	1.25				—Seal Bentonite Grout
30-	- with fine sand		- 400	30		0.75				Riser (Sch 40 PVC)
- -	SAND, fine to medium grained, with clay (10YR 5/6), wet - light brownish gray CLAY (fat), trace fine to medium sand, h			32			SW/SC			
35-	brownish gray <sample -="" 33.5="" 35.5'="" @="" st262-35=""> grain size analysis: 13.1% Sand, 33.2% Silt, 53.7% Clay</sample>			34	24/24					
- - -	- very stiff, greenish gray (Gley1 10Y	6/1)	- 395	36	16/36	2.75	СН			
- - -	- medium plasticity			38	56/60	2.75				Seel
40-				40		0.75				Seal Bentonite Chips

	KELRON ENVIRONMENTAL Incorporated		LOC	G O	F PI	ROE	BEHC	DLE	MW-2	262 (Page 3 of 3)
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/19 : 8 1/2" : HSA (: Macro	OD / 4 CME-9 Core (55LC) (60")		Ge Gi Ca	asing (I	t Elevation	: John Gates : Stuart Cravens (Kelro : 430.86 ion : 433.21 : 2379193, 555729
Depth in Feet	DESCRIPTION		Surf. Elev. 430.86	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: M Elev.: 4	/IW-262 433.21
40	- with <10% reddish-brown mottling SAND with Silt, fine grained, poorly grad (10YR 6/4), wet Sandy SILT	ded, light brown	- 390	41 42 43		0.75 1.25 1.5	CH SP/SM ML			Seal Bentonite Chips Riser (Sch 40 PVC)
 45 - - -	Silty CLAY with fine sand, very soft, bro (10YR 6/6) SAND, fine grained, poorly graded SAND, fine to coarse grained, well grad Silty CLAY with trace and and gravel, st light yellowish brown (10YR 6/4), moist	led, trace gravel	- 385	44 45 46 47	60/60	0.75 0.75 1.25 3.0	CL SP SW			Screen 2"ID/3.5"OD; 4.50' o Filter Pack Bottom Cap
- - - 50 - -	- trace reddish-brown mottling SHALE, clay partings, laminated, gray, (top of bedrock = 50.4' bls)		- 380	48 49 50 51	30/30	2.252.252.253.5	CL			
	END BOREHOLE AT 51 feet BLS		- 375							
- - - -										

APPENDIX B IDPH WELL CONSTRUCTION REPORTS: 2010-2013

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

	ı
Ε	
ġ	1
¥	I
₹	1
_	
	ı

1. Type of Well	13. Property Owner: Dynegy Baldwin Energy Complex Well # 150
a. Driven Well: Casing Diameter (in.) Depth (ft.)	14. Driller:
86	15. Name of Drilling Company : Terra-Drill
n Packer Set a	Date Issued: 17. Date Drilling Started Sep 8, 2010
	18. Well Site Address: Dynegy Baldwin Energy Complex
e. Hole Diameter (in.) 8.5 to (ft.) 25.15 ; (in.) to (ft.)	19. Township Name: Baldwin Land I.D. #
f From (ft.) To (ft.) Tre	20. Subdivision Name:
	21. Location: a. County RANDOLPH b. Site Elevation 420 ft. (above msl)
	c. Township: 4S Range: 7W Section: 16
g. Well Finished within Unconsol, dated Materials	the NE Quarter of the NE Quarte
	Lat: Degrees 38 Minutes 11. Seconds 21,62
CLEAN SILICA SAND	Lon: Degrees 89 Minutes 52 Seconds 42.59 W
	Material, Joint Type From (ft.)
2. Well Use: Monitoring Well Disinfected? No	2 SCH. 40 PCV RISER 0 15.39
3. Date Well Completed: 9/8/2010 Driller's Estimated Well Yield (apm):	2 SCH 40 PVC SCREEN 15.39 24.64
	24.64 25.15
Pump Capacity (gpm):	23. Is the well
o. Pritess Adapter Model and Manufacturer: Attachment to Casing:	(4) by the op of
7. Well Cap Type & Manufacturer:	at a deput of (ft.) 10 (ft.)
8. Pressure Tank Working Cycle (gals.): Cantine Air?	5
	25. Earth Materials Passed Through From (ft.) To (ft.)
Service of Furth Company	CLAY 0 15.5
11. Pump installer:	clayey-5ILT w/ sand 15.5 18
13	CLAY 18 25.15
Licensed Pump Installation Contractor Signature	
Minois Department of Public Health IMPORTANCE NOTICE: This state account is connecting disclared.	
Health	1 1
Springfield, IL 62761 information is Mandatory. This form has been approved by the	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log & indicate how hole was sealed)

IL 482-0126 Revised 6/09

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

Print Form

1. Type of Well	13. Property Owner: Dynegy Baldwin Energy Complex
a Drivan Wall: Casing Diamater (in)	14. Driller:
	15. Name of Drilling Company: Terra-Drill
	Date Issued: 17. Date Drilling Started 9/21/2010
c. Drilled Well: PVC Casing Formation Packer Set at Depth of (ft.) 16.36	ess: Dynegy Baldwin Energy Complex
d. Drilled Well: Steel Casing Mechanically Driven	19. Township Name: Baldwin
e. Hole Diameter (in.) 8.5 to (ft.) 16.36 ; (in.) to (ft.) ; (in.) to (ft.) to (ft.) to (ft.)	
	Randolph b. Sit
g. Well Finished within Unconsolidated Materials	Quarter of the NW Quarter of the NE Quarter
	e. GFS. Lat: Degrees 38 Minutes 11 Seconds 18.22 N
n. Kind of Gravel/Sand Pack Grain Size/Supplier # From (ft.) To (ft.) CLEAN SILICA SAND	Lon: Degrees 89 Minutes 52 Seconds 17.5 W Survey use only
	Diameter (in.) Material, Joint Type From (ft.) To (ft.)
2. Well Use: Monitoring Well Disinfected? No	2 SCH. 40 PCV RISER 0 6.6
ep 21, 2010	2 SCH.40 PVC SCREEN 6.6 15.85
Date Permanent Pump Installed:	18
6. Pitiess Adapter Model and Manufacturer: Attachment to Casing:	Tes
7. Well Cap Type & Manufacturer	it a depth of (ft.) To (ft.)
8. Pressure Tank	a. Static water level (ft.) below top of casing 2.80 which is (in.) above ground 32
Working Cycle (gals.): Captive Air? 9. Pump System Disinfected:	b. pumping level is (ft.) pumping (gpm) for (hours)
10. Name of Pump Company	sity-CLAY 0
11. Pump Installer:	sandy-CLAY 4.5 9
	CLAY 9 21.5
Licensed Pump Installation Contractor Signature	
Illinois Danadessas of B. L. H. H. Hander and the state of the state o	
Health	
525 West Jefferson Street purpose as outlined under Public Act-0863. <u>Disclosure of this</u> Springfield, IL 62761 <u>information is</u> Mandatory. This form has been approved by the	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log & indicate how hole was sealed)

IL 482-0126 Revised 6/09

Forms Management Center.

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health D

Tremie Depth (ft.)

To (ft.)

From (ft.)

Grout Weight

of bags

Type of Grout

75 LBS

1.5

Bentonite

5.5

To (A.) 17.23

From (ft.)

Grain Size/Supplier #

Kind of Gravel/Sand Pack

Ë

CLEAN SILICA SAND

g. Well Finished within Unconsolidated Materials

5.5

Driller's Estimated Well Yield (gpm):

3. Date Well Completed: Sep 23, 2010

2. Well Use: Monitoring

4. Date Permanent Pump Installed:

5. Pump Capacity (gpm): 6. Pitless Adapter Model

and Manufacturer:

Well Disinfected? No

Set at Depth (ft.):

Attachment to Casing:

to (ft.)

<u>..</u>

to (A.)

e. Hole Diameter (in.) 8.5 to (ft.) 17.23; (in.) d. Drilled Well: Steel Casing Mechanically Driven

c. Drilled Well: PVC Casing Formation Packer Set at Depth of (ft.) 17.23

Buried Slab? No

Depth (ft.)

a. Driven Well: Casing Diameter (in.) b. Bored Well: Casing Diameter (in.)

1. Type of Well

the appropriate Health Department 13 Property Compley	VINE FORM
14. Driller	
15. Name of Drilling Company : Terra-Drill	16. Permit Number:
Date Issued: 17. Date Drilling Started	ng Started 9/23/2010
18. Well Site Address: Dynegy Baldwin Energy Complex	
19. Township Name: Baldwin	Land I.D. #
20. Subdivision Name:	Lot #
21. Location: a. County Randolph b. Si	b. Site Elevation 421 ft. (above msl)
c. Township: 4S Range: 7W Section: 16	
d. SE Quarter of the NE Quarter of the NE	Quarter
e. GPS: Lat: Degrees 38 Minutes 11 Sec	Seconds 15.31 N
Lon: Degrees 89 Minutes 52	Seconds 00.07 W
Information	,
Diameter (in.) Material, Joint Type	From (ft.) To (ft.)
2 SCH. 40 PCV RISER	0 7.47
2 SCH.40 PVC SCREEN	7.47 16.72
2 SCH.40 PVC SUMP	16.72 17.23
	Stot Size (in.) From (
43. is the well Yes 1 9.25 screened? Yes 2 9.25	0.01 7.47 16.72
24. Water from at a depth of (ft.)	(ft.) To (ft.)
a. Static water level (ft.) below top of casing 7.09	which is (in.) above ground 33.6
b. pumping level is (ft.) pumping (gpm)	for (hours)
25. Earth Materials Passed Through	From (ft.) To (ft.)
silty-CLAY	5 0
CLAY	5 17.23
(Attach 2nd page, if necessary) (If DRY HOLE, fill out log	(If DRY HOLE, fill out log & indicate how hole was sealed)
O. C. Mark	CAM-CAI * estacil

Revised 6/09 IL 482-0126

IMPORTANCE NOTICE: This state agency is requesting disclosure of information that is necessary to accomplish the statutory

<u>information</u> is Mandatory. This form has been approved by the Forms Management Center. purpose as outlined under Public Act-0863. Disclosure of this

Date

Licensed Pump Installation Contractor Signature

Illinois Department of Public Health

Division of Environmental Health

525 West Jefferson Street

Springfield, IL 62761

License #

9. Pump System Disinfected:

Captive Air?

10. Name of Pump Company

11. Pump Installer:

7

Working Cycle (gals.):

8. Pressure Tank

7. Well Cap Type & Manufacturer:

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

Print Form

1. Type of Well	13. Property Owner. Dynegy Baldwin Energy Complex Well # 153
a. Driven Well: Casing Diameter (in.) Depth (ft.)	
b. Bored Well: Casing Diameter (in) Buried Stab?	15. Name of Drilling Company: Terra-Drill 16. Permit Number:
n Packer Set a	Date Issued: 17. Date Drilling Started Sep 21, 2010
	18. Well Site Address: Dynegy Baldwin Energy Complex
e. Hole Diameter (in.) 8.5 to (ft.) 20.5 · (in.) to (ft.)	19. Township Name: Baldwin Land I.D. #
t From (ft.) To (ft.) Tre	20. Subdivision Name:
BENTONITE CHIPS 1.5 1.5*50=75 1 8.7	21. Location: a. County RANDOLPH b. Site Elevation 450 ft. (above msl)
	c. Township: 4S Range: 7W Section: 15
g. Well Finished within Unconsolidated Materials	the SW Quarter of the
h. Kind of Gravel/Sand Pack Grain Size/Supplier # From (ft.) To (ft.)	Lat: Degrees 38 Minutes 11 Seconds 08.94
8.7	22. Casing and Liner Information
	Diameter (in.) Material, Joint Type From (ft.) To (ft.)
2. Well Use: Monitoring Well Disinfeded? No	SCH. 40 PCV RISER 0
/21/2010	2 SCH.40 PVC SCREEN 10.74 19.99
	19.99 20.5
Pump Capacity (gpm):	23. is the well
6. Pitless Adapter Model and Manufacturer: Attachment to Casing:	_
7. Well Cap Type & Manufacturer:	r level (ft.) below too of casing 15.36 which is (in.) at
8. Pressure Tank Working Cycle (gals.): ——— Captive Air? 9. Pump System Disinfected:	b. pumping level is (ft.) pumping (gpm)
10. Name of Pump Company	25. Earth Materials Passed Through From (ft.) To (ft.)
11. Pump Installer:	and 11 2
12. Date	
Licensed Pump Installation Contractor Signature	
olic Health Health	
525 West Jefferson Street purpose as outlined under Public Act-0863. <u>Disclosure of this information is Mandatory.</u> This form has been approved by the	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log & indicate how hole was sealed)

Forms Management Center.

License # 1052-000057

Licensed Water Well Contractor Signature

IL 482-0126 Revised 6/09

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

Print Form

1 Type of Well		13. Property Owner: Dynegy Baldwin Energy Complex Well # 154
		14. Driller:
a. Driven Well: Casing Diameter (in.)	Depth (ft.)	
b. Bored Well: Casing Diameter (in.)	Buried Stab? No	ig Company Tena-Dim
c. Drilled Well: PVC Casing Formation Packer Set at Depth of (ft.) 12.63	acker Set at Depth of (ft.) 12.63	Date Issued: 17. Date Drilling Started Sep 20, 2010
A Belliad Well: Stad Casing Machanically Drives	- Control of	18. Well Site Address: Dynegy Baldwin Energy Complex
		19. Township Name: Baldwin Land I.D. #
e. Hole Diameter (in.) 6.3 to (ft.) 1/./1; (in.) f Tyne of Grout Weigh	(in.) to (it.) to (it.) to (it.) to (it.)	20. Subdivision Name:
BENTONITE CHIPS 2	1 6.6	21. Location: a. County RANDOLPH b. Site Elevation 375 fl. (above msl)
		c. Township: 4S Range: 7W Section: 9
1	Inconsolidated Materials	d. SW Quarter of the NE Quarter of the SW Quarter
g. vveil rinished within Oriconsolida	iled Materials	e. GPS: Lat: Degrees 38 Minutes 11 Seconds 47.62 N
h. Kind of Gravel/Sand Pack Grai	Grain Size/Supplier # From (ft.) To (ft.)	Lon: Degrees 89 Minutes 53 Seconds 1.5 W
CLEAN SILICA SAND	6.6 12.63	lion
		Diameter (in.) Material, Joint Type From (ft.) To (ft.)
2. Well Use: Monitoring	Well Disinfected? No	2 SCH. 40 PCV RISER 0 7.5
		2 SCH.40 PVC SCREEN 7.5 12.12
3. Date well Completed: 9/20/2010	Differs Estimated Well Tiero (gpin).	2 SCH.40 PVC SUMP 12.12 12.63
4. Date Permanent Pump Installed:	Set at Depth (ft.):	Diameter (in.) Length (ft.) Skot Size (in.) From
		23. is the well screened? Yes 2 4. \(\psi \) 4. \(\psi \) 25 0.01 7.5 12.12
6. Pitless Adapter Model and Manufacturer:	Attachment to Casing:	24. Water from at a depth of (ft.) To (ft.)
7. Well Cap Type & Manufacturer:		evel (ft.) below top of casing 15.13 which is (in.) at
8. Pressure Tank Working Cycle (gals.):		b. pumping level is (ft.) pumping (gpm) for (hours)
10. Name of Pump Company	Air?	25. Earth Materials Passed Through From (ft.) To (ft.)
11. Pump Installer	# exue	CLAY w/ sand 9.5 12.63
12. Licensed Pump Installation Contractor Signature	ontractor Signature Date	
Illinois Department of Public Health IN Division of Environmental Health of	IMPORTANCE NOTICE: This state agency is requesting disclosure folialization that is necessary to accomplish the statutory	
	purposes so outlined by the property of this purposes of this purposes of the purposes of the purposes of the purposes of the property of the	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log & indicate how hole was sealed)
	Forms Management Center.	1. License # 092-00685

IL 482-0126 Revised 6/09

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

Print Form

Type of Well a. Driven Well: Casing Diameter (in.)	.) Depth (ft.)	gy Complex	Well#
b. Bored Well: Casing Diameter (in.)	Buried Slab?	ng Company : Terra-Drill	
Casing Formati	c. Drilled Well: PVC Casing Formation Packer Set at Depth of (ft.) 20.52		Sep 10,
d. Drilled Well: Steel Casing Mechanically Driven	ically Driven	Lynegy bardwin Energy Compa	
e. Hole Diameter (in.) 8.5 to (ft.) 20.52; (in.)	20.52; (in.) to (ft.); (in.) to (ft.)	19. Township Name: Baldwin LD. #	
# of bags	It From (ft.) To (ft.) Tre	20. Subdivision Name:	e e
1.5	1.5*50=75 1 8.7	21. Location: a. County RANDOLPH b. Site Elevation	on 375
		c. Township: 4S Range: 7W Section: 9	
g. Well Finished within Unconso	Unconsolidated Materials	the SE Quarter of the SW	Quarter
		Lat: Degrees 38 Minutes 11 Seconds 35.49	z ol
Kind of Gravel/Sand Pack CLEAN SILICA SAND	Grain Size/Supplier # From (ft.) To (ft.)	Lon: Degrees 89 Minutes 52 Seconds 58.06 W 22. Casing and Liner Information	≽ છા
		Diameter (in.) Material, Joint Type	From (ft.)
Well Use: Monitoring	Well Disinfected? No	2 SCH. 40 PCV RISER	
Date Well Completed: 9/10/2010	Driller's Estimated Well Yield (com):	2 SCH 40 PVC SCREEN	10.76
Date Permanent Pump Installed:	Set at Depth (ft.):	2 SCH.40 PVC SUMP	Slot Size (in) En
Pump Capacity (gpm): Pitless Adapter Model and Manufacturer:	Attachment to Casing:		
7. Well Cap Type & Manufacturer:		at a deput of (ii.) at lavel (ii.) below top of casing 19.5	which is (in) above organs
Pressure Tank Working Cycle (gals.): Capt	Captive Air? 9. Pump System Disinfected:	(md	for (hours) From (ft.) T
10. Name of Pump Company			0
	License #	CLAY w/ sand	11
ump Installation	Licensed Pump Installation Contractor Signature		
Hinnis Desertment of Bublic Hallth	INDODE AND CONTINE. This sees, sees is a seed of the sees.		
illinois Department of Public Health Division of Environmental Health 525 West Jefferson Street Springfald II 62761	information in Mander Public Act-0863. Disclosure of information that is necessary to accomplish the statutory purpose as outlined under Public Act-0863. <u>Disclosure of this information is Manderous</u> This form has been appropried to the	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log & indicate how hole was sealed)	how h
	inomations wandatory. This form has been approved by the Forms Management Center.	John Link	License # 093-LUES

IL 482-0126 Revised 6/09

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

Print Form

13. Property Owner: Dynegy Baldwin Energy Complex VVell # 156	14. Driller:	15. Name of Drilling Company : Terra-Drill 16. Permit Number:	Date issued: Sep 10, 2010	18. Well Site Address: Dynegy Baldwin Energy Complex	19. Township Name: Baldwin Land I.D. #		21. Location: a. County RANDOLPH b. Site Elevation 432 ft. (above msl)	c. Township: 4S Range: 7W Section: 9	d. Quarter of the NE Quarter of the SE Quarter	e. GPS: Lat: Degrees 38 Minutes 11 Seconds 56.52 N	Lon: Degrees 89 Minutes 52 Seconds 10.58 W Survey use only Survey use only	Diameter (in.) Material, Joint Type From (ft.) To (ft.)	SCH. 40 PCV RISER 0	2 SCH.40 PVC SCREEN 7.86 17.19	2 SCH.40 PVC SUMP 17.19 17.7 Diameter (in.) contit (ft.) Strot (in.) Error (ft.)	Yes If yes 2 9.33 0.01	at a depth of (ft.)	a. Static water level (ft.) below top of casing 7.30 which is (in.) above ground	b. pumping level is (ft.) pumping (gpm) for (hours)	sity-CLAY 0	CLAY w/ sand 9.5 17.7			this (Attach 2nd page, if necessary) (if DRY HOLE, fill out log & indicate how hole was sealed) y the
					á	e Depth														ı			g discle atutory	ved b
			b. Bored Well: Casing Diameter (in.) c. Drilled Well: PVC Casing Formation Packer Set at Depth of (ft.) 17.7		1 47 - 4	e. note Diameter (in.) 0.3 to (it.) 17.7 ; (in.) to (it.) ; (in.) to (it.) to (it.) Tremie Depth (it.)	-		o. Well Enished within Unconsolidated Materials		Grain Size/Supplier # From (ft.) To (ft.)		Well Disinfeded? No	Driller's Estimated Well Yield (gpm):	Set at Depth (ft.):	Attachment to Casing:			Captive Air? 9. Pump System Disinfected:		License #	Licensed Pump Installation Contractor Signature	IMPORTANCE NOTKE: This state agency is requesting disclosure of information that is necessary to accomplish the statutory	purpose as outlined under Public Act-0863. <u>Disclosure of this information</u> is Mandatory. This form has been approved by the Forms Management Center.

IL 482-0126 Revised 6/09

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

Ε	
ᅙ	
굳	
Ξ	

(above msl)

1. Type of Well		13. Property Owner: Dynegy Baldwin Energy Complex Well # 157
a Driven Well: Casing Diameter (in)	Denth (#)	14. Driller:
b Bored Well Casing Dismoster (in)	ON Carlos Of Carlos On Car	15. Name of Drilling Company: Terra-Drill 16. Permit Number:
C Drilled Well: DVC Casing Formation is	Darker Set at Death, of (#) 17.71	Date Issued: Sep 9, 2010
2 Dalled Mail. Stool Control C		18. Well Site Address: Dynegy Baldwin Energy Complex
o Holo Diameter (in) & 5 to the 17 71 time	(4)	19. Township Name: Baldwin Land I.D. #
f. Type of Grout # of bags (Grout Weight From (ft.) To (ft.) Tremie Depth (ft.)	20. Subdivision Name:
IIPS 2	1 6	21. Location: a. County RANDOLPH b. Site Elevation 420 ft. (above ms
		c. Township: 4S Range: 7W Section: 9
a. Well Finished within Unconsolida	Unconsolidated Materials	Quarter of the
		e. GPS: Lat: Degrees 38 Minutes 11 Seconds 38.01 N
h. Kind of Gravel/Sand Pack Gra	Grain Size/Supplier # From (ft.) To (ft.)	Lon: Degrees 89 Minutes 52 Seconds 2.72 W Survey use only Survey use only
		Diameter (in.) Material, Joint Type From (ft.) To (ft.)
2. Well Use: Monitoring	Well Disinfected? No	2 SCH. 40 PCV RISER 0 7.95
3. Date Well Completed: 9/9/2010	Driller's Estimated Well Yield (apm):	2 SCH.40 PVC SCREEN 子6杆 17.2
4. Date Permanent Pump installed:		12
5. Pump Capacity (gpm):		
6. Pitless Adapter Model and Manufacturer:	Attachment to Casing:	
7. Well Cap Type & Manufacturer.		at a depth of (ft.)
8. Pressure Tank Working Cycle (gals.):	Air? O Direce Custome Disinfrated.	둦
		25. Earth Materials Passed Through From (ft.) To (ft.)
10. Name of Pump Company		silty-CLAY 0 9.5
11. Pump Installer:	License #	CLAY w/ sand 9.5 17.71
Licensed Pump Installation Contractor Signature	ontractor Signature Date	
Nimois Department of Public Health II Division of Environmental Health o	IMPORTANCE NOTICE: This state agency is requesting disclosure of information that is necessary to accomplish the statutory	
525 West Jefferson Street Springfield, IL 62761	purpose as outlined under Public Act-0863. <u>Disclosure of this information is Mandatory</u> . This form has been approved by the	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log & indicate how hole was sealed)

IL 482-0126 Revised 6/09

Forms Management Center.

License # 092-0068

Type of Well

Type of Grout

Ë

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

Print Form

ft. (above ms which is (in.) above ground 33.6 urvey use only To (ft.) 49.03 49.54 44.41 Slot Size (in.) From (ft.) To (ft.) 19 To (ft.) 16. Permit Number: 17. Date Drilling Started 9/22/2010 Well # 252 44.41 for (hours) 49.03 From (ft.) 14.4 421 Seconds 00.07 W Seconds 15.31 N From (ft.) 9 License # Quarter b. Site Elevation Land I.D. # 0.0 rot Fo Section: 16 at a depth of (ft.) Diameter (in.) Length (ft.) Quarter of the NE Dynegy Baldwin Energy Complex 4.625 13. Property Owner: Dynegy Baldwin Energy Complex 0.25 Material, Joint Type pumping (gpm) Earth Materials Passed Through 22 Minutes 11 a. Static water level (ft.) below top of casing Minutes SCH.40 PVC SCREEN 15. Name of Drilling Company: Terra-Drill SCH. 40 PCV RISER SCH.40 PVC SUMP Range: 7W Randolph Quarter of the NE If yes Casing and Liner Information 19. Township Name: Baldwin 83 Lat: Degrees 38 Lon: Degrees b. pumping level is (ft.) 21. Location: a. County 18. Well Site Address: 20. Subdivision Name: Diameter (in.) Yes c. Township: 4S sandy-CLAY Date Issued: silty-CLAY 24. Water from screened? 23. Is the well ζĄ d. SE e. GPS: 22 52 Tremie Depth (ft. to (A.) 9. Pump System Disinfected: 33 To (A.) 49.54 Driller's Estimated Well Yield (gpm): : (jr.) Set at Depth (ft.): To (A.) Attachment to Casing: c. Drilled Well: PVC Casing Formation Packer Set at Depth of (ft.) 49.54 39.3 43 License # From (ft.) Buried Slab? No From (ft.) Depth (ft.) 43 Well Disinfected? No to (A.) 39.3 Grain Size/Supplier # Well Finished within Unconsolidated Materials 2*50=100 LBS 4 *94=376 LBS **Grout Weight** e. Hole Diameter (in.) 8.5 to (ft.) 49.54; (in.) d. Drilled Well: Steel Casing Mechanically Driven Captive Air? a. Driven Well: Casing Diameter (in.) b. Bored Well: Casing Diameter (in.) 3. Date Well Completed: Sep 23, 2010 # of bags Kind of Gravel/Sand Pack Date Permanent Pump Installed: 7. Well Cap Type & Manufacturer: Name of Pump Company **CLEAN SILICA SAND** 2. Well Use: Monitoring Cement-Bentonite Pitless Adapter Model Working Cycle (gals.): Pump Capacity (gpm): **Bentonite Chips**

To (ft.) 49.03

> IMPORTANCE NOTICE: This state agency is requesting disclosure <u>information</u> is Mandatory. This form has been approved by the Forms Management Center. purpose as outlined under Public Act-0863. Disclosure of this of information that is necessary to accomplish the statutory

斯DRY HOLE, fill out log & indicate how hole was sealed

(Attach 2nd page, if necessary)

8 49.54

SAND w/day

Date

Licensed Pump Installation Contractor Signature

11. Pump Installer:

7

and Manufacturer.

8. Pressure Tank

Ilinois Department of Public Health

Division of Environmental Health

525 West Jefferson Street Springfield, IL 62761

Revised 6/09 IL 482-0126

Š

78 27

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

Print Form

13. Property Owner: Dynegy Baldwin Energy Complex	Deoth (ft.)		b. Bored Well: Casing Diameter (in.) Buried Slab? Date Issued:	t at Depth of (ft.) 35.04		Hole Diameter (in.) 0.3 to (ft.) 33.04 ; (in.) to (ft.) ; (in.) to (ft.) 20. Subdivision Name:	1 25.7	1*50=50 25.7 27.7 ange:	SW	n(ft.) To (ft.) Lon: Degrees 89	22. Casing and Liner Information	Diameter (in.) Ma	Well Disinfected? No	Driller's Estimated Well Yield (gpm):	Set at Depth (ft.):	Attachment to Casing:	a. Static water level (ft.) below top of casing	b. pumping level is (ft.)		License #	Date	Licensed Pump Installation Contractor Signature	IMPORTANCE NOTICE: This state agency is requesting disclosure	purpose as outlined under Public Act-0863. <u>Disclosure of this</u> (Attach 2nd page, if necessary)
saldwin Energy Complex Well # 253	License #	Terra-Drill 16. Permit Number:	17. Date Drilling Started Sep 20, 2010	Dynegy Baldwin Energy Complex	Land I.D.#	Lot #	OLPH b. Site Elevation 450 ft. (above msl)	Range: 7W Section: 15	SW Quarter of the NE Quarter	Seconds 39.53	on Survey use only	Material, Joint Type From (ft.) To (ft.)	SCH. 40 PCV RISER 0 29.91	N 29.91	SCH 40 PVC SUMP 34.53 35.04 SCH 40 PVC SUMP State (ii.) Length (ft.) Slot Size (ii.) From (ft.) To (ft.)	2 4.625 0.01 29.91 at a depth of (ft.)	31.41 which is (in.) at	(wd	Is Passed Through From (ft.) To (ft.)	11 35.04				sary) (If DRY HOLE, fill out log & indicate how hole was sealed)

IL 482-0126 Revised 6/09

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

Print Form

13. Property Owner: Dynegy Baldwin Energy Complex Well # 350		ng Company : Terra-Driff	S2 17. Date Dilling Started Oct O.	48 Tourship Name: Dathids	.) to (ft.)	me Depm (r.) 21. Location: a County BANDOLEU	≱	nip: 4S Range: 7W Section: 10	NW Quarter of the NE Quarter of GPS: Lat: Degrees 38 Minutes 11.	Minutes 52	flon	Diameter (in.) Material, Joint Type From (ft.) To (ft.)	2 SCH. 40 PCV RISER 0	2 SCH,40 PVC SCREEN 41.49	2 SCH.40 PA	23. Is the well res 1 4.625 0.01 14.49	24. Water from at a depth of (ft.) To (ft.)	er level (ft.) below top of casing 24.56 which is (in.) al	b. pumping fevel is (ft.) pumping (gpm) for (hours)	fected: Earth Materials Passed Through From (ft.) To (ft.)	CLAY 0 15.5	clayey-SILT w/ sand	CLAY 18 26.4	LIMESTONE w interbedded shales 26.4 35.5	SHALE 35.5	
			ဖ		(j.	<u>E</u>	4					1 1		Fe			ssing:		i	ia Disir		-		Date		gency is
	a. Driven Well: Casing Diameter (in.)	b. Bored Well: Casing Diameter (in.)	c. Drilled Well: PVC Casing Formation Packer Set at Depth of (ft.) 46.6	d. Drilled Weft: Steel Casing Mechanically Driven	26.4 ; (in.) 3.9 to (ft.) 46.62	From (π.)	5.5* 94: 517 26.4	.5*50=25 26.4 37	BEDROCK	Grain Size/Supplier # From (ft.)	37		Well Disinfected? No		Set at Depth (#):		Attachment to Casing:			Captive Air? 9. Pump System Disinfected:		#icense #	The second secon	Licensed Pump Installation Contractor Signature		IMPOUTANCE MOTICE. This chats appared is requesting disclosure

State of Illinois Department of Public Health

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

1	E	
	Ö	
4	Z	
2	Ę	
_		

Type of Well	13. Property Owner: Dynegy Baldwin Energy Complex Well # 352
	14. Driller:
	15. Name of Drilling Company : Terra-Drill 16. Permit Number:
b. Bored Well: Casing Diameter (in.) Buried Slab? NO	Date Issued: 17. Date Drilling Started 9/15/2010
c. Drilled Well: PVC Casing Formation Packer Set at Depth of (ft.) 73.8	ess: Dynegy Baldwin Energy Complex
	m
Hole Diameter (in.) 8.5 to (ft.) 53.7 ; (in.) 3.9 to (ft.) 73.8 ; (in.)	
# of bags Grout Weight From (ii.)	Randolph
Certifert Desironite 3 4 34 4/0 LB3 1 101.3	Range: 7W Section: 16
g. Well Finished within $\ \ egin{aligned} egin{aligned} eta & eta & eta \ eta & eta & eta \end{aligned}$	Quarter of the NE Quarter of the NE Quarter
	e. GPS: Lat: Degrees 38 Minutes 11 Seconds 15.31 N
h. Kind of Gravel/Sand Pack Grain Size/Supplier # From (ft.) To (ft.) CLEAN SILICA SAND 65.3 73.8	Lon: Degrees 89 Minutes 52 Seconds 00.07 W
	Casing and Line miormation Diameter (in.) Material, Joint Type From (ft.)
Monitoring Manitoring	SCH. 40 PCV RISER 0
Avea Districted 110	2 SCH.40 PVC SCREEN 68.67 73.29
010 Driller's Estin	2 SCH 40 PVC SUMP 73.29 73.8
It. Date Permanent Pump Installed: Set at Depth (ft.):	Diameter (in.) Length (ft.) Slot Size (in.) From (ft.) To (ft.)
5. Pump Capacity (gpm): 5. Pittess Adapter Model Attachment to Casino	
and Manufacturer:	24. Water from at a depth of (ft.) To (ft.)
7. Well Cap Type & Manufacturer:	a. Static water level (ft.) below top of casing 55.37 which is (in.) above ground 33.6
3. Pressure Tank Working Cycle (gals.):	b. pumping level is (ft.) pumping (gpm) for (hours)
	Earth Materials Passed Through From (ft.) To (ft
19. Maine of Fundy Contpany	sity-t.AY
11. Pump Installer:	CLAY 5
	sandy-CLAY 19 27
Licensed Pump Installation Contractor Signature	SAND w/ day 27 28
	CLAY 28 53.7
Minois Department of Public Health IMPORTANCE NOTICE: This state agency is requesting disclosure Division of Environmental Health of information that is necessary to accomplish the statutory	LIMESTONE some shales 53.7 73.8
	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log & indicate how hole was sealed)
	24 Jan 1 1918 # 093 - 101. R.

IL 482-0126 Revised 6/09

Licensed Water Well Contractor Signature

License # 093-00/287

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

Print Form

1. Type of Well		13. Property Owner: Dynegy Baldwin Energy Complex Well # 355
a. Driven Well: Casing Diameter (in.)	(#) three (#)	14. Driller:
b Rorad Wall: Casing Diamater (in)		15. Name of Drilling Company: Terra-Drill 16. Permit Number:
C Delibed Well: DVC Casing Formation Darker Set at Death of (#)	Duricu Sabi Tanth of (#) 32 5Q	Date Issued: 17. Date Drilling Started Sep 14, 2010
	in the control of the	18. Well Site Address: Dynegy Baldwin Energy Complex
d. Dringd Well: Steel Casing Mechanically Univer	Univen	19. Township Name: Baldwin
(E)	; (in.) 3.9 to (ft.) 32.59 ; (in.)	
L	Grouf Weight From (II.) 10 (II.) Tremie Deptin (II.)	
CEMENT-BENTONITE 3	3*94=282 1 20	Lucialum. a. County RANDOLPH b. Site Elevation 375 ft. (above msl)
BENTONITE CHIPS 1	1*50=50 20 23.4	c. Township: 4S Range: 7W Section: 9
g. Well Finished within Bedrock		SE Quarter of the SW Quarte
h. Kind of Gravel/Sand Pack G	Grain Size/Supplier# From (ft.) To (ft.)	Lat: Degrees 38 Minutes 11
Ħ	23.4	22. Casing and Liner Information
		Diameter (in.) Material, Joint Type From (ft.)
2. Well Use: Monitoring	Well Disinfected? No	SCH. 40 PCV RISER 0
3 Date Well Completed: 0/14/2010	PloiX Hold	2 SCH-40 PVC SCREEN 27.46 32.08
	Cilida & Estimated Vicin (Spirit).	2 SCH.40 PVC SUMP 32.08 32.59
4. Date Permanent Pump Installed:	Set at Depth (ft.):	Diameter (in.) Length (ft.) Slot Size (in.) From
5. Pump Capacity (gpm): 6. Pitless Adapter Model		23. Is the well screened? Yes 2 4.625 0.01 10.76 20.01
and Manufacturer:	Attachment to Casing:	24. Water from at a depth of (ft.) To (ft.)
7. Well Cap Type & Manufacturer:		which is (in.) at
8. Pressure Tank Working Cycle (gals.):	Discontinua Air	(in
10. Name of Pump Company	Ver Aut : a . r unip Cystem Distriction.	Earth Materials Passed Through From (ft.) To
11. Pump Installer:	License *	CLAY w/ sand 11 21.9
12		LIMESTONE 21.9 32.59
Licensed Pump Installation Contractor Signature	Contractor Signature Date	
Illinois Department of Public Health Division of Environmental Health	IMPORTANCE NOTICE: This state agency is requesting disclosure	
525 West Jefferson Street Springfield, IL 62761	purpose as outlined under Public Act-0863. <u>Disclosure of this</u> information is Mandatory. This form has been approved by the	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log & indicate how hole was sealed)
1L 482-0126 Revised 6/09	rorms management center.	Licensed Water Well Contractor Signature

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

Print Form

1. Type of Well

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

-	
orm	
~	
O	
Ц.	
+	
rint	
-	
_	
0	

Type of Well	13. Property Owner: Dynegy Baldwin Energy Complex Well # MW-104DR	1
a Driven Well: Casing Diameter (in)	14. Driller: Mat Cooper / John T. Marlo License #092-006857	
	15. Name of Drilling Company: Terra-Drill 16. Permit Number:	
100000000000000000000000000000000000000	Date Issued: 17. Date Drilling Started Jul 25, 2011	
	18. Well Site Address: 10901 Baldwin Road, Baldwin, IL 62217	ı
(4)	19. Township Name: Baldwin Land I.D.#	70
f. Type of Grout # of baas Grout Weight From (ft.) To (ft.)	20. Subdivision Name:	
	21. Location: a. County Randolph b. Site Elevation 453 ft. (above msl)	
	c. Township: 04S Range: 07W Section: 10	
o. Well Einished within Unconsolidated Materials	Quarter of the SE Quarter of the SE Quarter	
	e. GPS: Lat: Degrees 28N Minutes 11 Seconds 17.8 N	
and Pack Grain Size/Supplier # From (ft.)	Lon: Degrees 89W Minutes 51 Seconds 12.4 W	
Clean Silica Sand #1/FilterSil (4 bags) 22 30	22. Casing and Liner Information	
	Diameter (in.) Material, Joint Type From (ft.) To (ft.)	
Well Use - Monitoring Well Disinfected?	2 SCH. 40 PVC RISER -3 23.18	
1.1 26 2044	2 SCH. 40 PVC SCREEN 23.18 28.23	
	.82	
Date Permanent Pump Installed:		
Pump Capacity (gpm):	If yes 2 5.05 10	
	24. Water from Sand at a depth of (ft.) 24.5 To (ft.) 27.25	
Well Cap Type & Manufacturer:	a. Static water level (ft.) below top of casing 8.03 which is (in.) above ground 36	
	b. pumping level is (ft.) pumping (gpm) for (hours)	
Captive All ?	25. Earth Materials Passed Through From (ft.) To (ft.)	
Name of Pump Company	Silty Clay 0 23.5	
Pump Installer: License #	Sandy Clay 23.5 24.5	
	Sand (fine to medium) 24.5 27.25	
Licensed Pump Installation Contractor Signature	Silty Clay 27.25 30	
Illinois Department of Public Health IMPORTANCE NOTICE: This state agency is requesting disclosure Division of Environmental Health of information that is necessary to accomplish the statutory		
	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log & indicate how hole was sealed)	

3. Date Well Completed: Jul 26, 2011

2. Well Use: Monitoring

4. Date Permanent Pump Installed:

5. Pump Capacity (gpm): Pitless Adapter Model

Ŀ.

Name of Pump Company

11. Pump Installer:

12.

7. Well Cap Type & Manufacturer:

8. Pressure Tank Working Cycle (gals.):

Illinois Department of Public Health Division of Environmental Health 525 West Jefferson Street Springfield, IL 62761

IL 482-0126 Revised 6/09

information is Mandatory. This form has been approved by the IMPORTANCE NOTICE: This st of information that is necess: purpose as outlined under Pu Forms Management Center.

Licensed Water Well Contractor Signature

License #092-006857

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

	STO.	
	u.	
٠.		
	_	
	Ξ	
	۵,	
1	•	
	٠.	
٠.	: in	

Type of Well a. Driven Well: Casing Diameter (in.)	Depth (ft.)	13. Property Owner: Dynegy Baldwin Energy Complex 14. Driller: John Gates	Well# MW-161 License #
	Depti (ii.)	15. Name of Drilling Company: Bulldog Drilling, LLC	16. Permit Number:
b. Bored Well: Casing Ulameter (in.)c. Drilled Well: PVC Casing Formation	b. Bored Well: Casing Diameter (in.) c. Drilled Well: PVC Casing Formation Packer Set at Depth of (ft.) 23.55	Date Issued: 17. Date Drilling Started 18 Mail Site Address: 10001 Baldwin Road Baldwin II 62217	Started Aug 20, 2013
chanic	d. Drilled Well: Steel Casing Mechanically Driven	n.	.D.#
ft.) 3	to (ft.)		Lot#
# of bags		21. Location: a. County Randolph b. Site	b. Site Elevation 428 ft. (above msl)
	5*50#=250 20 21.65	fownship: 04S Range: 07W Sect	
isofi	Unconsolidated Materials	d. NW Quarter of the NW Quarter of the SE e. GPS: Lat: Degrees 38N Minutes 11 Secon	SE Quarter Seconds 46.71 N
Kind of Gravel/Sand Pack G	Grain Size/Supplier # From (ft.) To (ft.) #1/FilterSil (6.5 bags) 21.65 34	Lon: Degrees 89W Minutes 52 Secol 22. Casing and Liner Information	Seconds 44.97 W Survey use only
=		Diameter (in.) Material, Joint Type	From (ft.) To (ft.)
	Well Disinfected?	2 SCH. 40 PVC RISER	-2.53 23.55
Date Well Completed: Aug 21, 2013	Driller's Estimated Well Yield (gpm):	2 SCH. 40 PVC SCREEN	
Date Permanent Pump Installed:	Set at Depth (ft.):	2 SCHL 40 PVC SUMP Diameter (in.) Length (ft.)	Slot Size (in.) From (ft.) To (ft.)
		23. Is the well Yes If yes 2 9.45	10 23.55 32.49
	Attachment to Casing:	24. Water from Sand with clay at a depth of (ft.) 28.4	.) 28.4 To (ft.) 32.7
		a. Static water level (ft.) below top of casing 22.27	which is (in.) above ground 30.4
		b. pumping level is (ft.) pumping (gpm)	for (hours)
Sapti	Captive Air? 9. Pump System Disinfected:	25. Earth Materials Passed Through	From (ft.) To (ft.)
		FILL - silt with clay	0 1.6
	# expeci	Sifty CLAY and SILT	1.6 28.4
		SAND with clay	28.4 32.7
lotion	Sourced Dumy Installation Contractor Simultine	Silty CLAY with sand; Sandy SILT	32.7 42.9
		Silty CLAY with shale and limestone gravel	42.9 44.3
Illinois Department of Public Health	IMPORTANCE NOTICE. This state agency is requesting disclosure	SHALE	44.3 44.7
Division of Environmental nearm 525 West Jefferson Street Springfield 11 62761	of Information that is necessary to accompany use successing purpose as outlined under Public Act-0863. <u>Disclosure of this information is Mandator</u> . This form has been approved by the	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log	(If DRY HOLE, fill out log & indicate how hole was sealed)
	Forms Management Center.	John 1998	License # 090-006

Licensed Water Well Contractor Signature

License # 093-006857

IL 482-0126 Revised 6/09

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

Print Form

13. Property Owner: Dynegy Baldwin Energy Complex Well # MW-162	14. Driller: John Gates	15. Name of Drilling Company: Bulldog Drilling, LLC 16. Permit Number:	Date Issued: 17. Date Drilling Started Aug 20, 2013	ress: 10901 Baldwin Road, Baldwin, IL 62217		20. Subdivision Name:	21. Location: a. County Randolph b. Sit	c. Township: 04S Range: 07W Section: 9	e. GPS: Lat. Doctors 38N Minutes 11 Seconds 33.38 N	Minutes 52 Seconds 45.19 W	· Information		2 SCH. 40 PVC SCREEN 16.1 25.55	25.55 SCHL 40 PVC SUMP 25.55 25.9 Diameter (in.) Length (ft.) Slot Size (in.) From (ft.) To (ft.)	9.45 10	24. Water from Dry well at a depth of (ft.) To (ft.)	a. Static water level (ft.) below top of casing which is (in.) above ground	for (hours)	25. Earth Materials Passed Through From (ft.) To (ft.)	8.5	ey SILT 9.7 1	SILT 18.5 22.7	Silty CLAY 22.7 25.9	dosure	(Attach 2nd page, if necessayy) (If DRY HOLE, fill out log & indicate how hole was	March 1 100 min
1 Type of Well		a, Driven Well: Casing Diameter (in.)	b. Bored Well: Casing Diameter (in.) Buried Slab?	c. Drilled Well: PVC Casing Formation Packer Set at Depth of (ft.) 16.1	d. Drilled Well: Steel Casing Mechanically Driven	Hole Diameter (in.) 8 to (ft.) 25.9 ; (in.) to (ft.)	f. Type of Grout # of bags Grout Weight From (ft.) 10 (ft.) Iremie Deptin (ft.)	Chips 1 1.50 12.5 14.42	hin Unconsolid	/Sand Pack Grain Size/Supplier # From (ft.)	#1/FilterSil (6 bags) 14.42 25.9	Maniforing Well Bisinforday	1	3. Date Permanent Pump Installed: Set at Depth (ft.):	5. Pump Capacity (gpm):	6. Pritess Adapter Model and Manufacturer:	7. Well Cap Type & Manufacturer:		Captive Air? 9. Pump System Disinfected:		11. Pump Installer:	12. Date	Licensed Pump Installation Contractor Signature	£	ental Health of information that is necessary to a treet purpose as outlined under Public Ac	Springfield, IL 62761 information is Mandatory. This form has been approved by the

Licensed Water Well Contractor Signature

License # 092-006857

IL 482-0126 Revised 6/09

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

		-		
•	s			
	2			
٠	2	•	ì	
٠	-1			٠.
	٠	_	٠	
	٠,			
	'n			
ť	þ			
ì				

13. Property Owner: Dynegy Baldwin Energy Complex Well # MW-262	14. Driller: John Gates	15. Name of Drilling Company: Bulldog Drilling, LLC	Date Issued: 17. Date Drilling Started Aug 19, 2013	ess: 10901 Baldwin Road, Baldwin, IL 62217		- 41	21. Location: a. County Randolph b. Site Elevation 433 ft. (above msl)	c. Township: 04S Range: 07W Section: 9	d. SW Quarter of the SW Quarter of the SE Quarter e. GPS: particle 38N Minutes 11 Seconds 33.38 N	Minutes 52 Seconds 45.19 W	22. Casing and Liner Information	, Joint Type From (ft.) T		2 SCH. 40 PVC SCREEN 42.33 46.83	2 SCHL40 PVC SUMP 46.83 47.21 Diameter (in.) Length (ft.) Slot Size (in.) From (ft.) To (ft.)	4.5 10	24. Water from Sand and Sandy Silt at a depth of (ft.) 42 To (ft.) 46.5	a. Static water level (ft.) below top of casing 35.31 which is (in.) above ground 28.2	b. pumping level is (ft.) pumping (gpm) for (hours)	25. Earth Materials Passed Through From (ft.) To (ft.)	Silty CLAY and SILT 0 30.3	SAND 30.3 32.9	Sandy CLAY and CLAY 42	SAND and Sandy SILT; some Silty CLAY 46.5	Silty CLAY 46.5 50.4	SHALE 50.4 51	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log & indicate how hole was sealed)	1 Propose # 093 - 1918
Truc of Moli		a. Driven Well: Casing Diameter (in.) Depth (ft.)	b. Bored Well: Casing Dlameter (in.) Buried Slab?	c. Drilled Well: PVC Casing Formation Packer Set at Depth of (ft.) 42.33	ing	-	6*50#=300 1 38.4	Bentonite Chips 1 1*50#=50 38.4 40.79	g. Well Finished within Unconsolidated Materials	Sand Pack Grain Size/Supplier # From (ft.)	FilterSil Quartz #1/FilterSil (2.5 bags) 40.79 51		2. Well Use: Monitoring Well Disinfected?	3. Date Well Completed: Aug 19, 2013 Driller's Estimated Well Yield (gpm):			6. Pritess Adapter Model and Manufacturer:	7. Well Cap Type & Manufacturer:		Working Cycle (gais.). Captive Air? 9. Pump System Disinfected:	10. Name of Pump Company	41. Dumn Insfaller		12. Date Incorporate Plump Installation Contractor Stonature		Illinois Department of Public Health IMPORTANCE NOTICE: This state agency is requesting disclosure	UNIVISION OF ENVIRONMENTAL REBITO OF INTOTITIATION THAT IS INECESSARY TO ACCOMPINE THE STAULUCY SZZ WEST LEFFERSON Street OUTPOSE as outlined under Public ACt-0868. <u>Disclosure of this information is Mandaton This form has been approved by the Carlon Company of th</u>	Forms Management Center.

Licensed Water Well Contractor Signature

IL 482-0126 Revised 6/09

License # 092-0068

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

Print Form

13. Property Owner: Dynegy Baldwin Energy Complex Well # OW-256	# Odlor Index Order	í	15. Name of Drilling Company: Bulldog Drilling, LLC 16. Permit Number:	Date Issued: 17. Date Drilling Started Aug 22, 2013	18, Well Site Address: 10901 Baldwin Road, Baldwin, It. 62217	40 Township Name: Baldwin		# 10 1	21. Location: a. County Randolph b. Site Elevation 428 ft. (above msl)	c. Township: 04S Range: 07W Section: 10	d. NW Quarter of the NW Quarter of the SW Quarter e. GPS: Lat. Degrees 38N Minutes 11 Seconds 56.28 N	89W Minutes 52	mation	Diameter (in.) Material, Joint Type From (ft.) To (ft.)	2 SCH. 40 PVC RISER -2.5 27.99	2 SCH. 40 PVC SCREEN 27.99 32.49	2 SCHL40 PVC SUMP 32.49 33.07		23. is the well Yes 2 4.5 10 27.99 32.49	24. Water from Sand at a depth of (ft.) 27.1 To (ft.) 28.6	a. Static water level (ft.) below top of casing 11.48 which is (in.) above ground 30	b. pumping level is (ft.) pumping (gpm) for (hours)	25. Earth Materials Passed Through From (ft.) To (ft.)	Silty CLAY 0 9.5	CLAY with sand 9.5 13.5	Silty CLAY 13.5 27.1	SAND 27.1 28.6	Silty to Sandy CLAY 33.9	SHALE, weathered 33.9 38.5	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log & indicate how hole was sealed)	Jah 1 1973 License # 093-006
	1. Iype of Well	a. Driven Well: Casing Diameter (in.) Depth (ft.)		- 1	c. Drilled Well: PVC Casing Formation Packer Set at Depth of (ft.) 27.99	d. Drilled Well: Steel Casing Mechanically Driven	e. Hole Diameter (in.) 8 to (ft.) 36 ; (in.) to (ft.) ; (in.) to (ft.)	# of bags Groun	Bentonite Chips 4 5*50#=250 1	Bentonite Chips 1 1*50#=50 33.9 36	g. Well Finished within Unconsolidated Materials	h. Kind of Gravel/Sand Pack Grain Size/Supplier # From (ft.) To (ft.)	FilterSil Quartz #1/FilterSil (3 bags) 26.8 33.9		o wall tree. Monitoring Well Disinfected?	Area Coc.	3. Date Well Completed: Aug 22, 2013 Driller's Estimated Well Yield (gpm):	4. Date Permanent Pump Installed:	5. Pump Capacity (gpm):		7. Well Cap Type & Manufacturer:		Working Cycle (gals.): Captive Air? 9. Pump System Disinfected:	10. Name of Pump Company	11. Pirm Installer		12. Date		ŧ	ental realth of Information (ratis recessary to at trace) tracet purpose as outlined under Public Ac	Springfield, IL 62761 <u>information</u> is Mandatory. This form has been approved by the Forms Management Center.

IL 482-0126 Revised 6/09

Licensed Water Well Contractor Signature

License # 093-006857

State of Illinois Department of Public Health

WATER WELL CONSTRUCTION REPORT Complete within 30 days of well completion and send to the appropriate Health Department

100	
Section 1997	
San	
_	
-	
_	
_	
ے	
ے	
ے	
ے	
ے	
ے	
ے	
ے	
ے	
ے	
ے	

1. Type of Well	13. Property Owner: Dynegy Baldwin Energy Complex Well # OW-257
a. Driven Well: Casing Diameter (in.)	14. Driller: John Gates License #
ă	15. Name of Drilling Company: Bulidog Drilling, LLC 16, Permit Number:
n Packer Set a	Date Issued: 17. Date Drilling Started Aug 15, 2013
	18. Well Site Address: 10901 Baldwin Road, Baldwin, IL 62217
4 4	
#	Tremie Depth (ft.)
4 5*50#=250 1	21. Location: a. County Randolph
8entonte Chips 1 1*50#= 50 28.7 31.7	c. Township: 04S Range: 07W Section: 10
g. Well Finished within Unconsolidated Materials	the SE Quarter of the
h. Kind of Gravel/Sand Pack Grain Size/Supplier # From (ft.) Ti	Lat: Degrees 38N Minutes 11 Seconds 37.91
FilterSil Quartz #1/FilterSil (4 bags) 31.7	mation
	Diameter (in.) Material, Joint Type From (ft.) To (ft.)
2. Well Use: Monitoring Well Disinfected?	2 SCH. 40 PVC RISER -2.85 33.98
Date Well Completed: Aug 16, 2013 Driller's Estimated Well Yield	(qom):
Date Permanent Pump installed: Set at Depth (ft.	2 SCHL 40 PVC SUMP 38.48 39.06
Pump Capacity (ppm):	Drameter (in.) Lengtin (it.) Stot Size (in.) From (it.)
	4.5
7 Woll Cas Trans & Massification	at a depth of (ft.)
8. Pressure Tank	a. Static water level (ft.) below top of casing 5.8 which is (in.) above ground 34.2
Working Cycle (gals.): Captive Air? 9. Pump System Disinfected:	nfected: b. pumping level is (ft.) pumping (gpm) for (hours) Earth Materials Passed Through From (ft.) To (ft.)
10. Name of Pump Company	
11. Pump Installer:	SHALE, weathered 38.75 39.6
12. Licensed Pump Installation Contractor Signature Date	
•	
Illinois Department of Public Health MPORTANCE NOTICE: This state agency is requesting disclosure Division of Environmental Health of information that is necessary to accomplish the statutory 525 West Jefferson Street purpose as outlined under Public Act-0863. <u>Disclosure of this information</u> is Mandatory. This form has been approved by the Forms Mandatoment Center.	(Attach 2nd page, if necessary) (If DRY HOLE, fill out log & indicate it
IL 482-0126 Revised 6/09	Licensed Water Well Contractor Signature

APPENDIX C WELL DEVELOPMENT REPORTS: 2010-2013

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER \mathcal{AMC}

roundwater Investigation – BEC Ast vnegy, Inc. in Energy Complex, 10901 Baldwir ator Parameters ator Parameters ouble Check Valve airless-steel Kemmerer os 🗆 Bladder 🗀 💮 welpoment Removal Intake Depth Ending Method (Itter/min) he development criteria are met.	Project Number:(Kelron) 2010.100	Studit Crayens (Kelron En		lation (2"=0.1632, 4"=0.6528) Instruments Serice (1) 17, 41, 71, 71, 71, 71, 71, 71, 71, 71, 71, 7	In Well (feet) 7.58 2" Gravel Pack Ime in Well Gallons to be Gallons Removed 8.78 2.3	Water Disposal	Product Volume Temperature pH (°C)	Increment Cumulative	1909	15. 15. 15. 15. 15. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16	(my ni) wast	KATATA SURGER)		1) 24 0 = 4.58 / MJ=1	Date /// Reviewer Date
Baldwin Energy Complex, 10901 It Criteria sing Volumes of Water Removal an of Indicator Parameters Development Bailer Bailer Crundfos Bladder Crundfos Bladder Bevelopment Removal Inlake Depth Method Time Pump Bailer (Uter/min) 17 15 15 16 17 17 16 17 17 17 18 18 19 19 19 19 19 19 19 19			Baldwin Road; Baldwin, Illinoi	Water Volume Calculation (2"=0.1632, Initial Depth of Well (feet) 12.4. Initial Depth to Water (feet) 12.8.	Diameter (inches): Well	Gravel Pack Drilling Fluids Total		_	6 / 6 / V	400 6					
roject Name lilent Comporte Address: evelopmer Stabilizatio Cast Stabilizatio Cather Centrifug Centrifug Centrifug Centrifug Cast Cast Cast Cast Cast Cast Cast Cast	Project Name: <u>Groundwater Investigation –</u>	Client Company: <u>Dynegy, Inc.</u>	Site Address: <u>Baldwin Energy Complex, 10901</u>	Development Criteria T 3 to 5 Casing Volumes of Water Removal Stabilization of Indicator Parameters	Methods of Development Pump Centrifugal Bottom Valve	(Z	Development Rate (feet) Method (gal/min)		X < 66.2				that the development		(A)

: Use Total Dzehage و /4S=

Development Perging

WELL DEVELOPMENT AND PURGING DATA 1645 WELL NUMBER

Project Name:	Groundwater Investigation –	ater Invest	igation –	BEC Ash	BEC Ash Pond System		Project	Project Number:		(Kelron) 2010.100		Cost Code:	
Client Company: _	Dynegy, Inc.	<u>)c.</u>					Project	Manager:	Stuart C	ravens (k	Project Manager: <u>Stuart Cravens (Kelron Environme</u> ntal)	mental)	
Site Address: Bal	Baldwin Energy Complex, 10901	y Comple	1000000	Baldwin	Baldwin Road; Baldwin, Illinois	vin, Illinois							
Development Criteria	eria	d	Ţ	> -	Water Volume Calculation (2"=p'1632.	me Calcu	ulation (2°=9	1632, 4"=0,6528)	5528) /	Instruments	ents	Serial No.	Serial No. (It applicable)
Control of Cashing Volumes of Water Removal	numes or vv odicator Para	ater nemo	ovai	= =	Initial Depth of Well (feet) _ Initial Depth to Water (feet)	of Well (te to Water (et) feet)	13.	***	⊈ Teπ	4 Temperature Meter	er Cuauta	uto. 6
U Other				т <i>С</i>	Height of Water Column in Well (feet)	ater Colum	n in Well (fe	et) 3,	67	☐ pH Meter	Meter		
Methods of Development	opment			בן נ	Didriferer (inches): well	cnes): we	7	àГ		Cor	5 Conductivity Meter	ă	<u> </u>
Pump	Bailer				- E	water vo	water volume in well	Gallons to be	0 T	-			
	☐ Bottom Valve	alve		ŢŞ	Well Casing	2000	╀	+		■ DO Meter	Meter		
☐ Submersible ☐	Double Check Valve Stainless stool Kommans	heck Valv	/e	10	Gravel Pack		Copes	2.7	Τ	ORF	ORP Meter		
ا ا	2-8691111016 T	Tied Veill	ב ב ב	لقا	Drilling Fluids								L
□ whale □ Gru	☐ Grundtos 🗗 Bladder			[일] I	lotal		4			Water Disposal	Isposal	1	
Water Removal Data	ata]		Discriding	Discrigrated to ground	
	Development		Intake Depth (feet)	_ ₹	Water Volume Removed	Colume Removed	Product Volume Removed (gallons)	re Temperature	£	Conductivity (m5/cm)	Visual Clerify		
Date Time	Pump Baller	8			Increment	Cumulative	Increment Cumulative	•			//₩	PemA	
1		(Mer/min)	1	1				1			000/21. OF	X. Clark	ルミリー
113/10 1422	,	-	9		100 P		(,	18.34	18.34 LAYO.610 094	010	15- 25	145	
				3			1						
				¥	-								
				2									
				٠									
				t									
	<i>,</i>			8									-3
Circle the date and time that the development criteria are met	hat the develo	philen crite	na are met.				001						
Comments 1601 Sper	Sport	パン	unted		actuage copability	Copa	Mex	•					

2.344 Liters: (well volume 1045, 5200 pump has 145 of tubing 4 1.5' pump C \Consulting A\Power Plants\Baidwm 2010 Hydrogeologic Study - field Ware Phase - field frams - develup_purger d.s. - r. 25.

Reviewer Date

_Date__I\/3/10

Developer's Signature (Prince)

Form A0101 Rev. 10/6/94

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER \mathcal{AH}

								-34-		7 7	
VELL NUMBER	Cost Code:	Stuart Cravens (Kelron Environmental)		Serial ture Meter	Konductivity Meter Do Meter ORP Meter	sposal Discharged to ground.	Visual Clarity Comments	OK brown Very trobil -clay / San	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		way hy Qu Desyn
AAELL NOMBE	Project Number: (Kelron) 2010.100	Project Manager:Stuart Cravens (Kel	- 1	4"=0.6528) In	Gallons to be Removed	Water Disposal	Product Volume Temperature pH Conductivity Removed (gallons) (°C) (°C)	20.6 7.02 1734 DB	15.8 7.61 17.45 15.3 7.61 12.05	15,2 7.67 1202	64 = 2, 77 Rep.// Newstry
	aation – BEC Ash Pond System		, 10901 Baldwin Road; Baldwin, Illinois	Water Volume Calculation (2"=0.1632, lnitial Depth of Well (feet) 30_{\circ} Us lnitial Depth to Water (feet) 12_{\circ} Relability of Water Column in Well (feet)		orer Drilling Fluids	Intake Depth Ending Water Volume Removed Pro (feet) Water Depth (gallons) Rem (feet) Increment Cumulative Increre	W 255 Z	2.0 N 5.0 S	3.0 13	= 29.38(11)/5+2
	- 1	Client Company: <u>Dynegy, Inc.</u>	Site Address: <u>Baldwin Energy Complex, 10901 Baldwin</u>	Development Criteria ■ 3 to 5 Casing Volumes of Water Removal ■ Stabilization of Indicator Parameters □ Other	Methods of Development Pump Bailer Centrifugal Bottom Valve Esubmersible Double Check Valve	Water Removal Data	Development Removal Inta Method Rate Method Gal/min) Date Time Fump Bailer (Her/min)	9710 X 23	1520 X	1525 K K K K K K K K K K K K K K K K K K	Circle the date and time that the development criteria are me Comments filed Ival North = 31, 85. Developer's Signature(s)

116 16.6 1.4 5 7 - Optimal Setting ; Statete - ne drawding 6.17 yinn

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER 640

Cost Code:	alron Environmental)		ints Serial No. (If applicable) berature Meter Result	ductivity Meter Neter Meter	sposal Discharged to ground.	Wased Comments			12-							Date	Phase yield Famis) develop purge doc 1873 19
INCHORD TO 10.100	<u>uart Cravens (Ke</u>		Instrume		Water Di	pH Conductivity (m\$/cm)	1.269	1 1								Reviewer	eologic Study (Field Worl
rioject Notriber.	Project Manager: SI		cet) 37.84. [feet] 15.57. [fee	2" Grav Gallons 2.4%		Product Volume Temperature Removed (gallons) ("C)	Increment Cumulative 16,219 -1.									Date 11 /3/10	
		win Road; Baldwin, Illinois	Water Volume Calc Initial Depth of Well (It Initial Depth to Water Height of Water Calum	Diameter (inches): Water Very Mater Very Mell Casing Gravel Pack Drilling Fluids	Total	Water Volume	Increment	_	2	1/6	\mathcal{K}	74	37	32	48	7	C:\Consultin
		mplex, 10901 Bald	Removal ers	c Valve Kemmerer		Intake Depth (leef)		26.5							it criteria are met.	1 Wille	
	Company: <u>Dynedy, Inc.</u>	Idress: Baldwin Energy Co	opment Criteria 5 5 Casing Volumes of Water bilization of Indicator Paramet	ds of Development Bailer Partifugal Bottom Valve brancisible Double Check ristaltic Dstainless-steel	S	Development	Time Pump Baller	16.57 X						>	date and time that the developments 1431 start	ver's Signatue(s)	Form A0101 Rev. 10/6/94
		y: Dynegy, Inc.	Project Manager: Stuart Cravens (Kelron En	Project Manager: Stuart Cravens (Kelron Environme Complex, 10901 Baldwin, Baldwin, Illinois Water Volume Calculation (27=0, 1632, 47=0,6528) Instruments Initial Depth of Well (feet) Initial Depth of Well (feet) Initial Depth of Well (feet)	Project Manager: Stuart Cravens (Kelron Environme Calculation (27-3) 1632, 47-9, 1652 Manager: Stuart Cravens (Kelron Environme Calculation (27-3), 1632, 47-9, 1652 Mater Volume Calculation (27-3), 1632, 47-9, 1652 Mater Meter Meter Mater Volume in Well (feet) 67-9, 1632, 47-9, 1652 Mater Meter Mater Calculation in Well (feet) 67-9, 1632, 47-9, 1632 Mater Ma	Water Nolume Calculation (27-3) 1632, 47-30,6528 Instruments Notice of the color of the colo	The graph in the beath of the following states are sent and the beath of the following states are sent and the beath of the following states are sent and the beath of water volume calculation (2-3) 1632, 4"=0.6528 Instruments	Troject Manager: Stuart Cravens (Kelron Environment Nature) Nater Volume Calculation (2-3-1632, 4-6,6528) Sator Parameters Nater Volume Calculation (2-3-1632, 4-6,6528) Instruments Nater Volume Calculation (2-3-1632, 4-6,6528) Instruments Initial Depth to Well (feet) Height of Water Column in Well (feet) The Meter Diameter (inches): Well 2." Gravel Pack Diameter (inches): Well 2." Gravel Pack Item Cubic Feet Gollons Removed Water Disposal Total T	The gov. Inc. Nater Volume Calculation (2-3) 1632 14-0 6528 Instruments Nater Volume Calculation (2-3) 1632 14-0 6528 Instruments Nater Volume Calculation (2-3) 1632 14-0 6528 Instruments Instruments Instrume	Project Manager: Stuart Cravers (Kelron Environme natural Manager: Stuart Cravers (Kelron Environme natural mitted Depth of Well (Feet)	The parameters 10901 Boldwin Road; Boldwin	Project Manager: Stuart Cravers Kelron Environme Road: Baldwin Militaria Depth of Well (Teet) Water Volume Calculation (2-3-1632, 4-2-6528) Nater Parameters Initial Depth of Well (Teet) Water Volume Calculation (2-3-1632, 4-2-6528) Initial Depth of Well (Teet) Water Volume Calculation (2-3-1632, 4-2-6528) Initial Depth of Well (Teet) Water Diameter (Teet) Item Well Casing Cubic feet Gallons Removed (Gallons) Item Well Casing Cubic feet Gallons (Conditional Conditional Cond	Troject Manager: Student Cravers (Kelron Environments Institution Depth of Well (Feet) Troject Manager: Student Cravers (Kelron Environments Institution Depth of Well (Feet) The set of Water Removal Initial Depth of Well (Feet) The set of Water Removal Initial Depth of Well (Feet) The set of Water Removal Initial Depth of Well (Feet) The set of Water Removal Initial Depth of Water (Feet) The set of Water Removal Initial Depth of Water (Feet) The set of Water Removal Initial Depth of Water (Feet) The set of Water Removal Initial Depth of Water Color Init	The pay Linc. Project Manager: Student Cravers (Kelron Environme Calculation (270, 1832, 4*=0,6628) Nater Volume Calculation (270, 1832, 4*=0,6628) Initial Depth of Well (Feet) Initial Depth of Well (Feet) Initial Depth of Water (Peet) Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 4*=0,6628) Instruments Initial Depth of Water Calculation (270, 1832, 1832, 1832, 1832, 1832, 1832, 1832,	Project Manager: _Stuart Cravers (Kelron Environme Baldwin Bladwin Bladwin Blinois Water Volume Calculation((2-3) 1632, 4-0.6528) Instruments Initial Depth to Wall (feet)	The grant Incomplex 10901 Boldwin Road: Boldwin Illinois Water Volume Calculation (2-2) 1832, 41-20 6529 Instruments Water Volume Calculation (2-2) 1832, 41-20 6529 Instruments Initial Depth of Water Column in Well (feet)	Project Manager: Stuart Cravers (Kelron Environme Baldwin Road: Baldwin Illinois Water Volume Calculation (2-30-1632, 4-20-6628) Initial Depth of Well (feet) In

1040 = 5000 Series Press of XS (L. bra 1, 14 /2 /na Donne

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER

STATE SOMBER	Groundwater Investigation – BEC Ash Pond System Project Number: (Kelron) 2010,100 Cost Code:	Project Manager: Stuart Cravens (Kelron En	Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois	water Volume Calculation (2"=0.1632, 4"=0.6528) Instruments Serial Initial Depth of Water (feet) 768 mg/202 Defemberature Meter Height of Water Column in Wall (feet)		Gravel Pack Drilling Fluids	Vvater Disposal Discharged to ground.	Figure Comment Intake Depth Ending Water Depth Ending Water Depth Goldon Figure Comments Comments	0 0	26.5	13 V 2553, 20 M/5 M/2 hot hory (horn, clark, Sift with with with level.	14,67 sw/	th = 27.84 mg/= 25.18/15/5 +244 = 2002 / Roll recharge/1/1/10	
	Project Name: Groundwater Investigation – B	Client Company: <u>Dynegy, Inc.</u>	Site Address: <u>Baldwin Energy Complex, 10901 B</u>	Development Criteria Sto 5 Casing Volumes of Water Removal Stabilization of Indicator Parameters	Ş	≨ ≿	Doval Data	al Intake Depth (feet)	† † † •	X X 80.3	> 1	Of State of the met	comments First Well Death = 27,88	

127: Sepan Bult 1 2.4 12
Depthrough

Development

1.35 x 3.8 z 5.13 | well Velame

WELL DEVELOPMENT AND PURGING DATA 150 WELL NUMBER

			VIEW 0110		<u>.</u>	מרו) G	5 IDV	1 20 10.10		5	ode:	
egy, Inc.					Proj	ect Mar	nager:	Stuart	Cravens (Kelron E	nvironn	nental)	
Energy C	Complex, 109	01 Baldwin	Road: Bald	win, Illinois				İ					
s of Wate or Param	r Removal eters	/	Nater Volunitial Depth nitial Depth nitial Depth Neight of Walant	ume Calcuo of well (fe	lation et (feet)	(2"=0.163		6	Instrum Er Ten	nents nperatu	e Mete	Seri	ppicable)
			Diameter (ir	ches): We	[2]		l Pack		5 (2	Meler	hy Moto		
<u> </u>			Item	Water V	olume in		Sallons to Remove	g p		Meter	y Male		
tom Valv	e ck Valve	<u> </u>	Vell Casing		7.3	S.		ΤΤ		P Meter			
nless-stee	el Kemmerer	710	rilling Fluids		-			1					
	dder =	<u>اچا</u>	otal	1 37 20 c					Water	Sisposi Dis	al	0000	
* 1	Intake De (feet)	Water Depth (feet)		ne Removed	Product Removed	Volume (gallons)	(C)	£	Conductivity (m5/cm)	1	À CO	Conn	vents
	or er/min)		Increment	Cumulative	Increment	Cumulative				120	000		
	50- 1	54.61	/		1	١	M.36		1.391	11/1	\mathbf{I}	Slyst Turbal	Ib: 12
	\mathcal{H}	11.95	2				14.34	40%	1.395	1.401		:	•
	\dashv	"	3				14.35			0.93/	511		*
		20,03	7				14.42	7,53	385	180	111	4	7
		;	5				14.35	54.5		1260	124		3
		20,13	10				M.35			0.74/	(29		
		*	12				14.31	4.19	5781	150	127	Cher	
		=	2				14.20	4.18	1.368	1,950	120		
developm	ent criteria are n	17	11/1/2000	73									
	Client Company: Dynegy, Inc. Site Address: Baldwin Energy C Development Criteria The Stabilization of Indicator Parama Chere Other Bailer Centrifugal Bottom Valver Submersible Double Che Submersible Double Che Submersible Compless-stee Whale Grundfos Blankhaler Whale Grundfos Blankhaler Date Time Name (4) Whole Hold Mater Removal Data Whole Hold Mater Removal Data Whole Time Name (4) Whole Hold Mater Removal Data Whole Time Name (4) Whole The Company (4) Whole	Silient Company: Dynegy, Inc. Development Criteria Stabilization of Indicator Parameters Centrifugal Solumes of Water Removal Stabilization of Indicator Parameters Centrifugal Bottom Valve Submersible Double Check Valve Whale Grundfos Bladder Double Check Valve Whale Grundfos Double Check Valve Whale Grundfos Double Check Valve Whater Removal Data Nethod Manuel M	eters c k Valve eters c k Valve el Kemmerer idder c k Valve 801dwin 1997 1	88 Baldwin 1998 11 12 12 12 12 12 12 12 12 12 12 12 12	Baldwin Road: Baldwin, Illinois Water Volume Calculati Initial Depth of Well (feet) Initial Depth to Water (feet) Initial Depth to Water (feet) Initial Depth to Water Column in Diameter (inches): Well Well Casing Gravel Pack Water Volume Removed Item Item Item Item Item Item Item Item	Baldwin Road: Baldwin, Illinois Water Volume Calculati Initial Depth of Well (feet) Initial Depth to Water (feet) Initial Depth to Water (feet) Initial Depth to Water Column in Diameter (inches): Well Well Casing Gravel Pack Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Water Volume Remove	Baldwin Road: Baldwin, Illinois Water Volume Calculati Initial Depth of Well (feet) Initial Depth to Water (feet) Initial Depth to Water (feet) Initial Depth to Water Column in Diameter (inches): Well Well Casing Gravel Pack Water Volume Removed Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Item Water Volume Removed Water Volume R	Baldwin Road: Baldwin, Illinois Water Volume Calculati Initial Depth of Well (feet) Initial Depth to Water (feet) Height of Water Column in Diameter (inches): Well Well Casing Gravel Pack Drilling Fluids Increment Cumulative Increment (100) Increment Cumulative Increment Increment	Baldwin Road: Baldwin, Illinois Water Volume Calculati Initial Depth of Well (feet) Initial Depth to Water (feet) Height of Water Column in Diameter (inches): Well Well Casing Gravel Pack Well Casing Gravel Pack Drilling Fluids Iotal ##485 / ##5 2 ##5 7 ##485 / ##5 2 ##485 / ##5 2 ##485 / ##5 2 ##485 / ##5 2 ##485 / ##5 2 ##485 / ##5 2 ##485 / ##5 2 ##485 / ##5 2 ##485 / ##5 2 ##485 / ##5 2 ##485 / ##5 2 ##485 / ##5 2 ##485 /	Project Manager: Stuart Cravers (Kello Mater Volume Calculation (2"=0.1632, 3=0.6528) Instruments Initial Depth of Well (feet) Carvel Pack Diameter (inches): Well 2" Gravel Pack Diameter (inches): Water Volume Removed Gallons Removed Gallons Removed Gallons Removed Gallons Removed (inches): Water Disp (in	Project Manager: Stuart Cravens (Kelto Mater Volume Calculation (2"=0.1632, 3=0.6528) Instrument: Initial Depth of Well (feet)	Project Manager: Stuart Crovers [Kelton Environment] Water Volume Calculation (2°0.1632, 20.9638) Instruments Initial Depth of Walf (feet) Initial Depth of Walf (feet) Initial Depth of Walfer Column in Well (feet) Initial Depth of Walfer (feet) Initial Depth of Walf (feet) Initial Depth of Walfer (feet) Initial Depth of Walfer (

Reviewer

Developer's Signature(s)

Form A3101 Rev. 10/6/94

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER MW-151

Project Name: Groundwo	Groundwater Investigation - BEC	- BEC Ash	Ash Pond System	8	Project !	Project Number:	(Kelron)	(Kelron) 2010.100	Cost	Cost Code:	
Client Company: <u>Dynegy, Inc.</u>					Project /	Project Manager: _	Stuart C	Stuart Cravens (Kelron Environmental)	on Environr	mental)	
Site Address: Baldwin Energ	<u>Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois</u>	01 Baldwin	Road; Bald	win, Illinois							
Development Criteria X3 to 5 Casing Volumes of Water Removal and be Stabilization of Indicator Parameters	ater Removal a_{lv} ameters		Vater Volu	Water Volume Calculation Initial Depth of Well (feet)	1 3 E	10.1632 4"=0.6528)	3528)	Instruments Tempera	Struments Temperature Meter	Serial No. (If applicable) er \$\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac}\fint}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\fint{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}{\frac}\frac{\frac{\frac{\fracc}}\frac{\frac{\frac{\frac{\frac}}}}}{\frac{\frac{\frac{\fr	
Methods of Development			iameter (ir	Diameter (inches): Well	2"		d [Z Conducti	Z Conductivity Meter	7 3	
Pump Bajler	9		Item	Cubic Feet	olonie III well	Removed	a pe	□ DO Meter	Je		
5 <u>8</u>	heck Valve	<u> </u>	well Casing Gravel Pack		7,12	8,3		☐ ORP Meter	eter .		
ა (ე	L Stainless-steel Kemmerer		Drilling Fluids					Water Disnosal	leso		
Avridie — Grofidios — I			Total		3× males	8	8		Discharge	Discharged to ground.	
Water Removal Data											
Development Method	Rate (feet) (ag/min)	pth Ending Water Depth (feet)	Water Volun (gal	Water Volume Removed (gallons)	Product Volume Removed (gallons)	Temperature (°C)	풉	cffvffy cm)	Visual Clarify	Comments	1
Date Time Pump Baller	or (Lifer/min)		Increment	Cumulative	Increment Cumulative	•		ત્રા -	,		
9-23-10 1518 X	ph -	18,17	2.0			21.9	1271	182 Hed	W./446/	start 1506	1
1520 X	Dols w191	15.92	1,5			21.9	1331	W8 14	al tubio	Persol Dry Coule	1
ØX	Delo 29'	16-01	49			20.8	7,43 /	113 3	.44	11/11/11	
V 1538 X	8000	Ket 99	5.0	5.0		20.9	7.4/1	5 201	744	Amed Dry lyck	
Avg	De 169 an			,		ļ					1
4-34/10 1146 X		17.76	30	8.0		188	7.02 1.	093	\	SW=2.85 m	
X			12/2			18.9	1.09	H60			ţ l
			SA		7					4	
Comments first New New Figure as	Spment criteria are r	A A		54%	(4)= 公第13.12	13.12	3	ell = 16.000 bas)	(spa d	Very low 0	
Developer's Signature(s)	11/1		-		Date 2	123/10	ř ,	Reviewer	Date	, ,	

635/5

2 - 1 2	165. 7 5 (1 6 cm 2 30 Suc 72)	- Best extings to devi-	1 4740	DEVELOPMENT AND PURGING DATA	WELL NUMBER /5/	(Kelron) 2010,100 Cost Code:	eron Fr		28) Instruments Serial No. III applicable) Efemperature Meter	DA Meter	Z Conductivity Meter		CRP Meter		Vacer Disposal Discharged to ground		pH Conductivity Vauel Clerity Contractls	1 /00 Sept 200		1.023 1.45' 129 99	81. 5 89 821 220 870.1	201 1.042 0.28/ 125 94 -> 116 31545 X-4	1.019 0.19 119 145 1607	1.075 (A7/118 165	9.39// 1/8		Reviewer	York Phase\ Fin
1	_		(80)	WELL DEVE	WE	Project Number: (Project Manager: S		ulation (2=0.1632, 4'=0.6528) 3et)		Water Volume in Well Gallons to be	Gallons	1.50 1.69 (Mexic 21.22	\mathbb{H}			Product Volume Temperature Removed (gallons) (PC)	Increment Cumulative	\Box		16.19 7.					Sathry - con of	Date w/3/10	A \ Power Plants \ Baldwin \ 2010 Hydrog
4 CPM 76	7 12	1 Developm 5 9	18 . 9	4 8.0	5 7.0	EC Ash Pond System		<u>aldwin Road; Baldwin, Illinois</u>	Water Volume Calculation (2°=0.1632) Initial Depth of well (feet) Initial Depth to Water (feet)	Height of Water Column in Well (feet)	Mater Vol.	Item Cubic Feet	Gravel Pack	Drilling Fluids	lotal		Ending Water Volume Removed Water Depth (16-1)	Increment Cumulative		\bot	11.00 12		12.55 24	Para 28	30	sbuly losmy bethin	des	C:\Consulting
2) 1 11 = 101		= 10.2	4.1 78 = the	97 = 13 2	116 = 10.6 1.4	Project Name:Groundwater Investigation – BEC Ash Pond System	Client Company: <u>Dynegy, Inc.</u>	Site Address: <u>Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois</u>	Development Criteria (3) to 5 Casing Volumes of Water Removal Stabilization of Indicator Parameters		s of Deve		□ Submersible □ Double Check Valve □ Peristotlic □ Stainless should be accommoded.	Ü		Water Removal Data	Development Rate (feet) Method (set/ain)	Uate Time fump baller or (Uter/min)	X	13.55	17.		. 19	Schw J.	Circle the date and time that the development cuted and most	Comments 13/1 April 1450 Comments	Developer's Signatupers	Form A010] Rev. 10/6/94

WELL DEVELOPMENT AND PURGING DATA

WELL NUMBER 162	Project Number: (Kelron) 2010.100 Cost Code:	Project Manager: <u>Stuart Cravens (</u> Kelron Environmental)		10 (2"=0.1632, 4"=0.6528)	the six well greet) 113,13 The six well 2" Gravel Pack Water Volume in Well Gallons to be Cubic Feet Gallons Removed Cubic Feet Gallons Rem	Water Disposal Sx nol. = 67 gat Discharged to ground.	e Removed Product Volume Temperature PH Conductivity Misual Clarity Comments Comments	18.6 7.17 2.105 11 to Jack	5.0 18.0 7.31 2126 Med by Arbit		1 Near = 26,63 borging /= 17,23 bgs
	Project Name: <u>Groundwater Investigation – BEC Ash Pond System</u>	<u>~</u>	Site Address:Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois	Development Criteria X3 to 5 Casing Volumes of Water Removal X5 Stabilization of Indicator Parameters Ching in the Water Calculation of Indicator Parameters		Water Removal Data	Date Time Purple Baler (1867) Indian Baler (1867) Increment Cumulative	2.5	V 77.5 8,25 3	and time that the development criteria are met.	Comments Sticky=2,80 NNA NU Neth = Developer's Signature(s)

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER MW/53

Form A0101 Rev. 10/6/94

C:\Consulting A\Power Plants\Baldwin\2010 Hydrageologic Study\Field Work Phase\Field Forms\develop_purge.doc 8/23/10

TD Fill Wearner 1872 - 8.4 (3.4) 2.4 | 3.

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER

roundwater Investigation - BEC As ynegy, Inc. in Energy Complex, 10901 Baldwing at sof Water Removal ator Parameters nent in them Valve at the Check Valve at the Ch	Project Number: (Kelron) 2010.100 Cost Code:	Project Manager: <u>Stuart Cravens (Kelron Environmental)</u>	lation (2"=0.1832, 4"=0.6528) Ir	Diameter (inches): Well 2" Gravel Pack Water Volume in Well Gollage to the conductivity Meter	Gallons Removed 1.14 3.44 × 3.8=	13.072 Litters WORP Meter	Water Disposal Discharged to ground
rioject Name Client Compo lite Address: Lette Address: Lette Stabilization Cother Contribute Contri	 any:	Site Address: Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois	Development Criteria Water Volume Calculation Development Criteria Development Calculation Depth of Well (feet) Other	ent	le 🗆 Bottom Valve	Grundfos Bedder	Water Removal Data

		Comments / 11 to /c /	1000	1	Char				10	Very Clar	"	.		"				
	(- France	5 Seline 5 10/20	1	+01.07	126	19	17.5	nei	101	•	*		4				
	Ward Clerky	//	0%0/2 or	226/11.1	1	5.29/142	111/10	16/137	14/11/11	1	14/10/	10/ 101		11/20				1
Conductivey				7.27 0.1031		1.1044	01001	100	D. 649 B	1	1.10 10.650 5.10	0000	6	0.0049			-	Chew down
Hd amproprie				5.91 7.23	N 61 9 11	12.70 4.10 6	15.91 11.11	11201	う。ある下に	16 77 11.		15,64 F 00	6/1-100	12-40 1-00 0-044].		ı
Product Volume 1		Increment Cumulative		1		1	_		\ 	7	1	<u> </u>	_			,	devilorunt w/ mi	-
Water Volume Removed	_	Cumulative				†											11/00 mm	
		mcrement.	2	(2		3	a	1	9	61	4	7			•	ted ofe	
Water Depth			20.5 16.83	2	1403	7/2/	1	17,23	;		12.21		,				2000	7
Rate (feet)		4	20.5					-							Prio ore me	20	3	_
	8	(Uler/min)					000	4	36.		K	7			oment cut	2		رب
Development Method	Pump Baller	$\frac{1}{1}$	~		1			2		1			+		the develop	text.	+	A
	Time		1555	1602	1	1001	1620	2	27.0%	100	大き	16 45			nd time that	5473		1
	Date	1	0/7/11	•					_						Circle the date and time that the development criteria are met	Comments 1547 Start		Developer's Signature

C-\Consulting A\Power Plants\Baldwin\2010 Hydrogeologic Study\Field Work Fhase\Field Forms\deveks__purge do: ____6/3915

Form A0101 Rev. 10/6/94

Developer's Signature

★Development □ Purging

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER

Project Name:	Groundw	<u> Groundwater Investigation – Bl</u>	on – BEC Ast	EC Ash Pond System	em	Projec	Project Number:		(Kelron) 2010.100	1	Cost Code:
Client Company: _	Dynegy, Inc.	nc.				Projec	st Manager:	Stuart (Cravens (K	elron En	mental)
Site Address: Ba	dwin Energ	Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois	901 Baldwin	Road; Ba	ldwin, Illinoi						
Development Criteria 2.3 to 5 Casing Volumes of Water Removal 3. Stabilization of Indicator Parameters 1. Other	teria Numes of W ndicator Par	√ater Removal ameters		Nater Vo	Water Volume Calculation (2"=0.16; Initial Depth to Water (feet) Hold Depth to Water (feet) Hold Depth to Water (feet)	eet)	20 0 2	4"=0.6528)	Instruments P Fempera	struments A Temperature Meter	Serio
Mothody				Diameter (Diameter (inches): Well 2"	ell 2"	Gravel Pack		ph Meter	heter	3
Š	Boiler		L	Item	Water Vol Cubic Feet	Water Volume in Well	ell Gallons to be	to be	Conductiv	Conductivity Meter	ter VII 63
<u>e</u> <u>e</u>	Bottom V Double C	4 Bottom Valve Double Check Valve		Well Casing			\vdash			Motor	
<u>.</u> ي	→ Stainless-s	☐ Stainless-steel Kemmerer		Graves Pack Drilling Fluids				_)]	D D	
Whale Gru	□ Grundfos □	□ Bladder □		Total					Water Disposal	isposal	
Water Removal Data	ata		Į					8		Discharge	Discharged to ground.
	Development Method	Removal Intake Depth Rate (feet) (gal/min)	epth Ending Water Depth (feet)		Water Volume Removed (gallons)	Product Volume Removed (gallons)	ume Temperature	¥.	Conductivity (mS/cm)	Visual Clarity	Comments
Date Time	Pump Batter	or (Lifer/min)		Increment	Cumulative	Increment Cumulative	ulative		کر ا		
42110 1120	×		M.%	805	20,0		19,2	759	223	the many to	Lan. trakil
972-10 0825	X		Ka	(Bol)			1			Ab 1461	SWL= 14.76
1-15 m 150	X		52	(g)			1	1	1		SW = 14.91
Lua aluch	1		15.8	ſ	1)	1	1		state noter level.
9-3MU			(K 13)	747	1	10.01					
				/ / / / / / / / / / / / / / / / / / / /	3	3					
Comments fixed by the development criteria are met.	hat the develo	Deth - L	e met. / 15/119/	/DC/	NA AN	1134	=12,63/hg	1 1965			5456 7 RIA
		WIN	7			44	71/20/				do - bon
Developer's Signature(s)	e(s)—	11:1				Date	0/1/2		Reviewer_	Sylve Date	10/2/0

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER 255

WELL INDIMBER AND	Project Number: (Kelron) 2010.100 Cost Code	elron Fr		Lation (2"=0.1632, 9"=0.6528) In et 23, 35 m AC feet) 19,10 m/s	in Well (feet) / 3,1% 2" Gravel Pack	Water Volume in Well Gallons to be DO Mater Sallons Removed DO Mater	П	Water Disposal	Discharged to ground.	Product Volume Temperature pH Conductivity Removed (gallons) (°C) (m\$/cm) Visual Clarity	Increment Cumulative		15,1 2,12 787 1+10 AM OF 12	15.3 7.12 786 116 114	15.9 7.27 187 SAA);	14.6 718 76 Clos SN=20.62	,	3 0 Shilly = 286 Slow May (3/24 Helyane 1182 22)		1/4/2/	and overweit family bandwin / Zula Hydrogeologic Study (Field Work Phase / Field Forms) develop_purge.doc 8/23/10
	SEC Ash Pond System		<u>aldwin Road; Baldwin, Illin</u>	Water Volume Calculatic Initial Depth of Well (feet) _ Initial Depth to Water (feet)	height of Water Column in Well (feet) Diameter (inches): Well 2" Grav		Well Casing Gravel Pack	Drilling Fluids Total		Ending Water Volume Removed Water Depth (gallons)	Increment Cumulative	1	205 -	0.75 -	12 Not 1.0	1 20 00	14/15 6.0		ng/20c/=2458	, , , , , , ,	100	
	Project Name: Groundwater Investigation – BEC Ash Pond System	Client Company: <u>Dynegy, Inc.</u>	Site Address: <u>Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois</u>	Development Criteria 4.3 to 5 Casing Volumes of Water Removal 5.5tabilization of Indicator Parameters	Methods of Development	Pump Bailer	4)	Whale D Grundfos D Bladder D	Water Removal Data	velopment Removal Intake Depth Rate (feet) Method (fact) min)	_	9-15-10 18-118 X, 23	×	×	\$0.00 X C100	4-270 8×4	0320	Circle the date and time that the development criteria are met	30	Developer's Signature(s)	Form A01C1 Rev. 10/6/94	

	10 TO (sue	□ Development	□ Purging
1 Dixtuge	1 6		
FYK	0		
ž Ž	9		
†	145		

WELL DEVELOPMENT AND PURGING DATA

WELL NUMBER 155	Project Number: (Kelron) 2010.100 Cost Code:	Project Manager: Stuart Cravens (Kelron Environmental)	ļ	Serial No. (Il applicable) 23.38 (feet) 20.70' Themperature Meter Survive Control of the special of the spe	in well (feet) 2.65 Dot Meter 2. Gravel Pack	Gallons Removed O. 44 F. 1.31	Water Disp	Discharged to ground.	Product Volume Temperature pH Conductivity Vauval Clarity (PC)	Increment Cumulative	53,43 -50 145		428 0.594 2.03 -14	14.28 F.270,594 1.93 -6 "			- Date 11/4/10 Reviewer	
	Client Company: Dynamy 150		sile Address: <u>Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois</u>	Development Criteria Water Volume Calculation (2 ≯ 0 1632, 2	of Development Diameter (inch	trifugal 🗆 Bottom Valve Mell Casing mersible 🗇 Double Check Valve Gravel Pack	□ Whale □ Grundfos Peladder □ Total	Water Removal Data	Development Rate (New!) Water Depth Ending Worter Volume Removed Method (gol/min) (New!) Water Depth (New!) Worter Depth (New!) Water Depth (New!) (New!)	(Hee/min)	1 452	4	7	ρ	at the development critera are met.	Comments 131 start 1 1005 roundlet deve comment	Developer's Signature(s)	Form A0101 Rev. 16:0/94

C:\Consulting A\Power Plants\Baldwin\2010 Hydrogeologic Study\Field Wark Phase\Field Farms\develop_purge dov. 8(23,11)

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER

Project Name:	Groundwa	Groundwater Investigation – BEC	igation -		Ash Pond System	lem	Proje	Project Number:		(Kelron) 2010.100	010,100	Š 	Cost Code: _		
Client Company: _	Dynegy, Inc.	nc.					Proje	Project Manager:		tuart Cra	vens (Ke	Stuart Cravens (Kelron Environmental)	<u>nmental)</u>		
site Address: Bo	Baldwin Energy Complex, 10901 Bald	1y Comple	x, 10901	Baldwin	Road; Bo	win Road; Baldwin, Illinois	. <u>s</u>								
Development Criteria Location of Indicator Parameters □ Other	iteria olumes of W Indicator Para	/ater Remo ameters	val	/	Nater Vonitial Depuitial Depuitial Depuitial Depuitial Depuitial Depuitial Depuitial Depuitiant of	Water Volume Calculation (2"=0.1632 Initial Depth of Well (feet) 325 Initial Depth to Water (feet) 325 Height of Water Column in Well (feet)	culation (feet)	2"=0.1632, 2.333, 2.333, 1.6e+1	17 =0.6528)	J. Dr	Instruments Tempera	Struments Temperature Meter	Serial eter	Serial No. (If applicable)	
Methods of Development Pump Bailer	elopment Bailer	9			Diameter Diameter	Diameter (inches): Well water Volu	es): Well 2" Gr Water Volume in Well ubic Feet Gallons		Ş Q Q) [o]	Conductive DO Meter	Conductivity Meter	37 x7 1	290	
Submersible Deristaltic	☐ Double Check Valve ☐ Stainless-steel Kemmerer	Check Valv steel Kemr	ve nerer	>1010	Gravel Pack		8	9	3		□ ORP Meter	Meter			
Whale 🗆 Gr	□ Grundfos □	□ Bladder			Drilling Hulas Total	\$2	3×,	11	73	> ı	Water Disposal	sposal Dischar	osal Discharged to ground	und.	
Vater Removal Data	Oata														
	Development Method	Removal Rate (gal/min)	Intake Depth (feef)	Water Depth (feet)		Water Volume Removed (gallons)	Product Volume Removed (gallons)		Temperature (°C)	F.	Conductivity (mS/cm)	Visual Clarity		Comments	
Date Time	Pump Baller	or (Uffer/min)			Increment	Cumulative	Increment Cumulative	umulative		<u> </u>	Ä				
124-10 1245	X	*	45	29.7	73			_	8 87	55 7	18	hear ,	Start	BHZI	
125	X		_	71.00	2.5			/	888	- 1/2	1.83	t. bountA	All		
132	×		_	48.80	2.0	35		1	1.28	8 53	1 528	46r."			
V 132	×		>	48.70	0,15			/	838	79	•	med br. As	BRI		
ALU AUST	,			100			,	W.							
Macha				718	27	70	5	>		-					1
incle the date and time that the development criteria are me. comments $\frac{5}{100}$ $\frac{1}{100}$	e that the develo	development crite	ario ore me	N.C	2大二	Death=52,34	motor	776 ; =		49.54 bg	200				
 	Jre(s)	1	1		_ *		// Date	9/34	10	á Oz	Peviewer	ر م	<u>a</u>		
		\		_))	1		}		3	0		

.

16.43-0.4:16.03 x .1632:2.62×38

t very slow water many tracken

Development

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER

Project Name:Groundwater Investigation = BEC A		֡֝֝֝֝֡֝֟֝֝֝֡֝֝֡֝֝֡֝֝֡֝֝֡֝֡֝֝֡֡֝֝֡֝֡֝֝֡֡֝֡֝֡֝֡֡֝֡֝
Client Company: Dyngay Inc		Neiron 2010, 100 Cost Code:
		Project Manager:Stuart Cravens (Kelron Environmental)
edidwiri Energy Complex, 10901	Baldwin Road; Baldwin, Illinois	
Development Criteria	Water Volume Calculation (2=0.1632, 4'=0.652)	Instruments Serial No. (It applicable)
☐ Stabilization of Indicator Parameters ☐ Other	Initial Depth to water (feet) 0.40	Whemperature Meter Quantin.
Mothody of Principal	Height of Water Column in Well (feet) 51.99 Understanding Diameter (inches): Well 2" Gravel Back	D PH Meter
Pumo Roiler	ne in €	Econductivity Meter
	П	d Do Meter
Peristollic Double Check Valve	77.4	DORP Meter
j	Orilling Fluids	
wide Defundtos (Caladder D	Total	Water Disposal
Water Removal Data		Discharged to ground.
Development Rate (feet) Water Depth	Water Volume Removed Product Volume Temperature pH	Conductifity
8	Increment Comments	Convments
- F	Cumulant	\$ 05° 05
1911	1 611 - 11 0 11 0 11 0 11 0 11 0 11 0 11	306 6,89 2cm 51.2.5 1 1.13
1343	13 24 14.58 6.84	500 134
	84	
	07	
	72	
	78	
With the date of t	76	
io are m	148	
Comments Now Start Olive Legituria	Comoved & Lyers total	
Developer's Signature(5) Thun & (Male	& Date 11/6/10 R	Reviewer
Form A0101 Rev. 10/6/94		

Development Development

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER MV253

									, ,	THE MOINDEN THE AS	11111	1	
Project Name: Grou	Groundwater Investigation – BEC Ash Pond System	ligation -	- BEC Ash	Pond Sy	tem	Prc	Project Number		(Kelron) 2010-100	001	1000		
Client Company: <u>Dyne</u>	Dynegy, Inc.		2			Pro	ient Man	1	to to		cosi code:		ì
Site Address: Baldwin E	Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois	ex, 10901	Baldwin	Road; B	aldwin, Illin				NO LIBORA	State of the state	vironmen	(al)	1
Development Criteria A to 5 Casing Volumes of Water Removal Stabilization of Indicator Parameters	of Water Remo Parameters	-va		Nater V Initial Dep	Water Volume Calculation Initial Depth of Well (feet)	(feet) er (feet)	(2"=0.1632 3 & 14	m (228)	_ <u>_</u>	Instruments Z Temperature Meter	Se Meter	Serial No. (If applicable)	
Methods of Development	 		<u></u>	Diameter Diameter	Diameter (inches): Well 2" Grav Water Volume in Well	es): Well 2" Gr Water Volume in Well		el Pack Gallons to be		Fight Meter Conductivity Meter	/ Meter	4.1263	
Submersible Doub	Bottom ValveDouble Check ValveStainless-steel Kemmerer	re nerer	1 > 1 O T	Well Casing Gravel Pack	╅╼╞╼╅			1,344		□ DO Meter □ ORP Meter			
Whale Grundfos	□ Bladder		ا جَالِيًا	Unilling Hulds Total	SS	X	11	1034	×	Water Disposal	osal Discharged to ground.	ground.	
Development Method	Removal Rate (9al/min)	Intake Depth (feet)	Ending Water Depth (feet)		Water Volume Removed (gallons)		Product Volume Te Removed (gallons)	Temperature (°C)	pH Conductivity (mS/cm)	vity Visual Clarity	arity)	
Date Time Pump Baller	Or (Lifer/min)			Increment	Cumulative		Increment Cumulative) 1				
2		ŽŽ.	35.58	1.50	3,5		7	73	763/073	3 H. Or., tob	Midsh	start 12/15	
923-10 118 WX	Sapar	11354	36.01	0.50	444	25 800	16,9/	100	CITY	3 15/6	Litubil m	e 1033=35	688
							4	2	DE TH	15 Jack	THE THE	@ 15 00 = 3 H	8
ircle the date and time that the development criteria are met	yelopment criteri	a are met.											
Comments NYII-(M 16 20)	Slow Kechange	3	- N	10 Jes	Malleoth=38.14/m	S. 14'A	25	33	= 35.04 bas	7			
eveloper's Signature(s)	1					Date	9/23	2	Reviewer		Date		

6

12 13 2 4 14 15 15 15 15 15 15	Development Comments Signature Developer's S

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER 350

Cost Code:	Serial No. (If applicable) ature Meter 1563 Itivity Meter 1563 er 167 osal Discharged to ground.	Solid bothers Len Son redaye Kewyan Hawa. Stahu W= 32.00
Project Number: (Kelron) 2010.100 Cost Code: Project Manager: Stuart Cravens (Kelron Environmental)	Instruments ATemperature Meter BYPH Meter DO Meter CORP Meter CORP Meter Discharged	Conductivity Visual Clarity SC CLUY CLU
Project Number:(Ke	e Calculation (2"=0,1632, 4"=0.6528) Well (feet) Water (feet) S. W. M. M. E. Column in Well (feet) Water Volume in Well Gallons to be ubic Feet Gallons S. S. M.	Product Volume Temperature PH (°C)
Ash Pond System Win Road; Baldwin, Illinois	Water Volume Calculation (2"=9,1632 Initial Depth of Well (feet) Height of Water Column in Well (feet) Diameter (inches): Well 2" Gravel P Well Casing Gravel Pack Drilling Fluids Total	Water Volume Removed (gallons) Increment Cumulative 3.5
Project Name: Groundwater Investigation – BEC Ash Pond System Client Company: Dynegy, Inc. Site Address: Baldwin Energy Complex, 10901 Baldwin Road; Baldwin. Illinois	Development Criteria A to 5 Casing Volumes of Water Removal A stabilization of Indicator Parameters Other Nethods of Development Pump Centrifugal Resident Centrifugal Resident Removal Data	Date Time Pump Baller (Iter) Water Depth Method Iter) Water Method (Iter) Water Method Iter) Water Method Iter (Iter) Water Method Iter) Method Iter (Iter) Water Method Iter) Method Iter (Iter) Method Iter) Method Iter (Iter) Method Iter)

Development

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER 350

								 	A ELL INOMBER		2	
Project Name:		Groundwater Investigation – BEC		<u>Ash Pond System</u>	lem	Project	Project Number: _		(Kelron) 2010.100	Cost	Cost Code:	
Client Company:	any: Dynegy, Inc.	0.				Project	Manager:	Stuart (<u>Sravens (K</u>	Project Manager:Stuart Cravens (Kelron Environmental)	mental)	
Site Address:	- 1	Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois	1 Baldwin	Road; Bc	<u>Idwin, Illinoi</u>							
Development Criteria 对 3 to 5 Casing Volume X Stabilization of Indica	Development Criteria Y 3 to 5 Casing Volumes of Water Removal Stabilization of Indicator Parameters	ater Removal meters	/ +	Nater VC Initial Dep nitial Dep Height of 1	Water Volume Calculation Initial Depth of Well (feet) Initial Depth to Water (feet) Height of Water Calling in West	327	38	(**-0.6528)	Instruments Frame Tempera	Istruments Temperature Meter	Serial No. (If applicable)	
Methods of I	Methods of Development			Diameter	Diameter (inches): Well	es): Well 2" Gr Water Volume in Well	Gravel Pack	ope	Conductiv	D ph merer Conductivity Meter	~~	
rump Centrifugal Submersible	Bailer al X ottom Valve ble 17 Double Check Valve	ilve ACK Volve		Item Well Casing	0	et Gallons	$\Box\Box$	p	□ DO Meter	Aeter		
. 0	_	☐ Stainless-steel Kemmerer	Λ I Φ	Gravel Pack Drilling Fluids	× 5				D ORF Meter	Meter		
Whale	□ Grundfos □ B	□ Bladder □	TĒ)	[otal				77	Water Disposal	isposal Displand	Osal Dischargod to ground	
Water Removal Data	val Data											
		Removal Intake Depth Rate (feet) (gal/min)	th Ending Water Depth (feet)		Water Volume Removed (gallons)	Product Volume Removed (gallons)	ne Temperature ons) (°C)	Ŧ.	Conductivity (mS/cm)	Visual Clarity	Comments	1
Date	Time Pump Bailer	or (Liter/min)		Increment	Cumulative	Increment Cumulative	•)			
9/11/2	× 85%	, bother	1881	165	2/		1	1	1	Spar	ROX.	
0-21-10 12	×.	bhr	15.80	400	25		15.5	11065	125/	É	SWL=25,37'	Į ,
3-21-10	X 20%	642	11/10	53	26.75		15.5	11.08	811	Sex	11/10 1/14 1/15	L.
9,23-10 16	23 X	249	16.28	3025	30		Kest	80-11	169	lear	Start 1/2 = 29,85	
												-
Circle the date and	Circle the date and time that the devaluement estable as	on onto out on our										
Comments L	CAJEK NA	dale pormon	3	(respect	Pur reducise / Pou Q.	~						
/ Developer's Signature(s)	nature(s)	1/1/		,		i C	9/23/	2,				
)))) L	(6) 0 10 10 10 10 10 10 10 10 10 10 10 10 1					nare	1	2	Reviewer	Date_		

Developme

16.35-34.76-23.22= 1.54 × 0.16.32= .75 × 3.8= 0.955.22.

34.35-34.76= 1.59 × 0.16.32= .75 × 3.8= 0.955.22.

Development

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER 350

WELL NUMBER 350	Ash Pond System Project Number: (Kelron) 2010.100 Cost Code: Project Manager: Stringt Crowner (Kolton Edition)		lation (2"=0.1632) 4"=0.6528) In	inches): Well 2" Gravel Pc Water Volume in Well Gall Cubic Feet Gallons Res	Total Water Disposal Discharged to ground.	Water Volume Removed Product Volume Imposedure PH Conduction Visual Cumb Continum Cumulative Continum C	F (1807/8 — Not about 1904e) and plant about about about about about about 1904e).
	Project Name: <u>Groundwater Investigation – BEC Ash Pond Syst</u> Client Company: <u>Dynegy, Inc.</u>	Site Address: <u>Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois</u>	Development Criteria 3 2 5 Casing Volumes of Water Removal Initial Do Institution of Indicator Parameters Initial Do Indicator Parameters	Methods of Development Pump Bailer Centrifugal Bottom Valve Submersible Double Check Valve Peristaltic Stainless-stegl Kemmerer		e development colonic	

Development

Purging

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER 352

Project Name: Groundwater Inve	Groundwater Investigation – BEC Ash Pond System	ind System	Project No	Project Number:	(Kelron) 2010.100		Cost Code:
Client Company:			Project Manager:	İ	Stuart Crav	Stuart Cravens (Kelron Environmental)	imental)
Site Address: <u>Baldwin Energy Complex, 10901 Bal</u>	plex, 10901 Baldwin Ro	ldwin Road; Baldwin, Illinois	5				
Development Criteria 3 to 5 Casing Volumes of Water Removal of Stabilization of Indicator Parameters Other		Water Volume Calculation (2°=0.1632, Initial Depth of Well (feet)	ulation (2"=0.10	632, 4"=0.6528 77 ng/5 70 hg/5	= =	Instruments An Temperature Meter	Seric
Methods of Development Pump Bajler Centrifuaal X Bottom Valve		Diameter (inches): Well 2" Water Volume i Item Cubic Feet G	es): Well 2" Gra Water Volume in Well Ubic Feet Gallons	Gravel Pack ell Gallons to be Removed		# ph Meter Conductivity Meter DO Meter	ter 40763
a)		Gravel Pack	3		TT	☐ ORP Meter	
Whale Grundfos Bladder		Fotal			Ma ∏	Water Disposal	osal Discharged to around.
Nater Removal Data							
Development Removal Method (gat/min) Date Ime Pump Baller (Liter/min)	Intake Depth Ending (feet) Water Depth (feet)	Water Volume Removed (gallons)	Removed (gallons)	Temperature (°C)	pH Conductivity (ms/cm)	m) Visual Clarity	Comments
97110 MM8 X	110.99 1/24	1,5 10,5		2105	780 878	Chan	Start 1425
100000	2279	1		1	1	١	We promp St.
7-	86,3,28	1 (1 \	1 1	1 7	1 sumphy
				7		164	building as
2/30/10	55,37	(1725/2)	ests 1em				
ircle the date and time that the development criteria are met.	riteria are met.						
Comments							
eveloper's Signature(s)	/		9	130/11	C		
(2)			- Dale	1/2	Keviewer	werDate_	

30.0 6.0 1.4 @ 5 10.01

@ Oil Ymin; Openienced significant daudown 31.9-25.85.8.05 . 1632 = 1.31 x 3.8- 4.99

WELL DEVELOPMENT AND PURGING DATA

Vyater Disposal

	_			Τ	<u>+</u>		Т		Τ-	_		Т		<u> </u>	7		7		
	400000000000000000000000000000000000000	inems	とよう	7	· Wy Clan			8	,										
	800	§ 6	Henry ID	W 2//	2 / "	/ 6 S	"		3	77	•								
	Viewel Clarity	/04	00 / 00p Hump ID	332 / 72		1.82 35	- 700	3	2 000	-	2,62 - 42,0								
	Conductivity (m5/cm)			D. B. D. S.77		1:11	1194 1050	25	1,51 R.01 6,927	1	1.60 5/64				ľ				
	£ 2					1.81	76 1	7	70.5	1140	2.0		1						
	s) Temperature			7,64	1201	3/1/2	12.67		12.2	201									
	Product Volume Removed (gallons)	increment Cumulative			1				/		1		1	/		7			
		Incremen	1	1	1		_	Ł	I/	_	1	<u> </u>		У		}		۲,	
	Water Volume Removed	Cumulative	17	7	71/	- 1	07,	3	40	Z.	>						?	19 - 16 1. fers	
		Increment	\$	7	200		2	2	-								(9)
Ending	Water Depth (feet)		3/10	- 5	50.90	600	100.5	101.02	2								,	250	•
Intake Depth	(feet) Water Depth (feet)		245	- 1	_			<u>-</u>	1	_			_	*	7	and one met		D Gum	100
Removal	100	Of (Litter/min)	1.0		o.v		.	4								oment crit	t Le		
	Development Method	Pump Boller	×		L		†	_		7		†	_	†	<u> </u>	If the develor	かったり	2 (· ·
		Iime	וות	1000	11 54	11 01	7 16	ルセニ	(17.77	5 5.15	70.00	1				nd time tha	10.35 0	5	
	·	Date	01/2/0	-				•		2//2/:						Circle the date and time that the development criteria are met	Common 10.35 at 1 11.1.4 bil.		

C.\Consuling A.Power Plants\Baldwin\2010 Hydrogeologic Study\Field Work Phase\Field Forms\develop_purge do: = #123113

Reviewer

Form A0101 Rev. 10/6/94

Developer's Signature(1)

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER 355

i.	Groundwater Investigation – BEC Dynegy, Inc.	ligation –	- BEC Ash	Ash Pond System	tem		Project Number: Project Manager: _		(Kelron) 2010.100 Stuart Cravens (K	elron En	Cost Code:	
Sife Address: Baldwin Er	Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois	ex, 10901	Baldwin	Road; Ba	Idwin, Illino	Sic						
Development Criteria X3 to 5 Casing Volumes of Water Removal Setabilization of Indicator Parameters	of Water Remo Parameters	,va	7 = ± 1	Nater Vc nitial Dep nitial Dep	Water Volume Calculation (2"=0.1632 Initial Depth of Well (feet) スターイター Initial Depth to Water (feet) ススト	culation (feet) 35. r (feet)	7.=0.1632, 73 x	4"=0.6528)	Instru	Instruments Fremperature Meter	Seric	
Methods of Development	*		. <u> [</u>	Diameter	Diameter (inches): Well	Vell_2"	Gravel Pack	Pack	2 1	D PH Meter		
Pump Bailer	⊒			Hem	Water Vo	Water Volume in Well		Gallons to be	> a ≥ • •	★ Conductivity Meter	ter 127.63	
	X Bottom Valve Double Check Valve	φ	1≥ [(Well Casing	╁╾┟		+	604		□ DO Meter		
☐ Peristaltic ☐ Stainle	☐ Stainless-steel Kemmerer	nerer	<u>ין כ</u>	Gravel Pack	<u>,</u>)]	U OKF Meter		
X Whale □ Grundfos	□ Bladder		 기독]	Total		136	m/=	604	Water	Water Disposal	-	
Water Removal Data						ė				Discodia	Discharged to ground.	
Development Method	Removal Rate (gal/min)	Intake Depth (feet)	Ending Water Depth (feet)		Water Volume Removed (gallons)	Product Volume Removed (gallons)		Temperature pH (°C)	<u> </u>	Visual Clarity	Comments	
Date Time Pump Baller	I			Increment	Cumulative	Increment Cumulative	mulative)			
X SIRP DAY		135H	32.84	2.0	,			1	V	14 cm. 1/1/	P. M. P. D.	
1/2 8835	X		7,83	li(X	3.6			1	1	446	ו	
4/2/-10 114 @ X	2	235.1					4	8.1 7.1	1 832	Clear	SW=23,05	
Z X	,		31.68"	2.0	K		7	15,6 7,1	829 9	Clear		
	4 >		1217	6.0	0		20.	0 70	3 925	Clear		
X PA UNGVP		7.1	31.71	26	9		2 3	12 13	\$ 500 m	Sear	91/1m	V
X			3206	1.0	11.0		1 A	J. 1.	906	24	1223,UI (085)	2
comments Very low Methods Alloway.	was recovery	o are met.	J. 12/2	hell b	hed Death =	34XXX	Ino h		3259 6	128	Cardoby O My Man	1
l eveloper's Signature(s)	M	. 1 :	111		1 %	135. N	16	1		248/4		\$
The state of the s						5	11111	111	4のく ひと	atri		

Developer's Signature(s)_

Reviewer_

MELL DEVELOPMENT AND PURGING DATA	WELL NUMBER 500 WELL NUMBER 500 Project Number: Kelron 2010.100 Cost Code: Project Manager: Stuart Crovens Kelron Environmental	10.766 0,58 -105 Reviewer Date
ident CPM (D(8cc)/in 5 7.0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Mater Volume Calculation Initial Depth of Well (feet) Initial Depth of Well (feet) Initial Depth of Well (feet) Initial Depth of Well (feet) Initial Depth of Well (feet) Initial Depth of Well (feet) Initial Depth of Well (feet) Well Casing Gravel Pack Drilling Fluids Total Total Total Total Total Mater Volume Removed Free (feet) Active (feet) Mater Volume Removed Free (feet) Active (feet) Mater Volume Removed Free (feet) Active (fe	devilopment Date 1/4
116 10.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Project Name: Groundwater Investigation – BEC Ash Pond System Client Company: Dynegy, Inc. Site Address: Baldwin Energy Complex, 10901 Baldwin Road; Baldw Development Criteria Stabilization of Indicator Parameters Water Removal Data Water Volume Water Removal Data Wa	Circle the date and time that the development criteria are met. Comments 1327 start 1443 lauralythe Developer's Signature(start)

☐ Development □ Purging

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER ON-158

Project Name: Groundwater Investigation – BEC		Ash Pond System	Project N	Project Number: (Ke	(Kelron) 2010.100	l	Cost Code
Client Company: <u>Dynegy, Inc.</u>			Project N		art Cravens (k	Celron Environ	mental)
Site Address: <u>Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois</u>	x, 10901 Baldwin I	Road; Baldwin,					
Development Criteria 3 to 5 Casing Volumes of Water Removal 5 Stabilization of Indicator Parameters □ Other		Water Volume Calculatic Initial Depth of Well (feet) _ Initial Depth to Water (feet)	Water Volume Calculation (2"=0.1632. Initial Depth of Well (feet) 2046 Initial Depth to Water (feet) 2.03.	632, 4"=0.6528)	Instruments ReTempera	struments G Temperature Meter	Seria
of Deve		Diameter (inches): Well	2" ome in W	Gravel Pack	MPH Meter	路 pH Meter 超 Conductivity Meter	752-63
g Se		Item Cu Well Casing Gravel Pack	Cubic Feet Gallons	Removed 6.8	☐ DO Meter☐ ORP Mete	☐ DO Meter ☐ ORP Meter	
□ Peristaltic □ Stainless-steel Kemmerer ★Whale □ Grundfos □ Bladder □ □		Drilling Fluids Total	3 10	8.9	Water Disposal	Jisposal Discharge	Osal
Water Removal Data							
^	Intake Depth Ending (feet) Water Depth (feet)	Water Volum (gallo	e Removed Product Volume not)	Temperature pH (°C)	Conductivity (mS/cm)	Visual Clarity	Comments
1	(4		(0			
1132 X	J. M.S.	3,6		18,1 6,70	x x x x	24 A 1014	
1136 X 0,25	18.5	4.6 8.	8.0		813	544	Punoled dry
1 2 X 0.75	5,c 1470				100		Reway udfor kvel
155 X CA10		500 /10	<i>b b b b b b b b b b</i>	16.9 6.97	8/8	JAK.	Cycle / Book increments
1158-	1841					/	
if the developme	are met.						
Comments that Will learn = 20,4	5, toc	=17070 bgs	5 /5th ph = 2.7	, Sc.	Ston but	s stubel	Ston but astached recovery all sad a
Developer's Signature(s)	11/1	>	Date 9	01/4/	Reviewer	Date	16.1
`			•	•			

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER ON-67

Prior of the state			Water Volume Calculation Initial Depth of Well (feet) Initial Depth to Water (feet) Height of Water Column in We Diameter (inches): Well 2" Water Volume in Hem Cubic Feet Ga Well Casing Gravel Pack Drilling Fluids Feding Water Volume Removed Froduct (feet) Total St. D. M. Removed Froduct (feet) Water Volume Removed Froduct (feet) Froduct Column in Well (feet) Water Volume Removed Froduct (feet) Froduct Column in Well (feet) Water Volume Removed Froduct (feet) Froduct Column in Well (feet) Water Volume Removed Froduct (feet) Froduct Column in Well (feet) Water Volume Removed Froduct (feet) Froduct Column in Well (feet) Water Volume in Column in Well (feet) Froduct Column in Well (feet) Water Volume in Column in Well (feet) Froduct Column in Well (feet) Water Volume in Column in Well (feet) Froduct Column in W	38 mg /= 17.11 bg 5 15/2kg = 2067; Roote relange rate / Klob Q
Project Name: Groundwater Investigation – BEC Ash Pond System	Client Company:	Site Address: <u>Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois</u>	Valve Check Valve -steel Kemmerer I Bladder Removal Intake Depth Ending Rate (Mer/min) (Mer/min	comments that 100th = 20,38 mp /= 17,11 bgs

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER MIN 130/58

					LEE NOWIDEN JIM- JOINSY
Project Name: Groundwater	Groundwater Investigation - BEC A	Ash Pond System	Project Number:	(Kelron) 2010,100	Cost Code:
Client Company: Dynegy, Inc.			Project Manager:		Stuart Cravens (Kelron Fnvironmental)
Site Address: Baldwin Energy Co	omplex, 10901 Baldw	Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois			
Development Criteria ★3 to 5 Casing Volumes of Water Removal ☐ Stabilization of Indicator Parameters	Removal ers	Water Volume Calculation (2*=0.1632, Initial Depth of Well (feet)	1	4"=0.6528) Instruments	Serial No. (If applicable) Fromperature Meter 151-63 (414-10754)
Other Countries of the		Height of Water Column in Well (feet) Diameter (inches): Well 2" Grav	imn in Well (feet)		'_/
×		Water Vol	me in Well	to be	Conductivity Meter 111-63
Centrifugal Mestrom Valve	- 1-7	Đ.	14	1	□ DO Meter
	k valve Kemmerer	Gravel Pack			□ ORP Meter
Whale Grundfos Bladder	der 🗆	Unling Fluids Total		Water [Water Disposal
Water Removal Data					Discharged to ground.
Development Rate Method (Saitmin)	loval intake Depth Ending the (feet) Water Depth Triffin	Water Volume Removed (gallons)	Product Volume Temperature Removed (gallons) (°C)	iture pH Conductivity (mS/cm)	Visual Clarity Comments
Pump Baller		Increment Cumulative	Increment Cumulative)	
X	- N/A 1206	5/12/12	NA NH 185	6.88 1442	Whom starto area
NO X DIS	25	11.25 2.5			/ / / / / / / / / / / / / / / / / / / /
X 1280	15.9	165 1100	2/	6.93 1470	0141
12		1.25 5.23	16.9	805/069	Clear State BONS
8 1590 1		2,620 62	124	6.721.506	Gear
	7	2	, , ,		
			\		
Circle the date and time that the development criteria are met $A = 654$	st first w	4 dook = 18.03	M	(J/2 h. Hs.)	
Developer's Signature(s)			49	•	
			-nale -	Reviewer_	Date

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER

				E	í							TT			7	
WELL NUMBER MANJONDA	Cost Code:	nental)		Serial No. (If applicable) or $ysi-67(yA01SY)$	411-63	3.		Discharged to ground.	Comments	mek brown Start @ 1074K	PM=2665	54-10 B829	PWL = 246/5			
MBER 1	100 Cost	Project Manager: <u>Stuart Cravens (Kelron Environmental)</u>		Instruments XTemperature Meter	E pH Meter	DO Meter	Water Disposal	Discharge	Vitual Clarity		H. home	TT	elle Cles			Date
ILL NU	(Kelron) 2010.100	tuart Craven		드			N Z		pH Conductivity (m3/cm)	095 118	49/136 18/135	211130	11/32	n =	18 6476A	Reviewer
>	Project Number:	lanager: SI		632, 4"=0.6528)	Gravel Pack	Removed	>	14	Temperature (°C)	17.4	15076	16.5 7	22.22	701	is) du	11/
	Project N	Project M		ilation (2"=0.1	es): Well 2" Gra	Gallons 3.1			Product Volume Removed (gaitons)	1/1 W/W			, , ,		= 18:45	Date 2
	tem		parawii Eriergy Complex, 10901 Baldwin Road; Baldwin, Illinois	Water Volume Calculation (2'=0,1632 Initial Depth of Well (feet)	Diameter (inches): Water Volume in Well Water Volume in Well	10	2 S		Water Volume Removed (gallons)	2	27	30	X		nell Death = 18:45' no (50/18 62764)	
	Groundwater Investigation – BEC Ash Pond System Dyneay Inc		Iwin Road; Bo	Water Vo	Diameter	Well Casing	Drilling Fluids			10.0	2/7/	2 2	77		End me	
	igation – BEC		x, 10901 Balc	val		Φ	nerer		(feet) Water Depth (feet)	1/6			1621	tom one	Val.	1
	dwater Invest		erdy Comple	f Water Remo Parameters		baller Bottom Valve Double Check Valve	 □ Stainless-steel Kemmerer undfos □ Bladder □ 		Removal Rate (gal/min) or (Ulter/min)	+	777		We had	elooment criterio	- 35 - 35	
	ĺ		1	Development Criteria K3 to 5 Casing Volumes of Water Removal Stabilization of Indicator Parameters	Methods of Development		=	al Data	Development Method Time Pump Baller	XX 200	808X XXXXX	37X	28 × /	Clicle the date and time that the development criteria are	ing beta	ıture(s)
	rioject Name; Client Company;	Site Address:	200	Development Criteria (3.10 5 Casing Volume (2.20 Stabilization of Indica	ethods of Do	Centrifugal Submersible	Whale	Water Removal Data	Date	9.0	080	083	1/1/ 1890	the date and tir	Comments A	Developer's Signature(s),
ċ	ב ט	ïS	;		Ž		- 🎮	š		8			8	Circle	Con	Deve

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER 772-158

Project Name: Hydr	Hydrogeologic Investigation – BEC Ash. Pond System Dynegy Operating Co. / Dynegy Midwest Generation	jation – BEC Ash . / Dynegy Mid	Pond Syster west Genera	m ation	Project Number: Project Manager	mber:	(Kelron) 2013.009 Styart Cravens (K	elron En	Cost Code:
ite Address: Baldwin	Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois	10901 Baldwin F	Road: Baldw	in, Illinois					
Development Criteria 3 to 5 Casing Volumes of Water Removal 5 Stabilization of Indicator Parameters	s of Water Remova or Parameters		Mater Volume Calculation (2 Initial Depth of Well (feet) Initial Depth to Water (feet) Height of Water Column in Well	ne Calcula of Well (feet o Water (fe	Water Volume Calculation (2"=0,1632, Initial Depth of Well (feet) 26,04 Initial Depth to Water (feet) 20,04 Height of Water Column in Well (feet)	32, 4/=0.6528) 34, 64/=0.6528)	<u>=</u>	Instruments Nemperature Meter	Serial No. (If applicable) weter $\frac{\sqrt{5L-63}}{\sqrt{5L-63}}$
Methods of Development	ent		Diameter (inches): Well Water Volu	thes): Well	\ >	rel Pack Gallons to be		Conductivity Meter	\Z\
Pump Bailer	om Volve	, 1 -	Item	Cubic Feet	Gallons	Removed	-	□ DO Meter	
, <u>e</u>	□ Double Check Valve		Gravel Pack		000	10-10	_ 	☐ ORP Meter	
Whale Campata	□ Stainless-steel Kemmerer indfor □ Bladder □	<u>一,</u>	Orilling Fluids			11/6	Wa	Water Disposal	
5			Ordina Ordina			10/2	์ เ	Discho	Discharged to ground.
***************************************		Intake Depth Ending (feet) Water Depth	Water Volume Removed (gallons)		Product Volume Removed (gallons)	Temperature (°C)	pH Conductivity (mS/cm)	hvity Visual Clarify	Comments
Date Time Pump	Pump Boiler or (Ulter/min)		Increment	Cumulative Inc	ncrement Cumulative				
1/5/13 1015/X	×	*14.20	3,5	7.0		17,5	ble oh8	Churs	1 Starte 1043
V 1/ 1048 X		*/15,3D	15	2.0,		16.3	113 74	3 clubys	in slightly tubil 11, gray
1051 X		×1635	7.0	3,00		16,4	7.87 72	4 66.60	L Clay 51 tobil, 1/ #stoy
1055 X		K18.60	M.75	3.75		16.0	1.10 73	6 Gobd.	day. V. H. aray,)
X 8501		15051	250	7.5	<u>-</u>	1/2.4	70 00	2 5/4A	SAA ANY Sollington
X 9011		19.12	25.0	9.0		7 - 2	1. U. T.	17 FWT 600d.	HEL BOXINGSITUAGE
9/5/13 1144 -		— 1348	7.				2		Ш
Sircle the date and time that the development criteria are met.	e development criterio	re met.	, That w	elt work	Fire well work = 21.86	56/mp	St.	4/2 = 300	De Const.
) (Jeveloper's Signature(s)_		1/2	rs .	·	Date 4	13	Reviewer		Date

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER 7/2-15/3

Cost Code:	nvironmental)		Serial No. (If applicable) e Meter VSI-63	ty Meter 1415-65			osai Discharged to ground.		Comments		1st gray / Chidy	week below fly tubil	Lt bound Lythold		Class	Clar			Dote	
13.009	vens (Kelron E		instruments ★Temperature Meter	Conductivity Meter			water Disposa Disc		Conductivity (ms/cm) Visual		TH Fact	Ser Serv	100 /00	75	103 Good	197 Good			Poviewer	D ***
(Kelron) 2013.009	Stuart Cra		1,6528)	Gallons to be	-4.6		777	8	Ŧ		6 7.23 8	9 697 9	6.16 8	26.76 9	6 0 × 0 ×	8 K.9 8		- 200	Q.	<u>}</u>
Project Number:	Project Manager: <u>Stuart Cravens (Kelron Environmental)</u>		20	Ž 🗔	7		2.5		Product Volume Temperature Removed (gallons) (°C)	ncrement Cumulative	2006	20.9	20,	20,00	22	14		2.95'	6/8/6	ain ain
Į		aa; balawin, iiiinois	Water Volume Calculation (2"=0.163) Initial Depth of Well (feet) Initial Depth to Water (feet) Height of Water Column in Well (feet)	Diameter (inches): Well 7/25 G	p p	Gravel Pack Drilling Fluids			Water Volume Removed Rem	Increment Cumulative Increr	75 05	25, 1.0	1.5	20 20D	25 20	226 3.25		m. Stuk-4 = 2.95		
igation – BEC Ash F	o. / Dynegy Midw	LUYUT BAJAWIN KO		<u>ö</u> [Total		(feet) Water Depth (feet) (feet)		26 21H	32.3 2Hall	323 2560	323 25.60	32.3 25.60	11 /1	19,95	1450	<i>[</i> ,	
Hydrogeologic Investigation – BEC Ash Pond System	Dynegy Operating Co. / Dynegy Midwest Generation	Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, IIIInols	Development Criteria X 3 to 5 Casing Volumes of Water Removal X stabilization of Indicator Parameters	opment	Bottom Valve	 Double Check Valve Stainless-steel Kemmerer 	□ Grundfos □ Bladder		Development Rate Method (agi/min)	Pump Baller	X		×	× ×	X	X	0	Circle the date and time that the development criteria are met		re(s)
Project Name:	~	Site Address: <u>Bal</u>	Development Criteria X to 5 Casing Volume X tabilization of Indica	s of Deve		Submersible I	_ whale □Gr	Water Removal Data		Date Time	9-3-13 154M	160%	7191	162	163	* * * * * * * * * * * * * * * * * * *	9313 165	Circle the date and time		Developer's Signature(s)

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER $\frac{772-160}{6}$

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER 172-14

	Hydrogeologic Investigation – BEC	ation – BEC Ash Po	Ash Pond System	Project Number:		(Kelron) 2013,009	Cost Code:	de:
>	Dynegy Operating Co.	./ Dynegy Midwest Generation	t Generation	Project Mar	ager: <u>Stuar</u>	Project Manager:	n Environme	ntal)
Sife Address: Baldwin	Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois	10901 Balawin Roa	d; Baldwin, Illinois					
Development Criteria			Water Volume Calculation (2*=0,1633	ation (2"=0.163	2. 4"=0,6528)	Instruments	24(25)	Serial No. (If applicable)
3 to 5 Casing Volumes of Water Removal	s of Water Removal		Initial Depth of Well (feet)		10,	Temper	Temperature Meter	45.63
D Other		Heig	Height of Water Column in Well (feet)	n in Well (feet)	8,04	DH Meter	à	105-63
THE MANAGEMENT AND ADDRESS MANAGEMENT	8	Diam	Diameter (inches): Well _	2" Grave	Gravel Pack	9		07 201
Methods of Development	ent		Water Vol	Water Volume in Well	Gallons to be	Conduc	Conductivity Meter	2
	Bailer	=	Item Cubic Feet	Gallons	Removed	□ DO Meter	er	
	tom Valve	Mell	Well Casing	1.H(1,37)	111-6.85	(100 to 10	
<u>e</u>	□ Double Check Valve	<u> </u>	Gravel Pack	•		LI ORP Meter	ţer	
ត	⊔ stainiess-steel Kemmerer		Drilling Fluids	3	8 23	14/14	-	
□ Whale □ Grundfos	s 🗆 Bladder 🗇	Total		5	12-1-6.4	water Disposal	osal	
Water Removal Data		2					מוססוק מו ספקים ומוססוק	ים פונסטום:
Deve	Removal Intak Development Rate (f	intake Depth Ending WG (feet) Water Depth	Water Volume Removed	Product Volume Removed (gallons)	Temperature pH (°C)	Conductivity (ms/cm) Vis	Visual Clarity	shammon
ű	<u></u>			4				55
Date Time rum	(Ulfer/min)	Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul	increment Cumulative in	ncrement Cumulative			-	
XLOH 81-4-b	7	1 86°H*08"	5/1/5		216 73	403 12	S Sunt	tarto MOH, DK.gray
X 10 M		1 864*	5 30		21.2 22	got Fall		" " " The say Si the "
X CIMI	-	1 864*	5 4.5		21.1 1115	21 Ch	ar/free	while tubidit
X [[H]] X		, 7	5 7.0,		21.2 7.0	905 CB	par	
9-4-13 1418 X		/ / /	0.8.0		21.1 7.0	20 ESP	\$ S	
9473 H2S		1	1					FAL water prel.
-		53,4,83						
				-				
Circle the date and time that the development criteria are met.	ne development criteria	are met.						
1		117			1.1.			
Developer's Signature(s)_		7		Date_ 1	1113	Reviewer	Date	
Name of the state	111	ر •						

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER 182 165

Project Name:Hydrogeologic In Client Company:Dynegy Operatir	Hydrogeologic Investigation – BEC Ash Pond System Dynegy Operating Co. / Dynegy Midwest Generation	n Pond System	Project Number: Project Manager	ber: <u>(Kelro</u> ager: <u>Stuar</u> l	(Kelron) 2013.009 Stuart Cravens (Kelro	Project Number: <u>(Kelron) 2013.009</u> Cost Code: _ Project Manager: <u>Stuart Cravens (Kelron Environmental)</u>	
Site Address: <u>Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois</u>	ıplex, 10901 Baldwin	Road; Baldwin, Illino	Ş	V 000	CK.		
Development Criteria 其3 to 5 Casing Volumes of Water Removal Stabilization of Indicator Parameters		Water Volume Calculation (2"=0.1632. Initial Depth of Well (feet) Initial Depth to Water (feet) Height of Water Column in Well feet)	culation (2"=0.1632 feet) ZDJ r (feet) Sr	, 4"=0.6528) } H.33	Instruments XTemperat MPPH Meter	ture Meter	Serial No. (If applicable)
Methods of Development Pump Boiler		Diameter (inches): Well water Vo	lume in Well	el Pack Gallons to be Removed	Conductive Conductive	Conductivity Meter	1263
trifugal nersible		ρğ	26.62	2.8-4.6	ORP Meter	ter	
Menstallic Stainless-steel Kemmerer		Drilling Fluids Total		28-40	Water Disposal	osal <u>Discharged to ground</u>	ound.
Water Removal Data					3		
Removal Development Rate Method (gal/min)	rai Intake Depth Ending (feet) Water Depth (feet)	Water Volume Removed (gallons)	Product Volume Removed (gallons)	Temperature pH (°C)	Conductivity (ms/cm) Vis	Visual Clarity	Comments
Date Time Pump Baller or (Utter/min)	dn)	Increment Cumulative	Increment Cumulative	5			
9-3-13 1347 X)	Ø25 Ø25		69 UT	W BATO	222	gray trubia
1357 X	07.0 d 20	1,25 1,55 N.5 1,55		20,5 6.9	2497 1	\$ 5	
X QOMI	1	050 2.5		200 61	2515 60	Good Very	19 My SI troph
X 634 /	121	0,5 3,5		20.2 6.74	2574 Scool	Clark	No VITATION
X 91M A	>27	12		20°1 665	2451 6308	as perso ded	10 3
Circle the date and time that the development critera are met	3 c	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- "		100		19 19 19 19 19 19 19
Comments * Lumber vista /eye	Y. DIV	war awath - Lyals ma		2	Z,D		
Developer's Signature(s)	3	-	Date 9/3/	3	Reviewer	Date	
7 . 1			, /				

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER 7/22-1/66

Project Name:		drogeo	Hydrogeologic Investigation – BEC Ash Pond System	stigation	- BEC As	h Pond S	/stem	Ā	Project Number: _	mber:	(Kelron	(Kelron) 2013.009	Cost	Cost Code:	. !
Client Company:	any: D	megy O	Dynegy Operating Co. / Dynegy	Co. / Dy	negy Mic	lwest Ge	Midwest Generation	ፈ	oject Mc	ınager: _	Stuart (Sravens (Project Manager:Stuart Cravens (Kelron Environmental)	mental)	ı
Site Address:		in Energ	y Comple	ix, 10901	Baldwin	Road; Br	Baldwin Energy Complex, 10901. Baldwin Road; Baldwin, Illinois	Sis							1
Development Criteria 3 to 5 Casing Volumes of Water Removal Stabilization of Indicator Parameters	nt Criteria Sing Volum on of Indic	a ies of W ator Para	fater Remo ameters	oval	>	Nater V nitial Deg nitial Deg	Water Volume Calculation (2"=0.163) Initial Depth of Well (feet) Note: (Feet) Height of Water Column in Well (feet)	culation feet sr (feet)	2 M 2	1632, 4"=0.6528)	528)	Instruments Tempero	Struments Temperature Meter	Serial No. (If applicable) ler $\sqrt{\mathcal{L}-63}$	<u> </u>
Methods of Development	Develop	nent			. <u>-</u> _	Diameter	Diameter (inches): Well	es): Well 2" G	Gra	Gravel Pack		à à	Conductivity Meter		ΙΙ
Pump	Bailer	<u>بر</u>				Item	Cubic Feet		Gailons	Removed	pe pe	00	□ DO Meter		
□ Centrifugal		Rottom Valve	**Retrom Valve © Double Check Valve	ě	<u> </u>	Well Casing Gravel Pack	m X		303	[-909]	122		□ ORP Meter		
☐ Peristalfic	_ (ainless-:	□ Stainless-steel Kemmerer	merer		Drilling Fluids	SS					Water	Water Disposal		
Whale 🗆 Grundt	□ Grundtos	ö	□ Bladder		드 	Total		-		166-7	27		Discharg	Discharged to ground.	1
	å	Development	Removal Rate	Intake Depth (feet)	Finding Water Depth (feet)	1	Water Volume Removed (gallons)	200,000	Product Volume Removed (gallons)	remperature (°C)	F.	Conductivity (mS/cm)	Visual Clarity	Comments	
Date	Time	Pump Bailer	(Mer/min)			Increment	Cumulative		ncrement Cumulative					1	
93-13	1220	×		1	14.40	5.0	5.0	-	-	16.8	8.09	765	Fair	Lt brown sto	trbid
	1521	×		1	31.48	5.0	18.0			9:51	150	9/9	my	5AA. 1	
	1239	\		,	25,60	4.0	14.0			15.6	7.26	595	Porr	Ned born do	<i>67.</i> 2
8	JAKY \	×		280	<i>√</i> 2.	2.0	16.0	9 9	_	1	١	1	1	Pemped well a	A
	CHI			28.U	723		20 B.1	2		15.	7.21	833	Jag yar	LA, bom, sho	NAN.
	788 J	>		28,0	Z Z	15	19,			16.4	702	855	tar	May 1410	
	1305	1		28.0	M	01	20.	_		15.9	200	255	Jag	Them	
					26.12	3	,							`	
Circle the date and time that the development criteria are mel.	Ind time that	The deve	lopment crit	eria are me	has ne	U Ses	looth = 28,12		Z,	-4c4	1 7	2.83	/	•	l
-	D.		H	1		-		ć	1	4/12	`				
Developer's Signature(s)	ignature(s		7	1				Date_	* •	110	Ĭ	Reviewer		0	1

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER 7/2 1/67

Project Name: <u>Hydrogeolo</u> g	Hydrogeologic Investigation – <u>BEC Ash Pond System</u>	BEC Ash Po	ond Syste	ε	Project N	Project Number:	I	(Kelron) 2013.009		Cost Code:	
Client Company: <u>Dynegy Ope</u>	Dynegy Operating Co. / Dynegy Midwest Generation	eay Midwe	st Gener	ation	Project N	lanager:	Stuart	Cravens (K	Project Manager: <u>Stuart Cravens (Kelron Environmental)</u>	nental)	
Site Address: <u>Baldwin Energy (</u>	Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois	aldwin Roc	ad; Baldv	vin, Illinois							
Development Criteria		Wat	er Volur	Water Volume Calculation	ation (2°=0.1632,		4"=0.6528)	Instruments	ents	Serial No. (If applicable)	
3 to 5 Casing Volumes of Water Removal	er Removal	nific Diffic	al Depth	Initial Depth of Well (feet) _ Initial Depth to Water (feet)	•	200	467	⊈ Terr	Temperature Meter	E9-Is	
Other	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Hei	th of Wo	Height of Water Column in Well (feet)	in Well (fee	1 26.4		DON Meter	Meter	11)	
		Diar	neter (in	Diameter (inches): Well	2" Gr	Gravel Pack		Y	Totols which had been	,	
Methods of Development				Water Vol	Water Volume in Well	Gallons to be	eq o	3	IDUCIIVIIY MET	ļ	
			Item	Cubic Feet	Gallons	Removed		_	□ DO Meter		
	^e	Well	Well Casing		1,57	13,	7-22-2				
ě	eck Valve	Gā	Gravel Pack			-		Š	U OKP Merer		
▼Peristaltic □ Stainless-steel Kemmerer	el Kemmerer	Drillin	Drilling Fluids								
Whole Grindfor Bl		Z ^T				14.7	23.9	water Disposal	Jisposai		
				8			1		Discharge	Discharged to ground.	
Water Removal Data											
ŧ	intake Depth (feet)	Ending W Water Depth	ater Volume Re (gailons)	moved	Product Volume Removed (gallons)	(°C)	Hq er	(ms/cm)	Visual Clarity	Comments	
Method	nju)	- 1	increment	anged to	actendary Cumulative	92			6		
Date Time Pump parent	(Ulter/min)		CIGNIA								П
X X X X X X X X	33,5	<u>=</u> t	SU	1.25	1	180	7.31	3,68	D.K. Go. sun	+ DK brown trobil	\neg
X 6/60	2	7.673	5	2.0	/	0'81	693	0E9'E	Poor/Splace	**	
X 1460	~	1	3	8,25	1	17,6	4.W	898€	Bor "	4. boun, tubile	
X 6449	=	10.01 3	57	11.5	/	17.3	186	068,E	my	LAGRON, S/4/H1 tabil	- 1
X HSBO ,	31/2 #	2010	62	14.0	\ \	8'91	88%	768 8	Tiest	16th H. stay (3) trotal	V
X 11001 A	=	10,12 6	0,	20,00	\ \	1''_	1.89	£ 98 E	ing	5/AA) //	
960 5 101 X	=	1	0.3	23.00	1	17.6	166	2,880	Tur	SAA	
HIXI II		7.68				-					
Circle the date and time that the development criteria are me	oment criteria are met	-	7	771	11	1, 0		,	1.		
comments * omethe water level	kvele tille	NOW A	11 48	= 37.2	om o	Stick-4	- 1	= 2.7	5.1		
	111		_		_	/2/13	_				
Developer's Signature(s)				į	_Date	4/12	3	Reviewer	Date_		
E	, , ,					_					

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER 7/2-/68

Project Name:	Hydrogeol	<u> Hydrogeologic Investigation – BEC Ash Pond System</u>	igation – B	EC Ash F	ond Syste	m.	Project Number:		(Kelron) 2013,009	13,009	Cost Code:	ode:	
Client Company: _	Dynegy O	Dynegy Operating Co. / Dynegy Midwest Generation	o. / Dyne	ay Midw	est Gene	ation	Project Manager:		Stuart Cra	Stuart Cravens (Kelron Environmental)	ı <u>Environm</u>	ental)	
Site Address: B	Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois	y Complex	, 10901 Bc	Idwin Ro	ad: Bald	vin, Illinois		ø			l		
Development Criteria X to 5 Casing Volumes of Water Removal Stabilization of Indicator Parameters	riteria /olumes of W Indicator Para	ater Remov ameters	-es	W in in in in in in in in in in in in in	ter Volu	Water Volume Calculation in this Depth of Well (feet) Initial Depth to Water (feet) Height of Water Columnia.	Water Volume Calculation (2=0.1632 Initial Depth of Well (feet) Initial Depth to Water (feet)	76 0.6528)	1.1	Instruments Aremperature Meter	s ature Mete	Serial No. (If applicable)	
				ē iš	meter (in	Diameter (inches): Well 2"	5 1	Gravel Pack	ΪÍ		0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	"	
Methods of Development	elopment					Water Vo	Water Volume in Well	Gallons to be		* Conduc	IIIVIII Y IVICII		
Pump	Bailer			- 72 - 72	item	Cubic Feet	† Gallons	Removed	7	□ DO Meter	eĭ		
□ Centrifugal	B Bottom Valve	alve		We	Well Casing		8%	1-45	Q Q		10		
**Submersible	■ Double Check Valve	heck Valve	a)	8	Gravel Pack					L ORF MEIGH	<u> </u>		
A-Peristallic	☐ Stainless-steel Kemmerer	steel Kemn	nerer	5	Drilling Fluids				5	otor Dien	1000		
Whale DG	□ Grundfos □	□ Bladder [Total	_			3-11-65	ر ا	vvater Disposal	Discharge	Oisoborood to around	
Water Removal Data	Data												ſ
	Development	Removal	Intake Depth (feet) W	Water Depth	Nater Volun (gal	Water Volume Removed (gallons)	Product Volume Removed (gallons)	Temperature (°C)	품	Conductivity (mS/cm) Vi	Visual Clarify	Comments	
Date Time	Pump Baller	(gal/min)		Ì	Increment	Cumulative	ncrement Comulative				,		
4-3-13 10H	'3 X		28.3	19.94	137	205		18.4	14 LIM	553 Jou	Nough	Oork Brown verythe	X
1	X			XXX	25	5.0		16.9	14337	15 811	(19/	SAA	
	X		26	71.13	5.0	0.01		17.1	11.06 11	966 558	4	SAA	T
71	XX			1	2,0	12.0		17.0	11.03 5,	2000	*	We	
	30 X		3%	417.06	1,5,1	1305		16.4	11.39 5	170 Por	197	Med Brown, July d.	
	Z X				51	15.0		16.9	11445	150	7	LASTON MOST TITES	
**************************************	メバ		*	11.22	1.0	16.0		16.4	11415	110 Fa	ZZ.	194 glay nothertha	
9-3-13 11	7			16.83		`	-				82		
Circle the date and time that the development giteria are met	ne that the develo	elopment gate	ria are met.	TIOM	Anh:	Josh = 28,111	chu,	Stik-19	11	2060'			
Comments of I VIII	0.0		1	•									
(a) est thought of control of the co	5 12 12 12 12 12 12 12 12 12 12 12 12 12	1	2		•		Date 6	13/13	Re	Reviewer	Date		
חפילטים שלטים שלטים	16/21011	+	4		e.		<u> </u>						

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER MM-/6/

Project Name: Hydrogeologi	Hydrogeologic Investigation – BEC Ash Pond System	BEC Ash Pond Sy	stem	Project Number:		(Kelron) 2013,009		Cost Code:
Client Company: <u>Dynegy Oper</u>	Dynegy Operating Co. / Dynegy Midwest Generation	gy Midwest Ger	eration	Project Manager:		tuart Craver	Stuart Cravens (Kelron Environmental)	mental)
Site Address: <u>Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois</u>	Complex, 10901 B	aldwin Road; Ba	dwin, Illinois					
Development Criteria	·	Water Vo	lume Calcul	Water Volume Calculation (2"=0.1632.	32, 4"=0,6528)		Instruments	Serial No. (If applicable)
A 3 to 5 Casing Volumes of Water Removal 女 Stabilization of Indicator Parameters	er Removal eters	Initial Dep Initial Dep	Initial Depth of Well (feet) _ Initial Depth to Water (feet)	eet 72	227	₩	Å Temperature Meter	7
☐ Other		Height of 1	Nater Colum	in Well	123	15 .	ChpH Meter	V52-63
		Diameter	Diameter (inches): Well	 - -	Gravel Pack	1.5	Conductivity Meter	WZ 63
s of Deve			Water Vo	<u>E</u>	Gallons to be			
Pump		tem	Cubic Feet	_	Removed	_	□ DO Meter	
•	Ф	Well Casing		20/	6.3-11	য		
_ <u> </u>	ck Valve	Gravel Pack	>			-	L OKF Meter	
☐ Peristairic ☐ Stainless-Steel Kemmerer	ei Kemmerer	Drilling Fluids	S			18/24		
Whale Grundfos Bla	□ Bladder □	Total			h.3-10	χ γαΐ	water Uisposai	1
Mater Demoval Data				5		 	DID IOS	Discring ded to grootin.
vater removal Data						t		
Development Re Method (a	Removal Intake Depth Rate (feet) M	Ending Water Vol Water Depth (G	Water Volume Removed (gallons)	Product Volume Removed (gallons)	Temperature (°C)	DH Conductivity (m\$/cm)	Waval Clarity	Comments
Date Time Pump Baller (UH	Of (Uher/min)	increment	Cumulative	ncrement Cumulative				
9-4-13 19401 X X	M32 5	27,40 02	Sist		1601	14H 879	Gar. Khob	troblethet 08:59. Ot gray
4-4-13 1240K X X,	432	5'8" -	19ºH.		15.3	808 871	MASOC	DK. why han habite.
XX IIIpo	34.5 N	34.45 16 CV	12.0		1501	127 824	VAU.	SKA (high claycodest)
X L(b0)	345 1	34.15 2.18	7.0		15,2	1,20 797	V. Par	SAA I,
X SUS	₹ 	33,35 2.18	2.6		15.0	2,10 804	KPOST	544 V
V GASS X	11	33,201.25	11.25		H.31	1,33 744	V. Pur	M. 4 ray, Very Note
- 9460 EF 4- b		24°H	1		1	1	-	Fred moter know
							200	
Circle the date and time that the development criteria are	Day of A Day	D mell don	H=35,88	88 mg.	p-745	4=2,53	183	
					1,	_		
Developer's Signature(s)		-\		Date 4	1/13	Reviewer	ver Date	
				\ -		Workship (Control of the Control of		

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER ON 256

roject Name: <u>Hydrog</u> Jient Company: <u>Dyneg</u>	Hydrogeologic Investigation - BEC Ash Pond System	stigation – Bl Co. / Dynec	EC Ash P	ond Syste	em ration	Project Number: Project Manager	Project Number: _ Project Manager:		(Kelron) 2013.009 Stuart Cravens (K	elron En	Cost Code:
ite Address: Baldwin En	Baldwin Energy Complex, 10901 Baldwin Road; Baldwin, Illinois	x, 10901 Bal	ldwin Ro	ad; Bald	win, Illinois)				
Development Criteria 3 to 5 Casing Volumes of Water Removal Stabilization of Indicator Parameters	f Water Remo Parameters	vai	S iffi iffi iffi	iter Volu	Nater Volume Calculatic Initial Depth of Well (feet) _ Initial Depth to Water (feet) _ Height of Water (feet)	Water Volume Calculation (2"=0.1632, 4"=0.6528) Initial Depth of Well (feet) 1.48	1632 4"=0 577 18	1.6528)	Instruments Frempera	struments Fremperature Meter	Serial No. (If applicable) er xiz-63
			i i	gril of 17, meter (in	Diameter (inches): Well	2"	Gravel Pack		2 6	Z pri merer	7 3
s of De	.				Water Vo	lume	Gallons to be	to be	ο Σ	Conductivity Meter	er / Tes
Centrifuadi Rattor	n Valve		N.	Item	Cubic Feet	Gallons	Removed	oved .	000	□ DO Meter	
a n	□ Double Check Valve	,e	<u> </u>	Gravel Pack	8	1111	200	3	D OR	□ ORP Meter	
<u>.</u> 2	□ Stainless-steel Kemmerer	merer	Drilli	Drilling Fluids							
₩whale □ Grundfos	□ Bladder		Total	_			173	20.5	Water I	Water Disposal	
Vater Removal Data			3					ľ	ļ		האלו לשל וס מוסמות:
Development	Removal Rate (agl/m(p)	Infake Depth E (feet) Wat	Ending v Water Depth (feet)	Vater Volume Re (gallons)	Water Volume Removed (gallons)	Product Volume Removed (gallons)	s) Temperature	Md env	Conductivity (mS/cm)	Visual Clarify	Comments
Date Time Pump Baller				Increment	Cumulafive	ncrement Cumulative		8		93	-
9-4-13 120 1817	X	345, -	(20	22	_	12.7	8.11	865	Par Juty	state 134, 14 bow
X 85C1		355 **	270	3,0	5.0		17.7	787	919	Fall	Turbil Light yay
x that		X	171	2,0	2.0		162	1111	392	私	100 HVS
1248 X		13	12	3,0	0'01		157	342	61.8	Just	14th arase Tithill (ch)
1 128 %		EX /	127	1.0	140		162	1,3	706	goog.	#CHUM-51-tuble
V 130. X.		V , D32	177	35	17.7		591	733	788	mag hapt	SI, Cloud. Notable
9-4-13 1316 X		35.5	1778	3,0	2005		1/9/	7,38	874	Ment toward	Sic July, Notiv billy
9413 1322		_ 7	12.65	-		-1					Fin most rate
ime that th	evelopment critic	a are met.	10	D.	4- 35	11.14 - 35.54 m	3	10	100 c - 1 1045	KU	¥
omments de l'arrive	700		7	7	114		}	1	1	,	
// // // Signoture(s)	1/2	1	(_		16 de	2//1/	\	Devicion	cto C	
- Islandia and colored	1		20			* alno-			אם מאמו מאמו		

Development |

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER OW-257

(Kelron) 2013.009 Cost Code:	Stuart Crayens (Kelron Environmental)		Instruments Serial No. (If applicable) (Themperature Meter 75)	DO Meter	Water Disposal Discharged to ground.	Conductivity Visual Clarity Comments (m\$/cm)	2504 V. Par. V. Hab State 1057. 1. dk. g 129	2009 SAA PUNDE VILLY	1,523 SAA PUNDED DAY	85 moter lead on 9/1/13 = 21,38 mg Reviewer Date
Project Number:	Project Manager:	ı Road; Baldwin, Illinois	Water Volume Calculation (2"=0.1622, 4"=0.6528) Initial Depth of Well (feet) 3 60 m/ Initial Depth to Water (feet) 6 70 m/ Height of Water Column in Well (feet) 340 / Diameter (inches): Well 2" Gravel Pack	Water Volume in Well Gallons to be Item Cubic Feet Gallons Removed Well Casing See ITH-24 Gallons ITH-24	Drilling Fluids Total	Water Volume Removed (gallons) (2gallons) Removed (gallons) Removed (gallons) Removed (gallons)	35 115 130	25 25 14 11 14 11 14 11 14 11 14 11 11 11 11	11.0 13.05 15.05 1	wer look = 41.91. 5toles = 2.83
Project Name: <u>Hydrogeologic Investigation - BEC Ash Pond System</u>	Client Company:Dynegy Operating Co. / Dynegy Midwest Generation	Site Address: Baldwin Energy Complex, 19901 Baldwin Road; Baldwin, Illinois	Development Criteria 2 to 5 Casing Volumes of Water Removal 5 Stabilization of Indicator Parameters	eve	□ Peristattic □ Stainless-steel Kemmerer Whale □ Grundfos □ Bladder □	Notice N	13 128 X X		95/3 3784 X >34 B	that the development criteria are met.

WELL DEVELOPMENT AND PURGING DATA WELL NUMBER MW-262

roject Name: <u>Hydrogeolo</u>	ogic Investigation	Hydrogeologic Investigation – BEC Ash Pond System		iber: (Kelroi	Project Number: (Kelron) 2013.009 Cost Code: Project Manager: Stringt Crovens (Kelron Environmental)	Cost Code:
Client Company:	perating Co. / Dyn / Complex 10901	r:Dynegy Operating Co. / Dynegy Midwest Ceneralion. Raidwin Foeray Complex: 10901 Baldwin Road; Baldwin, Illinois	nois	- CO		
Development Criteria		Water Volume Calculation	alculation (2"=0.1632.	2, 4"=0.6528)	Instruments	Serial No. (If
(3) 3 to 5 Casing Volumes of Water Removal Stabilization of Indicator Parameters	ater Removal imeters	Initial Depth of Water (feet)	oll (feet) 33.3	120	Kemperature Meter	or 52.63
Other	ı,	Height of Water Column Diameter (inches): Well	in Well 2"	(feet) 77.6.3 Gravel Pack	Aph Merer	1943
of Deve			lume in Well	Gallons to be		100
Pump Bailer Centrifuaal Bottom Valve	alve	Well Casing	Cubic reer Gallons	73-12/		
<u> </u>	heck Valve	Gravel Pack				
ဋ	⊱	Drilling Fluids			Water Disposal	
Whale 🗆 Grundfos 🗆 B	□ Bladder □	Total		7.5-14.1	Discharge	Discharged to ground.
Water Removal Data						
Development	Rate (feet)	Ending Water Volume Removed Water Depth (gallons)	Product Volume Removed (gallons)	Temperature pH (°C)	Conductivity (m\$/cm) Visual Clarity	Comments
Date Time Pump Baller	(gal/min)	Increment Cumulative	silve Increment Cumulative			
AMAS CINIX X X	14,5	C.6 2.6 8000	,	16,5 671	703 Put. VANIA	Starlossey Dork born
	=	40,03/2,5 30,	9	15.7 6.40	55% MM.	DK. prom. Very tras
XXX XX		40,03 2.0 S.	8,	15.6 6.31	Hot Pare	Mad bound, Itoly
X & 180	11	45,08 3.0 ·8.	9	156 6	168 Fur	Last brown, SI, Turn
X 128x /	7	MS.18 2.0 100	200	15.6 Q.X.	110 12	Lt. 60000 51 4000
1 DEC 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31	37.11	- - - -	200	410	And water levels
Circle the date and time that the development criteria are met	lopment criteria are me	Find yet rest 120 HI - H9.	56,	5+04-4=	2,35	
		11	2	1/11/13		
Developer's Signature(s)			Date		Reviewer Date	0

APPENDIX D LABORATORY PHYSICAL TEST RESULTS

October 11, 2010 Project No. 6339

Stuart Cravens Kelron Environmental 1213 Dorchester Drive Champaign, Illinois 61821

Subject:

Geotechnical Laboratory Testing

Groundwater Investigation BEC Ash Pond System Baldwin, Illinois

Dear Mr. Cravens:

Please find the attached results of laboratory testing performed on samples provided to Shively Geotechnical, a Division of Environmental Operations. Samples were taken from the BEC Ash Pond System Groundwater Investigation project by others and were submitted to our laboratory for various testing. Assignments for the testing were initiated by Stuart Cravens of Kelron Environmental.

Testing was performed in accordance with the following American Society for Testing and Materials (ASTM) test procedures:

D 422	Particle-Size Analysis of Soils.
D 2216	Water (Moisture) Content of Soil and Rock by Mass
D 2487	Classification of Soils (Unified Soil Classification System)
D 5084	Hydraulic Conductivity Using a Flexible Wall Permeameter

We appreciate the opportunity to be of service to Kelron Environmental and to Dynegy, Inc. Please let us know if you have any questions or if we can be of further assistance.

Sincerely,

Shively Geotechnical,

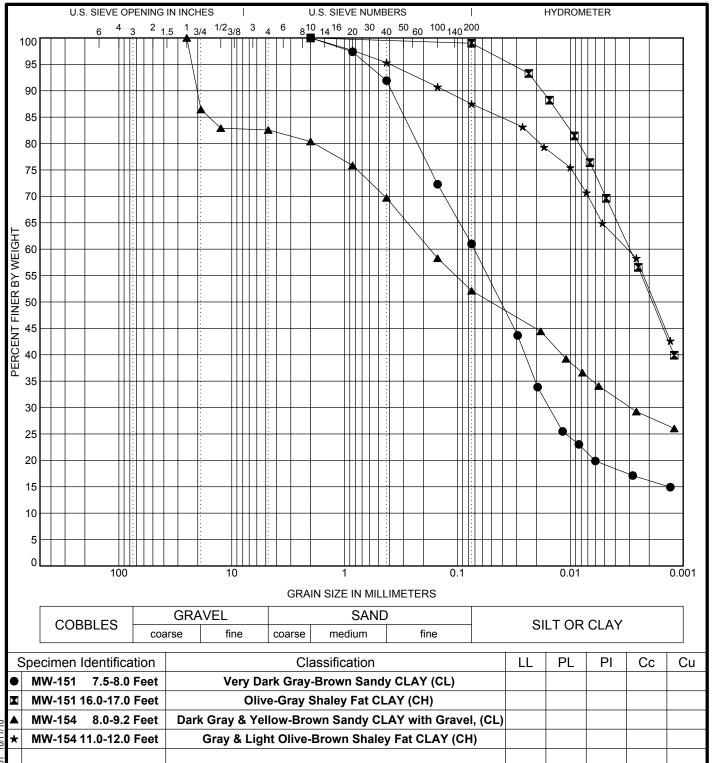
a Division of Environmental Operations, Inc.

Janet M. May

Laboratory Services Manager

Attachments

SUMMARY OF LABORATORY TEST RESULTS


Boring Number	Sample Depth (Feet)	Moisture Content, %	USCS Classification
MW-151	7.5-8.0	20.8	Very Dark Gray-Brown Sandy CLAY (CL)
MW-151	16.0-17.0	20.0	Olive-Gray Shaley Fat CLAY (CH)
MW-154	3.0-4.0	24.4	Black Fat CLAY (CH)
MW-154	8.0-9.2	16.9	Dark Gray & Yellow-Brown Sandy CLAY with Gravel (CL)
MW-154	11.0-12.0	27.2	Gray & Light Olive-Brown Shaley Fat CLAY (CH)
MW-155	7.0-8.0	16.0	Brown Lean CLAY to Fat CLAY (CL/CH)
MW-155	18.5-19.5	15.2	Dark Yellow-Brown Clayey SAND (SC)
MW-156	10.0-11.0	27.4	Dark Brown Lean CLAY (CL)
MW-157	2.0-3.0	23.3	Dark Gray-Brown Lean CLAY (CL)
MW-157	7.0-9.0	36.6	Light Olive-Brown Fat CLAY (CH)
MW-157	17.0-18.0	25.3	Dark Yellow-Brown Lean CLAY to Fat CLAY (CL/CH)
MW-252	14.0-16.0	15.1	Dark Yellow-Brown Sandy CLAY (CL)
MW-252	44.0-46.0	31.4	Dark Yellow-Brown Fat CLAY (CH)
MW-253	11.0-12.0	18.6	Dark Yellow-Brown Fat CLAY with Sand (CH)
MW-253	19.0-19.5	19.1	Dark Yellow-Brown Lean CLAY with Sand (CL)
MW-253	29.0-30.0	23.5	Olive Shaley Fat CLAY (CH)
MW-350	5.0-6.0	52.6	Brown Fat CLAY (CH)
MW-350	11.0-12.0	55.5	Light Olive-Brown Lean CLAY to Fat CLAY (CL/CH)
MW-350	18.0-20.0	26.3	Dark Yellow-Brown Fat CLAY (CH)
MW-350	22.0-23.0	27.4	Dark Yellow-Brown Fat CLAY (CH)
MW-352	6.5-7.5	19.4	Dark Gray-Brown Lean CLAY (CL)
MW-352	16.5-17.5	19.5	Olive-Brown Sandy CLAY (CL)
MW-352	26.5-27.5	46.8	Yellow-Brown Sandy CLAY (CL)
MW-352	32.0-33.0	21.4	Yellow-Brown Lean CLAY to Fat CLAY (CL/CH)
MW-352	37.0-38.0	26.3	Yellow-Brown Lean CLAY to Fat CLAY (CL/CH)
MW-355	21.0-22.0	24.1	Gray & Yellow-Brown Lean CLAY (CL)

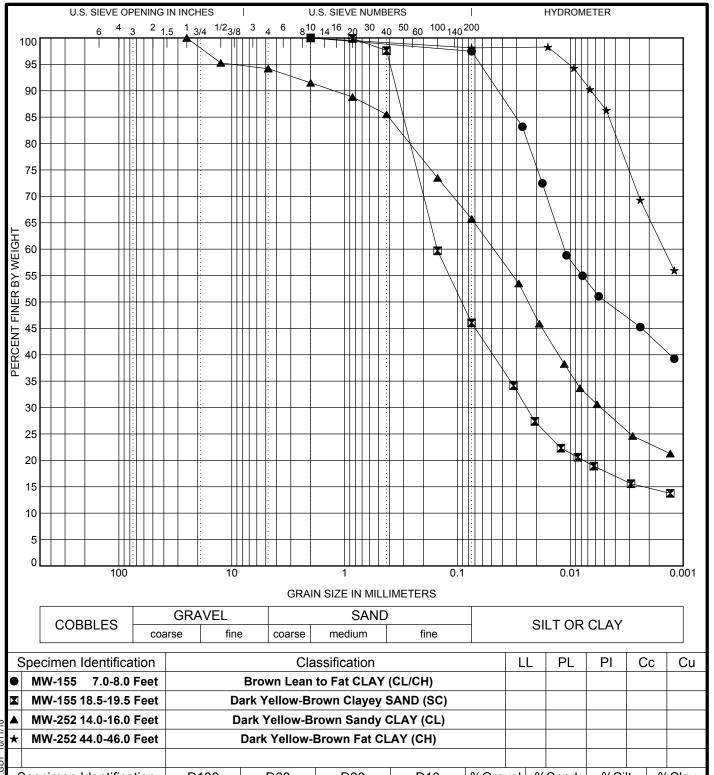
USCS – Unified Soil Classification System

LABORATORY HYDRAULIC CONDUCTIVITY TEST RESULTS

		ASTM D 2216	ASTM D 6023	ASTM D 5084		
Boring Number	Sample Depth (Feet)	Moisture Content, %	Dry Bulk Density, (pcf)	Hydraulic Conductivity, cm/sec	Range of Hydraulic Gradient	
MW-154	8.0-9.2	16.9	105.9	7.8×10^{-6}	0.4 - 1.8	
MW-252	44.0-46.0	31.4	91.5	6.3 x 10 ⁻⁹	2.6 - 10.7	
MW-350	18.0-20.0	26.3	97.9	3.4×10^{-7}	0.8 - 2.2	

% - Percent cm/sec - Centimeters per Second pcf - Pounds per Cubic Foot

	S	Specimen Identification		Cla	L	L PL	PI	Сс	Cu		
	•	MW-151 7.5-8.0 Feet	Vei	y Dark Gray-	Brown Sandy						
	X	MW-151 16.0-17.0 Feet		Olive-Gray S	Shaley Fat CL	AY (CH)					
10	•	MW-154 8.0-9.2 Feet	Dark Gray 8	& Yellow-Bro	wn Sandy CL	AY with Grav	el, (CL)				
10/11/10	*	MW-154 11.0-12.0 Feet	Gray &	Light Olive-I	Brown Shaley	Fat CLAY (C	(H)				
SHIVELY.GDT	S	Specimen Identification	D100	D60	D30	D10	%Gravel	%Sand	%Sil	t %	Clay
HIME	•	MW-151 7.5-8.0 Feet	2	0.071	0.015		0.0	39.0	41.8		19.2
J. C	X	MW-151 16.0-17.0 Feet	2	0.003			0.0	1.0	28.5		70.5
/ES.G	A	MW-154 8.0-9.2 Feet	25	0.175	0.003		17.4	30.5	18.8		33.4
ORO CURVES.GPJ	*	MW-154 11.0-12.0 Feet	2	0.003			0.0	12.5	23.0		64.5
80											


Project Number: 6339

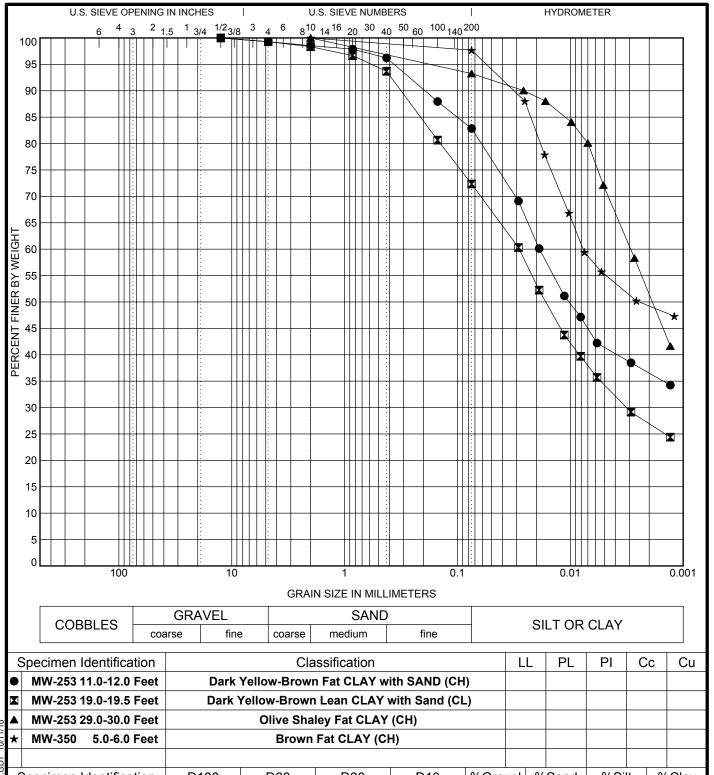
Project: Ash Pond System

Location: Baldwin Energy Complex

מבות הוכים הפתאוו הככם דקום ואו אפה מוו

Missouri (314) 241-0900 Illinois (618) 398-1414

3	Specimen Identification		Cla	assification			LL	PL	PI	Сс	Cu
•	MW-155 7.0-8.0 Feet		Brown Lean to Fat CLAY (CL/CH)							1	
×	MW-155 18.5-19.5 Feet	D	Dark Yellow-Brown Clayey SAND (SC)							1	
A	MW-252 14.0-16.0 Feet	D	Dark Yellow-Brown Sandy CLAY (CL)								
*	MW-252 44.0-46.0 Feet		Dark Yellow-	Brown Fat CL	AY (CH)						
3	Specimen Identification	D100	D60	D30	D10	%Grav	el 9	6Sand	%Sil	t 9	6Clay
•	MW-155 7.0-8.0 Feet	2	0.011			0.0		2.5	47.2		50.3
X	MW-155 18.5-19.5 Feet	2	0.151	0.024		0.0		53.9	28.1		18.0
A	MW-252 14.0-16.0 Feet	25	25 0.048 0.005 5.8						36.3)	29.4
*	MW-252 44.0-46.0 Feet	2	0.001			0.0		1.9	11.3	1	86.8



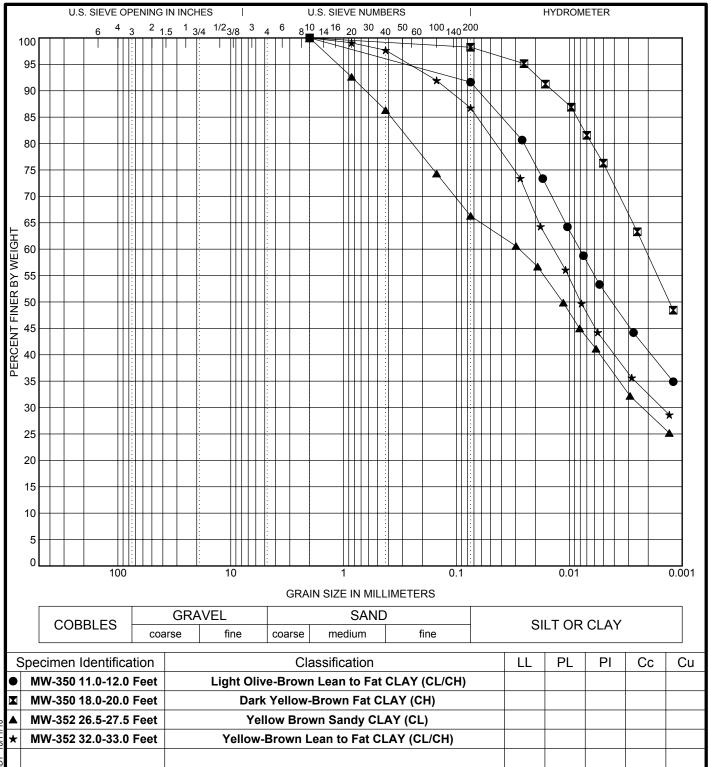
Project Number: 6339

Project: Ash Pond System

Location: Baldwin Energy Complex

6339 HYDRO CURVES.GPJ SHIVELY.GDT 10/11/10

	Specimen Identification		Cla	assification	I	L PL	PI	Сс	Cu	
•	MW-253 11.0-12.0 Feet	Dark '	Yellow-Brow	H)						
	MW-253 19.0-19.5 Feet	Dark \	Yellow-Brow	CL)						
4	▲ MW-253 29.0-30.0 Feet		Olive Sha	aley Fat CLAY						
ļ	★ MW-350 5.0-6.0 Feet		Brown	Fat CLAY (C	H)					
I										
ľ	Specimen Identification	D100	D60	D30	D10	%Gravel	%Sand	%Si	It 9	%Clay
•	MW-253 11.0-12.0 Feet	12.5	0.019			0.7	16.4	41.4	1	41.4
	MW-253 19.0-19.5 Feet	12.5	0.028	0.003		0.7	26.9	38.1	I	34.3
4	▲ MW-253 29.0-30.0 Feet	2	0.003	0.0	6.7	21.6	6	71.7		
ŀ	★ MW-350 5.0-6.0 Feet	2	0.0	2.3	42.4	1	55.3			
Г										



Project Number: 6339

Project: Ash Pond System

Location: Baldwin Energy Complex

6339 HYDRO CURVES.GPJ SHIVELY.GDT 10/11/10

	Specimen Identification		Classification							Сс	Cu
•	MW-350 11.0-12.0 Feet	Light	Light Olive-Brown Lean to Fat CLAY (CL/CH)								
×	MW-350 18.0-20.0 Feet		Dark Yellow-								
A	MW-352 26.5-27.5 Feet		Yellow Bro								
*	MW-352 32.0-33.0 Feet	Yel	low-Brown L	ean to Fat CL	AY (CL/CH)						
5	Specimen Identification	D100	D60	D30	D10	%Grav	'el '	%Sand	%Sil	t 9	%Clay
•	MW-350 11.0-12.0 Feet	2	0.008			0.0		8.4	39.3	}	52.3
X	MW-350 18.0-20.0 Feet	2	0.002			0.0		1.8	21.9)	76.3
A	MW-352 26.5-27.5 Feet	2	0.028	0.002		0.0		33.7	27.1		39.2
*	MW-352 32.0-33.0 Feet	2	2 0.014 0.002 0.0						43.9)	42.8

Project Number: 6339

Project: Ash Pond System

Location: Baldwin Energy Complex

JOB NO.:	6339		WET UNIT WEIGHT, pcf:	123.7		
LOCATION:	MW-154		DRY UNIT WEIGHT, pcf:	105.9		
DEPTH:	8' - 9'2"					
SPECIMEN:						
			INITIAL MOISTURE CONT	<u>TENT</u>	FINAL MOISTURE CONT	<u>ΓΕΝΤ</u>
LENGTH, in.:	3.017	LENGTH, cm: 7.663	WET WT SPLE+TARE	752.92	WET WT SPLE+TARE	781.60
DIAMETER, in.:	2.856	DIAMETER, cn 7.254	DRY WT SPLE+TARE	662.30	DRY WT SPLE+TARE	662.30
WET WT., gms.:	627.80		TARE WEIGHT	125.12	TARE WEIGHT	125.12

% MOISTURE

B VALUE (before Permeation): 96% Cell / Back Pressure, psi: 53 / 50

6.406

AREA, sq cm: 41.331

AREA, sq.in.:

HEAD	DATE	TIME	TEMP	ELAPSED	BOTTOM	TOP	Q	K	HYDRAULIC	HYDRAULIC
(PSI)	(YR,MO,DY)	(HR,MN,SC)	<u>°C</u>	MINUTES	BURET	BURET	(CC)	CM/SEC	GRADIENT	HEAD
0.0	01-Oct-10	08:46 AM	25.0	0	10.04	24.13			1.84	14.09
0.0	01-Oct-10	09:23 AM	25.0	37	11.80	22.85	1.76	1.1E-05	1.44	11.05
0.0	01-Oct-10	10:16 AM	25.0	53	13.25	21.41	1.45	9.3E-06	1.06	8.16
0.0	01-Oct-10	11:17 AM	25.1	61	14.30	20.34	1.05	8.0E-06	0.79	6.04
0.0	01-Oct-10	01:01 PM	25.3	104	15.66	19.02	1.36	9.1E-06	0.44	3.36

Average Temp. = 25.1

AVERAGE K = 8.8E-06 Corrected K for 20°C = 7.8E-06

16.9

% MOISTURE

22.2

Shively Geotechnical,
A Division of Environmental Operations, Inc.

JOB NO.:	6339	WET UNIT WEIGHT, pcf: 120.2
LOCATION:	MW-252	DRY UNIT WEIGHT, pcf: 91.5
DEPTH:	44' - 46'	
SPECIMEN:		
		<u>INITIAL MOISTURE CONTENT</u> <u>FINAL MOISTURE CONTENT</u>

			II WITH IE WOOD TOTE COT	11111	THE RESIDENCE COLL	22112
LENGTH, in.:	3.002	LENGTH, cm: 7.625	WET WT SPLE+TARE	735.25	WET WT SPLE+TARE	747.80
DIAMETER, in.:	2.855	DIAMETER, cn 7.252	DRY WT SPLE+TARE	590.42	DRY WT SPLE+TARE	590.42
WET WT., gms.:	606.40		TARE WEIGHT	128.85	TARE WEIGHT	128.85
AREA, sq.in.:	6.402	AREA, sq cm: 41.302	% MOISTURE	31.4	% MOISTURE	34.1

B VALUE (before Permeation): 97% Cell / Back Pressure, psi: 45 / 40

HEAD	DATE	TIME	TEMP	ELAPSED	BOTTOM	TOP	Q	K	HYDRAULIC	HYDRAULIC
(PSI)	(YR,MO,DY)	(HR,MN,SC)	<u>°C</u>	MINUTES	BURET	BURET	(CC)	CM/SEC	GRADIENT	HEAD
0.0	01-Oct-10	09:23 AM	25.0	0	2.52	22.96			2.68	20.44
0.0	01-Oct-10	01:00 PM	25.4	217	2.71	22.65	0.19	1.8E-07	2.62	19.94
0.0	01-Oct-10	04:58 PM	25.2	238	2.90	22.78	0.19	2.0E-08	2.61	19.88
0.0	04-Oct-10	08:52 AM	22.9	3834	4.10	23.65	1.20	7.1E-09	2.56	19.55
1.0	05-Oct-10	09:52 AM	22.9	0	12.31	23.90			10.74	81.89
1.0	05-Oct-10	05:11 PM	23.0	439	12.40	23.83	0.09	7.2E-09	10.72	81.73
1.0	06-Oct-10	08:37 AM	23.0	926	12.67	23.81	0.27	6.2E-09	10.68	81.44

Average Temp. = 23.4 AVERAGE K = 6.8E-09

Corrected K for 20° C = 6.3E-09

JOB NO.:	6339			WET UNIT WEIGHT, pcf:	123.6		
LOCATION:	MW-350			DRY UNIT WEIGHT, pcf:	97.9		
DEPTH:	18' - 20'						
SPECIMEN:							
				INITIAL MOISTURE CONTE	NT	FINAL MOISTURE CONTI	ENT
LENGTH, in.:	3.518	LENGTH, cm: 8.	.936	WET WT SPLE+TARE	849.30	WET WT SPLE+TARE	862.40
DIAMETER, in.:	2.864	DIAMETER, cm 7.	.275	DRY WT SPLE+TARE	696.40	DRY WT SPLE+TARE	696.40
WET WT., gms.:	735.10			TARE WEIGHT	114.20	TARE WEIGHT	114.20
AREA, sq.in.:	6.442	AREA, sq cm: 41.	.563	% MOISTURE	26.3	% MOISTURE	28.5

B VALUE (before Permeation): 96% Cell / Back Pressure, psi: 53 / 50

HEAD	DATE	TIME	TEMP	ELAPSED	BOTTOM	TOP	Q	K	HYDRAULIC	HYDRAULIC
(PSI)	(YR,MO,DY)	(HR,MN,SC)	<u>°C</u>	MINUTES	BURET	BURET	(CC)	CM/SEC	GRADIENT	HEAD
0.0	01-Oct-10	09:23 AM	25.0	0	4.57	23.92			2.17	19.35
0.0	01-Oct-10	01:03 PM	25.4	220	5.09	23.43	0.52	4.6E-07	2.05	18.34
0.0	01-Oct-10	04:58 PM	25.2	235	5.67	22.93	0.58	4.9E-07	1.93	17.26
0.0	04-Oct-10	08:52 AM	22.9	3834	10.89	18.67	5.22	3.9E-07	0.87	7.78
0.0	04-Oct-10	03:35 PM	24.7	403	11.14	18.34	0.25	3.6E-07	0.81	7.20
0.0	04-Oct-10	04:00 PM	24.5	0	5.94	24.03			2.02	18.09
0.0	05-Oct-10	08:14 AM	23.0	974	7.68	22.53	1.74	3.8E-07	1.66	14.85

Average Temp. = 24.1

AVERAGE K = 3.8E-07

Corrected K for 20° C = 3.4E-07

Shively Geotechnical,A Division of Environmental Operations, Inc.

SOIL /SEDIMENT/SLLIDGE SAMPLING DATA

Serial No. <u>SSSSD</u>	•	JOIL/JED	IIAI (Z. I.A	11/5)LU	DGE 34	AIVIPLING	DAIA	
	ndwater Investigation –	BEC Ash Pond	Svstem	V		Project !	No. <u>2010.010</u>		
	uart Cravens, Kelron En						ask No		
Client Company Dy	negy, Inc.								
Site Name Baldwi	n Energy Complex								
Site Address 1090	1 Baldwin Road, Baldwi	<u>n, IL</u>							
Sampling Method Shelby Tube (Solit Spoon (Solit Spoon (Modern Country)) Other	S) □ On-Site C) ズ Geotech	lysis Headspace	Portabl	Туре	(Lamp	g Instrument oeV) _ -	Used Manufacturer	¥ None Model	
Sample No.	Location	Date Collected		ple T		Requested Analysis 1	Requested Analysis 2	Requested Analysis 3	(1)
			ST	SS	MC	Visual	Grain Size	Vort kro	W
XXXXXW-154	8-92"	9/20/10	V			W_	P	Ø	
MW-252	14-16	9/22/10				W.		-	
Mh-252	44-46	9/32/10	V				&	Ø	
MW-35B	18-20	9/8/10				Ø	Ø	MAX	>
MW-35/0	5-6'	//			Y				
MW-35B MW-35B MW-35B	11-17				V	V		•	
MW-3518	22-23				/				
MW-155	7-8				•	1			
MW-155	18.5-19.5						•		
MW-156	10-11					,1			
Mn-157	7-9				•				
Mn-157	2-3					~			
MW-157	17-18				8				
Mn-355	21-22				1				
Chain-of-Custody Fo	rm Number <u>1892</u> 4 ayh 5/20 = 57	tandord 5		′				Ч	
Signature	11,6	Da	ate <u>9/</u> 2	24/	v	Reviewer	Date		
Brendon	Wilder (7	×C)	,				1 7 70	7	
	_				_,		6339		
Form A0204 Rev. 5/10/95	C:\Consulting A\Pow	er Plants\Baldwin\2010 F	lydrogeologi	c Study	Field Wo	rk Phase\Field Form	is\Geotech samples.d	locx 9/12/10	

	undwater Investigation		<u>d System</u>	1		Project 1	No. <u>2010.010</u>	
	tuart Cravens, Kelron E	nvironmental				Phase.T	ask No	····
Client Company D	ynegy, Inc.							
Site Name Baldw	rin Energy Complex							
Site Address 1090	01 Baldwin Road, Baldy	<u>vin, IL</u>						
Sampling Method ☐ Shelby Tube ☐ Split Spoon (\$ ☐ Macrocore (N ☐ Other	SS) ☐ On-Sit IC) ☐ Geotee		Portabl	Туре	(Lamp	g Instrument —eV) -	Used Manufacturer	Mo
Sample No.	Location	Date Collected	San	nple T	уре	Requested Analysis 1	Requested Analysis 2	Reques Analysi
			ST	ss	мс	brol	Grih Size	
MW-151	7.5-81						1	
MW 151	7.5-8/ 16-17' 6.5-7.5' 26.5-27.5'				V	/		
MW-352 MW-352	6.5-7.5				~		_	
MW-352	26,5-27,5				سه		•	
Mh-352	16,5-17,5		ı.		•	/		
Mh-352 Mh-352 Mh-352 Mh-253	16,5-17,5 32-33 37-38 11-12		:			/	-	
Mn-352	37-38					1	-	
Mn-253	11-12					V		
Mu-253	19-19.5				•	\	•	
Mn-253	29-35				5			
MW-154	3-4				~	V ,		
MW-154	11-12				•			
Chain-of-Custody F	orm Number <u>1892 4</u> 7 Stze = std	18,2 sleve/hy	drone	tr.	pЦ	ATM	,	
Signature	11/5		Date 9/	24/1	O	Reviewer	Date	

Via email: kelron1@comcast.net

October 18, 2013 J022188.01

Stuart Cravens Kelron Environmental 1213 Dorchester Drive Champaign, Illinois 61821

Re: BEC Ash Pond System Samples – Baldwin, Illinois

Dear Mr. Cravens:

Included in this report are the test results of soil samples received in our laboratory on August 22nd and 27th, 2013. There were 18 samples, eight in Shelby tubes and the remainder in plastic baggies, submitted for testing. The samples were tested in general accordance with the test method listed below.

<u>Test to Determine</u>	Method of Test
Particle Size Analysis of Soils	ASTM D422
Specific Gravity of Soils	ASTM D854
Water (Moisture) Content of Soil and Rock by Mass	ASTM D2216
Classification of Soils (Unified Soil Classification System)	ASTM D2487
Hydraulic Conductivity Using a Flexible Wall Permeameter	ASTM D5084
Determination of Density (Unit Weight) of Soil Specimens	ASTM D7263

Porosity was calculated using soil-mass relationships. Tables are enclosed with test results, as well as the porosity calculation worksheets. Particle size analysis can be found on the enclosed Grain Size Distribution curves.

* * * * *

J022188.01

Baldwin Energy Complex, Ash Pond System Samples October 18, 2013 Page 2

We trust this is the information you require. Please contact the undersigned if you have any questions regarding this report.

Respectfully submitted,

GEOTECHNOLOGY, INC.

Janet M. May

Illinois Laboratory Manager

JMM/LPH:jmm

Copies Submitted: (1)

Attachment: Summary Tables

Grain Size Distribution

Hydraulic Conductivity Test Data Sheets

Porosity Calculation Worksheets

Baldwin Energy Complex, Ash Pond System Samples October 18, 2013 Page 3

<u>Classification Using Unified Soil Classification System – ASTM D2487</u>

Location	Sample Depth (Feet)	Moisture Content (%)	USCS Classification
MW-161	31.5 - 32.5	17.8	SAND with Silt (SP-SM) - Fine Grained, Gray-Brown
MW-161	41.0 - 42.0	25.0	Lean CLAY (CL) – Medium Plasticity, Trace Sand, Blue-Gray
MW-262	17.0 - 18.0	19.1	Sandy Lean CLAY (CL) – Low to Medium Plasticity, Red-Brown
MW-262	33.5 - 35.5	23.5	Fat CLAY (CH) – High Plasticity, Light Gray-Brown
OW-256	33.0 - 33.5	8.6	Lean CLAY with Sand (CL) –Medium Plasticity, Gray-Brown
OW-257	36.5 - 37.0	19.1	SHALE - "Fat CLAY (CH)" – High Plasticity, Very Dark Gray
TPZ-163	1.5 - 3.5	49.3	ASH – "Silty SAND (SM) – Fine Grained, Very Dark Brown
TPZ-163	28.0 - 30.0	25.1	Lean to Fat CLAY (CL/CH) - Trace Fine Sand, Medium to High Plasticity, Dark Yellow-Brown
TPZ-164	3.0 - 5.0	22.5	ASH – "Sandy SILT (ML)" – Fine Grained Sand, Very Dark Brown
TPZ-164	10.0 - 12.0	25.6	Lean CLAY (CL) - Medium Plasticity, Light Olive-Brown
TPZ-165	8.0 - 10.0	22.3	Lean CLAY (CL) - Medium Plasticity, Trace Sand, Very Dark Gray- Brown
TPZ-165	13.0 - 14.0	24.5	Lean CLAY, with Sand (CL) - Medium Plasticity, Very Dark Gray- Brown
TPZ-167	29.0 - 30.0	31.1	ASH – "SILT (ML)" - Very Dark Gray-Brown
TPZ-167	32.0 - 34.0	24.1	Lean CLAY, with Sand (CL) - Medium Plasticity, Light Gray-Brown
TPZ-167	47.0 - 48.0	28.9	Lean to Fat CLAY (CL/CH) - Medium to High Plasticity, Yellow-Brown
TPZ-168	3.0 - 5.0	56.0	ASH – "Sandy SILT (ML)" – Fine-Medium Grained Sand, Olive-Brown
TPZ-168	39.0 - 40.0	18.6	TILL - Fat CLAY (CH) — High Plasticity, Trace Sand, Gray-Brown
TPZ-168	68.5 - 69.0	17.5	Lean CLAY (CL) - Medium Plasticity, with Sand Seams, Blue-Gray

USCS – Unified Soil Classification System

Baldwin Energy Complex, Ash Pond System Samples October 18, 2013 Page 4

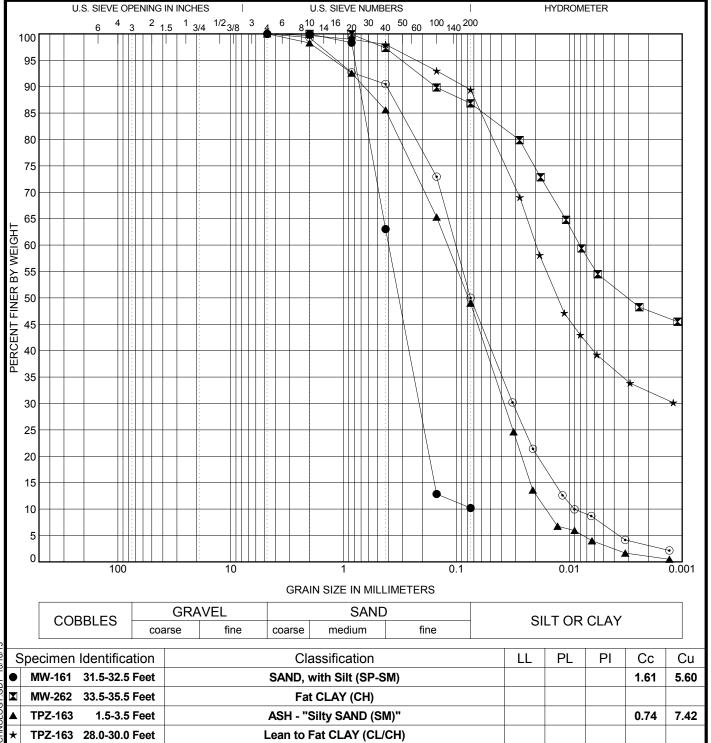
Hydraulic Conductivity Summary – ASTM D5084

		ASTM D 2216	ASTM D 6023	ASTM	D 5084
Location	Sample Depth (Feet)	Moisture Content, %	Dry Bulk Density, (pcf)	Hydraulic Conductivity, cm/sec	Range of Hydraulic Gradient
MW-262	33.5 - 35.5	23.5	102.2	9.9 x 10 ⁻⁹	2.0 - 17.5
TPZ-163	1.5 - 3.5	49.3	63.7	2.5 x 10 ⁻⁴	0.4 - 3.5
TPZ-163	28.0 - 30.0	25.1	98.0	4.2 x 10 ⁻⁴	0.2 1.7
TPZ-164	3.0 - 5.0	22.5	91.7	6.5 x 10 ⁻⁴	0.1 - 1.6
TPZ-164	10.0 - 12.0	25.6	95.7	1.3 x 10 ⁻⁶	0.1 - 2.2
TPZ-165	8.0 - 10.0	22.3	102.4	5.3 x 10 ⁻⁶	0.3 - 2.1
TPZ-167	29.0 - 30.0	18.8*	99.9*	9.7 x 10 ⁻⁶	0.3 - 2.9
TPZ-167	32.0 - 34.0	24.1	101.3	6.2 x 10 ⁻⁷	0.3 - 2.0
TPZ-168	3.0 - 5.0	56.0	63.0	4.2 x 10 ⁻⁴	0.1 - 2.3

^{% -} Percent

cm/sec - Centimeters per Second

pcf - Pounds per Cubic Foot

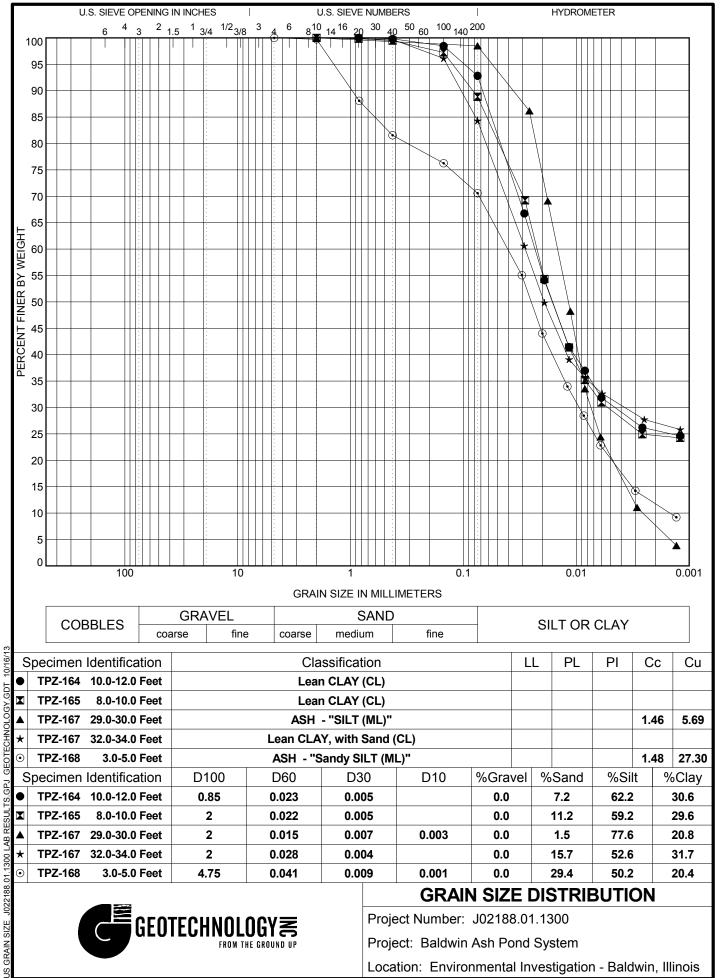

Porosity Using Soil-Mass Relationships*

		ASTM D 854	Calculation from Soil-Mass Relationships						
Location	Sample Depth (Feet)	Specific Gravity	Total Porosity, (%)	Water Filled Porosity, (%)	Air Filled Porosity, (%)				
TPZ-163	1.5 - 3.5	2.66	61.7	50.2	11.5				
TPZ-164	3.0 - 5.0	2.68	45.2	33.0	12.2				
TPZ-167	29.0 - 30.0	2.59	38.2	30.2	8.0				
TPZ-168	3.0 - 5.0	2.88	64.9	56.5	8.4				

^{% -} Percent

^{*}Sample remolded in laboratory – As received moisture content = 31.1%

^{*}Note: Values not representative of effective porosity.



.,													
)/16/1	S	pecimen	Identification		Cla	assification		L	.L 1	PL	PI	Сс	Cu
)T 1	•	MW-161	31.5-32.5 Feet		SAND, v	with Silt (SP-S	M)					1.61	5.60
3¥.GI		MW-262	33.5-35.5 Feet		Fat CLAY (CH)								
000	•	TPZ-163	1.5-3.5 Feet		ASH - "Silty SAND (SM)"							0.74	7.42
N H	*	TPZ-163	28.0-30.0 Feet		Lean to Fat CLAY (CL/CH)								
SOTE	•	TPZ-164	3.0-5.0 Feet		ASH - "Sandy SILT (ML)"							1.09	11.23
ر ق	S	pecimen	Identification	D100	D60	D30	D10	%Gravel	%Sa	and	%Sil	t %	Clay
S.G	•	MW-161	31.5-32.5 Feet	4.75	0.399	0.214		0.0	89.	.8	10.2		
SOL		MW-262	33.5-35.5 Feet	2	0.008			0.0	13.	.1	33.2		53.7
B RE	•	TPZ-163	1.5-3.5 Feet	4.75	0.12	0.038	0.016	0.0	51.	.0	45.8		3.2
00 L/	*	TPZ-163	28.0-30.0 Feet	4.75	4.75 0.02 0.					.6	51.2		38.2
01.1300 LAB RESULTS.GPJ GEOTECHNOLOGY.GDT 10/16/13	•	TPZ-164	3.0-5.0 Feet	4.75	0.101	0.032	0.009	0.0	50.	.0	42.9		7.1

Project Number: J02188.01.1300
Project: Baldwin Ash Pond System

Location: Environmental Investigation - Baldwin, Illinois

Specimen Identifica	ition		Cla	ssification			LL	PL	PI	Сс	Cu
TPZ-164 10.0-12.0	Feet		Lear								
TPZ-165 8.0-10.0	Feet		Lean CLAY (CL)								
TPZ-167 29.0-30.0	Feet		ASH - "SILT (ML)"							1.46	5.69
F TPZ-167 32.0-34.0	Feet		Lean CLA								
TPZ-168 3.0-5.0	Feet		ASH - "S					1.48	27.30		
Specimen Identifica	ition	D100	D60	D30	D10	%Grav	el %	%Sand	%Sil	t %	Clay
TPZ-164 10.0-12.0	Feet	0.85	0.023	0.005		0.0		7.2	62.2		30.6
TPZ-165 8.0-10.0	Feet	2	0.022	0.005		0.0		11.2	59.2		29.6
TPZ-167 29.0-30.0	Feet	2	0.015	0.007	0.003	0.0	1.5	77.6		20.8	
	Feet	2	0.028	0.004		0.0 15.					31.7
	Feet	4.75 0.041 0.009 0.001 0.0							50.2		20.4
	TPZ-164 10.0-12.0 TPZ-165 8.0-10.0 TPZ-167 29.0-30.0 TPZ-167 32.0-34.0 TPZ-168 3.0-5.0 Specimen Identifica TPZ-164 10.0-12.0 TPZ-164 10.0-12.0 TPZ-165 8.0-10.0 TPZ-167 29.0-30.0 TPZ-167 32.0-34.0	TPZ-165 8.0-10.0 Feet TPZ-167 29.0-30.0 Feet TPZ-167 32.0-34.0 Feet TPZ-168 3.0-5.0 Feet Specimen Identification TPZ-164 10.0-12.0 Feet TPZ-165 8.0-10.0 Feet TPZ-167 29.0-30.0 Feet TPZ-167 32.0-34.0 Feet	TPZ-164 10.0-12.0 Feet TPZ-165 8.0-10.0 Feet TPZ-167 29.0-30.0 Feet TPZ-167 32.0-34.0 Feet TPZ-168 3.0-5.0 Feet Specimen Identification TPZ-164 10.0-12.0 Feet TPZ-165 8.0-10.0 Feet TPZ-167 29.0-30.0 Feet TPZ-167 32.0-34.0 Feet	TPZ-164 10.0-12.0 Feet Lear TPZ-165 8.0-10.0 Feet Lear TPZ-167 29.0-30.0 Feet ASH TPZ-167 32.0-34.0 Feet Lean CLA TPZ-168 3.0-5.0 Feet ASH - "S Specimen Identification D100 D60 TPZ-164 10.0-12.0 Feet 0.85 0.023 TPZ-165 8.0-10.0 Feet 2 0.022 TPZ-167 29.0-30.0 Feet 2 0.015 TPZ-167 32.0-34.0 Feet 2 0.028	TPZ-164 10.0-12.0 Feet Lean CLAY (CL) TPZ-165 8.0-10.0 Feet Lean CLAY (CL) TPZ-167 29.0-30.0 Feet ASH - "SILT (ML)" TPZ-167 32.0-34.0 Feet Lean CLAY, with Sand (D) TPZ-168 3.0-5.0 Feet ASH - "Sandy SILT (MI) Specimen Identification D100 D60 D30 TPZ-164 10.0-12.0 Feet 0.85 0.023 0.005 TPZ-165 8.0-10.0 Feet 2 0.022 0.005 TPZ-167 29.0-30.0 Feet 2 0.015 0.007 TPZ-167 32.0-34.0 Feet 2 0.028 0.004	TPZ-164 10.0-12.0 Feet Lean CLAY (CL) TPZ-165 8.0-10.0 Feet Lean CLAY (CL) TPZ-167 29.0-30.0 Feet ASH - "SILT (ML)" TPZ-167 32.0-34.0 Feet Lean CLAY, with Sand (CL) TPZ-168 3.0-5.0 Feet ASH - "Sandy SILT (ML)" Specimen Identification D100 D60 D30 D10 TPZ-164 10.0-12.0 Feet 0.85 0.023 0.005 TPZ-165 8.0-10.0 Feet 2 0.022 0.005 TPZ-167 29.0-30.0 Feet 2 0.015 0.007 0.003	TPZ-164 10.0-12.0 Feet Lean CLAY (CL) TPZ-165 8.0-10.0 Feet Lean CLAY (CL) TPZ-167 29.0-30.0 Feet ASH - "SILT (ML)" TPZ-167 32.0-34.0 Feet Lean CLAY, with Sand (CL) TPZ-168 3.0-5.0 Feet ASH - "Sandy SILT (ML)" Specimen Identification D100 D60 D30 D10 %Grav TPZ-164 10.0-12.0 Feet 0.85 0.023 0.005 0.0 TPZ-165 8.0-10.0 Feet 2 0.022 0.005 0.0 TPZ-167 29.0-30.0 Feet 2 0.015 0.007 0.003 0.0 TPZ-167 32.0-34.0 Feet 2 0.028 0.004 0.0	TPZ-164 10.0-12.0 Feet Lean CLAY (CL) TPZ-165 8.0-10.0 Feet Lean CLAY (CL) ASH - "SILT (ML)" TPZ-167 32.0-34.0 Feet Lean CLAY, with Sand (CL) TPZ-168 3.0-5.0 Feet ASH - "Sandy SILT (ML)" Specimen Identification D100 D60 D30 D10 WGravel TPZ-164 10.0-12.0 Feet 0.85 0.023 0.005 TPZ-165 8.0-10.0 Feet 2 0.022 0.005 TPZ-167 29.0-30.0 Feet 2 0.015 0.007 TPZ-167 32.0-34.0 Feet 2 0.028 0.004	TPZ-164 10.0-12.0 Feet Lean CLAY (CL) TPZ-165 8.0-10.0 Feet Lean CLAY (CL) TPZ-167 29.0-30.0 Feet ASH - "SILT (ML)" TPZ-167 32.0-34.0 Feet Lean CLAY, with Sand (CL) TPZ-168 3.0-5.0 Feet ASH - "Sandy SILT (ML)" Specimen Identification D100 D60 D30 D10 %Gravel %Sand TPZ-164 10.0-12.0 Feet 0.85 0.023 0.005 0.0 7.2 TPZ-165 8.0-10.0 Feet 2 0.022 0.005 0.0 11.2 TPZ-167 29.0-30.0 Feet 2 0.015 0.007 0.003 0.0 1.5 TPZ-167 32.0-34.0 Feet 2 0.028 0.004 0.0 15.7	TPZ-164 10.0-12.0 Feet Lean CLAY (CL)	TPZ-164 10.0-12.0 Feet Lean CLAY (CL)

Project Number: J02188.01.1300 Project: Baldwin Ash Pond System

Location: Environmental Investigation - Baldwin, Illinois

JOB NO.:	J022188.01				WET UNIT V	WEIGHT, pcf:	95.0			
SAMPLE ID:	ST163-3				DRY UNIT	WEIGHT, pcf:	63.7			
LOCATION:	TPZ-163									
DEPTH:	1.5 - 3.5									
					INITIAL MC	DISTURE CONT	<u>ENT</u>	FINAL MOI	STURE CONTE	NT*
LENGTH, in.:	2.464	LENGTH, c	m: 6.259		WET WT SP	LE+TARE	527.00	WET WT SPI	LE+TARE	
DIAMETER, in.:	2.870	DIAMETER	R, cm 7.290		DRY WT SP	LE+TARE	395.82	DRY WT SPI	LE+TARE	
WET WT., gms.:	397.53				TARE WEIG	HT	129.47	TARE WEIG	HT	
AREA, sq.in.:	6.469	AREA, sq cr	m: 41.737		% MOISTU	RE	49.3	% MOISTUR	E	
								*Not Available	e	
B VALUE (before Pe	ermeation): 97%	Cell / Back P	ressure, psi: 43	/ 40						
HEAD DA	ATE TIME	TEMP	ELAPSED	BOTTOM	TOP	Q	K	HYDRAULIC	HYDRAULIC	HEAD
(PSI) (YR,M	(HR,MN,SC)	<u>°C</u>	MINUTES	BURETTE	BURETTE	<u>(CC)</u>	CM/SEC	GRADIENT	HEAD	LOSS,%
0.0 08-S	ep-13 11:32 AM	24.8	0	1.52	23.60			3.53	22.08	

HEAD	DATE	TIME	TEMP	ELAPSED	BOTTOM	TOP	Q	K	HYDRAULIC	HYDRAULIC	HEAD
(PSI)	(YR,MO,DY)	(HR,MN,SC)	<u>°C</u>	MINUTES	BURETTE	BURETTE	(CC)	CM/SEC	GRADIENT	HEAD	LOSS,%
0.0	08-Sep-13	11:32 AM	24.8	0	1.52	23.60			3.53	22.08	
0.0	08-Sep-13	11:37 AM	24.8	5	8.60	15.95	7.08	2.9E-04	1.17	7.35	66.71
0.0	09-Sep-13	01:35 PM	23.7	0	3.75	23.74			3.19	19.99	
0.0	09-Sep-13	01:43 PM	23.7	8	11.57	15.40	7.82	2.7E-04	0.61	3.83	80.84
0.0	09-Sep-13	05:09 PM	23.7	0	5.00	23.77			3.00	18.77	
0.0	09-Sep-13	05:18 PM	23.7	9	12.93	15.83	7.93	2.7E-04	0.46	2.90	84.55
0.0	09-Sep-13	05:20 PM	23.7	0	6.47	23.73			2.76	17.26	
0.0	09-Sep-13	05:30 PM	23.7	10	13.99	16.16	7.52	2.7E-04	0.35	2.17	87.43

Average Temp. = 23.7

AVERAGE K = 2.7E-04

Corrected K for 20° C = 2.5E-04

JOB NO.:	J022	188.01				WET UNIT W	/EIGHT, pcf:	122.6			
SAMPLE 1	ID: ST1	63-30				DRY UNIT V	VEIGHT, pcf:	98.0			
LOCATIO	N: TPZ	Z-163									
DEPTH:	28.0	- 30.0									
						INITIAL MO	ISTURE CONTI	ENT	FINAL MOIS	TURE CONTE	NT_
LENGTH,	in.: 3.	656	LENGTH, cr	n: 9.286		WET WT SPI	LE+TARE	901.33	WET WT SPL	E+TARE	907.19
DIAMETE	ER, in.: 2.	888	DIAMETER	, cm 7.336		DRY WT SPL	E+TARE	746.92	DRY WT SPL	E+TARE	746.92
WET WT.,	, gms.: 770	0.63				TARE WEIGI	НТ	130.70	TARE WEIGH	łΤ	130.7
AREA, sq.	in.: 6.	551	AREA, sq cn	n: 42.262		% MOISTUI	RE	25.1	% MOISTURI	Ξ	26.0
B VALUE	(before Permeation) DATE	: 98%	Cell / Back Programmer	ressure, psi: 43	/ 40	ТОР	Q	K	HYDRAULIC	HYDRAULIC	HEAD
(PSI)	(YR,MO,DY)	(HR,MN,SC)	<u>°C</u>	MINUTES	BURETTE	BURETTE	(CC)_	CM/SEC	GRADIENT	HEAD	LOSS,%
0.0	20-Sep-13	11:54 AM	23.6	0	7.03	23.15	(00)	CNIBEC	1.74	16.12	2000,70
0.0	20-Sep-13	12:02 PM	23.6	8	13.83	16.26	6.80	4.5E-04	0.26	2.43	84.93
0.0	25-Sep-13	09:00 AM	23.9	0	9.51	24.05	0.00		1.57	14.54	0,0
0.0	25-Sep-13	09:08 AM	23.9	8	15.65	17.83	6.14	4.6E-04	0.23	2.18	85.01
0.0	25-Sep-13	09:20 AM	23.9	0	9.29	24.37	~		1.62	15.08	
0.0	=						- 10	4.50.04			
0.0	25-Sep-13	09:28 AM	23.9	8	15.72	17.84	6.43	4.7E-04	0.23	2.12	85.94

Average Temp. = 23.8 AVERAGE K = 4.6E-04

Corrected K for 20° C = 4.2E-04

JOB NO.: SAMPLE I LOCATIO		54-12				WET UNIT V	VEIGHT, pcf: VEIGHT, pcf:	120.1 95.7			
DEPTH:	10.0 -	- 12.0									
						INITIAL MO	ISTURE CONT	<u>ENT</u>	FINAL MOIS	STURE CONTE	NT_
LENGTH,	in.: 3.3	373	LENGTH, cr	n: 8.567		WET WT SPI	LE+TARE	793.36	WET WT SPI	LE+TARE	807.00
DIAMETE	ER, in.: 2.8	323	DIAMETER	, cm 7.170		DRY WT SPI	LE+TARE	657.83	DRY WT SPL	E+TARE	657.83
WET WT.,	, gms.: 665	.70				TARE WEIG	HT	127.66	TARE WEIGI	HT	127.66
AREA, sq.	in.: 6.2	259	AREA, sq cn	n: 40.381		% MOISTUI	RE	25.6	% MOISTUR	Е	28.1
DWALLE	(1 f. D;)										
B VALUE	(before Permeation):	97%	Cell / Back Pi	ressure, psi: 43	/ 40						
HEAD	DATE	97% TIME	TEMP	essure, psi: 43 ELAPSED	/ 40 воттом	ТОР	Q	К	HYDRAULIC	HYDRAULIC	HEAD
HEAD (PSI)	DATE (YR,MO,DY)	TIME (HR,MN,SC)	TEMP <u>°C</u>	ELAPSED MINUTES	BOTTOM BURETTE	BURETTE	Q _(CC)_	K CM/SEC	GRADIENT	HEAD	HEAD LOSS,%
HEAD	DATE	TIME	темр <u>°С</u> 23.4	ELAPSED	воттом						
HEAD (PSI)	DATE (YR,MO,DY)	TIME (HR,MN,SC)	TEMP <u>°C</u>	ELAPSED MINUTES	BOTTOM BURETTE	BURETTE			GRADIENT	HEAD	
HEAD (PSI) 0.0	DATE (YR,MO,DY) 30-Aug-13	TIME (HR,MN,SC) 10:28 AM	темр <u>°С</u> 23.4	ELAPSED MINUTES 0	BOTTOM BURETTE 4.50	BURETTE 23.60	(CC)	CM/SEC	GRADIENT 2.23	HEAD 19.10	LOSS,%
HEAD (PSI) 0.0 0.0	DATE (YR,MO,DY) 30-Aug-13 30-Aug-13	TIME (HR,MN,SC) 10:28 AM 05:44 PM	TEMP °C 23.4 23.7	ELAPSED MINUTES 0 436	BURETTE 4.50 6.63	23.60 21.04	2.13	CM/SEC 1.2E-06	2.23 1.68	19.10 14.41	LOSS,% 24.55
HEAD (PSI) 0.0 0.0 0.0	DATE (YR,MO,DY) 30-Aug-13 30-Aug-13 02-Sep-13	TIME (HR.MN.SC) 10:28 AM 05:44 PM 09:06 AM	TEMP °C 23.4 23.7 22.9	ELAPSED MINUTES 0 436 3802	BOTTOM BURETTE 4.50 6.63 13.80	23.60 21.04 14.83	2.13	CM/SEC 1.2E-06	2.23 1.68 0.12	19.10 14.41 1.03	LOSS,% 24.55
HEAD (PSI) 0.0 0.0 0.0 0.0	DATE (YR.MO.DY) 30-Aug-13 30-Aug-13 02-Sep-13 02-Sep-13	TIME (HR.MN.SC) 10:28 AM 05:44 PM 09:06 AM 09:07 AM	TEMP °C 23.4 23.7 22.9 22.9	ELAPSED MINUTES 0 436 3802 0	BOTTOM BURETTE 4.50 6.63 13.80 6.28	23.60 21.04 14.83 23.67	2.13 7.17	1.2E-06 1.3E-06	2.23 1.68 0.12 2.03	19.10 14.41 1.03 17.39	LOSS.% 24.55 92.85

Average Temp. = 23.1 AVERAGE K = 1.4E-06

14.19

14.43

16.18

15.97

874

375

23.0

23.4

04-Sep-13

04-Sep-13

08:10 AM

02:25 PM

0.0

0.0

Corrected K for 20° C = 1.3E-06

1.06

0.24

0.23

0.18

1.4E-06

1.5E-06

1.99

1.54

47.35

22.61

JOB NO.:	J022188.01		WET UNIT WEIGHT, pcf:	112.3	
SAMPLE ID:	ST164-5		DRY UNIT WEIGHT, pcf:	91.7	
LOCATION:	TPZ-164				
DEPTH:	3.0 - 5.0				
			INITIAL MOISTURE CONT	<u>ENT</u>	FINAL MOISTURE CONTENT*
LENGTH, in.:	5.570	LENGTH, cm: 14.148	WET WT SPLE+TARE	1191.79	WET WT SPLE+TARE
DIAMETER, in.:	2.869	DIAMETER, cm 7.287	DRY WT SPLE+TARE	996.94	DRY WT SPLE+TARE
WET WT., gms.:	1061.53		TARE WEIGHT	130.26	TARE WEIGHT
AREA, sq.in.:	6.465	AREA, sq cm: 41.708	% MOISTURE	22.5	% MOISTURE
					*Not Available

B VALUE (before Permeation): 95% Cell / Back Pressure, psi: 43 / 40

HEAD	DATE	TIME	TEMP	ELAPSED	BOTTOM	TOP	Q	K	HYDRAULIC	HYDRAULIC	HEAD
(PSI)	(YR,MO,DY)	(HR,MN,SC)	<u>°C</u>	MINUTES	BURETTE	BURETTE	(CC)	CM/SEC	GRADIENT	HEAD	LOSS,%
0.0	08-Sep-13	11:32 AM	24.6	0	1.40	23.77			1.58	22.37	
0.0	08-Sep-13	11:36 AM	24.6	4	8.28	17.65	6.88	6.5E-04	0.66	9.37	58.11
0.0	09-Sep-13	01:35 PM	23.7	0	3.53	23.77			1.43	20.24	
0.0	09-Sep-13	01:43 PM	23.7	8	12.10	15.10	8.57	7.1E-04	0.21	3.00	85.18
0.0	09-Sep-13	05:09 PM	23.8	0	5.30	23.70			1.30	18.40	
0.0	09-Sep-13	05:18 PM	23.7	9	13.38	15.52	8.08	7.1E-04	0.15	2.14	88.37
0.0	09-Sep-13	05:20 PM	23.7	0	6.87	24.14			1.22	17.27	
0.0	09-Sep-13	05:30 PM	23.7	10	14.67	16.27	7.80	7.1E-04	0.11	1.60	90.74

Average Temp. = 23.7 AVERAGE K = 7.1E-04

Corrected K for 20° C = 6.5E-04

JOB NO.: SAMPLE ID: LOCATION:	J022188.01 ST165-10 TPZ-165					WEIGHT, pcf: WEIGHT, pcf:	125.2 102.4			
DEPTH:	8.0 - 10.0									
					INITIAL MC	DISTURE CONTI	<u>ENT</u>	FINAL MOIS	STURE CONTE	NT
LENGTH, in.:	3.370	LENGTH, cm:	8.560		WET WT SP	LE+TARE	804.93	WET WT SPI	LE+TARE	809.06
DIAMETER, in.:	2.823	DIAMETER,	m 7.170		DRY WT SP	LE+TARE	678.39	DRY WT SPI	LE+TARE	678.39
WET WT., gms.:	693.30				TARE WEIG	HT	111.63	TARE WEIG	HT	111.63
AREA, sq.in.:	6.259	AREA, sq cm:	40.381		% MOISTU	RE	22.3	% MOISTUR	E	23.1
B VALUE (before Pe	ermeation): 99%	Cell / Back Pre	ssure, psi: 43	3 / 40						
HEAD DAT	TE TIME	TEMP	ELAPSED	BOTTOM	TOP	Q	K	HYDRAULIC	HYDRAULIC	HEAD
(PSI) (YR,Me	O,DY) (HR,MN,Se	<u>°C</u>	MINUTES	BURETTE	BURETTE	(CC)	CM/SEC	GRADIENT	HEAD	LOSS,%
0.0 30-Au	ıg-13 10:26 AN	M 23.4	0	5.03	23.15			2.12	18.12	
0.0 30-Au	ıg-13 05:45 PM	M 23.7	439	11.30	16.83	6.27	5.0E-06	0.65	5.53	69.48
0.0 02-Se	ep-13 09:05 AM	M 23.0	0	6.77	23.53			1.96	16.76	
0.0 02-Se	ep-13 02:53 PM	M 23.1	348	12.40	17.78	5.63	6.1E-06	0.63	5.38	67.90

8.19

14.70

23.78

17.27

0

552

Average Temp. = 23.2

08:22 AM

05:34 PM

03-Sep-13

03-Sep-13

0.0

0.0

23.1

22.9

AVERAGE K = 5.7E-06

6.51

Corrected K for 20° C = 5.3E-06

6.1E-06

1.82

0.30

15.59

2.57

83.52

JOB NO.:	J022188.01			WET UNIT WEIGHT, pcf:	118.8	
SAMPLE ID:	ST167-30			DRY UNIT WEIGHT, pcf:	99.9	
LOCATION:	TPZ-167			Note: Sample Remolded in Lab)	
DEPTH:	29.0 - 30.0					
				INITIAL MOISTURE CONTEN	<u>T</u>	FINAL MOISTURE CONTENT*
LENGTH, in.:	2.408	LENGTH, cm:	6.116	WET WT SPLE+TARE	586.87	WET WT SPLE+TARE
DIAMETER, in.:	2.835	DIAMETER, cm	7.201	DRY WT SPLE+TARE	511.77	DRY WT SPLE+TARE
WET WT., gms.:	473.89			TARE WEIGHT	112.98	TARE WEIGHT
AREA, sq.in.:	6.312	AREA, sq cm:	40.725	% MOISTURE	18.8	% MOISTURE
						*Not Available

B VALUE (before Permeation): 95% Cell / Back Pressure, psi: 63 / 60

HEAD	DATE	TIME	TEMP	ELAPSED	BOTTOM	TOP	Q	K	HYDRAULIC	HYDRAULIC	HEAD
(PSI)	(YR,MO,DY)	(HR,MN,SC)	<u>°C</u>	MINUTES	BURETTE	BURETTE	(CC)	CM/SEC	GRADIENT	HEAD	LOSS,%
0.0	07-Oct-13	10:38 AM	23.1	0	6.12	23.77			2.89	17.65	
0.0	07-Oct-13	11:14 AM	23.0	36	8.31	21.53	2.19	1.1E-05	2.16	13.22	25.10
0.0	07-Oct-13	11:58 AM	23.0	44	10.25	19.60	1.94	1.0E-05	1.53	9.35	29.27
0.0	07-Oct-13	02:39 PM	22.8	161	13.60	16.23	3.35	1.0E-05	0.43	2.63	71.87
0.0	08-Oct-13	12:00 PM	23.2	0	7.42	23.43			2.62	16.01	
0.0	08-Oct-13	04:51 PM	22.3	291	14.57	16.22	7.15	1.0E-05	0.27	1.65	89.69

Average Temp. = 22.9 AVERAGE K = 1.0E-05

Corrected K for 20° C = 9.7E-06

JOB NO.: SAMPLE ID: LOCATION:	J022188.01 ST167-34 TPZ-167		WET UNIT WEIGHT, pcf: DRY UNIT WEIGHT, pcf :	125.7 101.3		
DEPTH: LENGTH, in.: DIAMETER, in.:	32.0 - 34.0 3.900 2.805	LENGTH, cm: 9.906 DIAMETER, cm: 7.125	INITIAL MOISTURE CONTE WET WT SPLE+TARE DRY WT SPLE+TARE	NT 922.20 767.59	FINAL MOISTURE CONTE WET WT SPLE+TARE DRY WT SPLE+TARE	<u>ENT</u> 921.52 767.59
WET WT., gms.: AREA, sq.in.:	795.39 6.180	AREA, sq cm: 39.868	TARE WEIGHT % MOISTURE	126.81 24.1	TARE WEIGHT % MOISTURE	126.81 24.0
B VALUE (before Per	meation): 100%	Cell / Back Pressure, psi: 43 / 40				

HEAD	DATE	TIME	TEMP	ELAPSED	BOTTOM	TOP	Q	K	HYDRAULIC	HYDRAULIC	HEAD
(PSI)	(YR,MO,DY)	(HR,MN,SC)	<u>°C</u>	MINUTES	BURETTE	BURETTE	(CC)	CM/SEC	GRADIENT	HEAD	LOSS,%
0.0	30-Aug-13	10:26 AM	23.4	0	3.20	23.17			2.02	19.97	
0.0	30-Aug-13	05:46 PM	23.7	440	4.40	21.92	1.20	6.5E-07	1.77	17.52	12.27
0.0	02-Sep-13	09:03 AM	22.8	3797	10.73	16.19	6.33	6.7E-07	0.55	5.46	68.84
0.0	03-Sep-13	08:20 AM	23.0	1397	11.70	15.29	0.97	6.5E-07	0.36	3.59	34.25
0.0	03-Sep-13	05:33 PM	23.1	553	12.01	15.06	0.31	6.4E-07	0.31	3.05	15.04
0.0	03-Sep-13	05:59 PM	23.1	0	4.82	23.63			1.90	18.81	
0.0	04-Sep-13	08:08 AM	23.4	849	7.00	21.48	2.18	7.3E-07	1.46	14.48	23.02

Average Temp. = 23.2 AVERAGE K = 6.7E-07 Corrected K for $20^{\circ}C = 6.2E-07$

JOB NO.:	J022188.01		WET UNIT WEIGHT, pcf:	98.3	
SAMPLE ID:	ST168-5		DRY UNIT WEIGHT, pcf:	63.0	
LOCATION:	TPZ-168				
DEPTH:	3.0 - 5.0				
			INITIAL MOISTURE CONTE	NT	FINAL MOISTURE CONTENT*
LENGTH, in.:	2.883	LENGTH, cm: 7.323	WET WT SPLE+TARE	610.66	WET WT SPLE+TARE
DIAMETER, in.:	2.874	DIAMETER, cm 7.300	DRY WT SPLE+TARE	437.44	DRY WT SPLE+TARE
WET WT., gms.:	482.72		TARE WEIGHT	127.94	TARE WEIGHT
AREA, sq.in.:	6.487	AREA, sq cm: 41.853	% MOISTURE	56.0	% MOISTURE
					*Not Available

B VALUE (before Permeation): 99% Cell / Back Pressure, psi: 43 / 40

HEAD	DATE	TIME	TEMP	ELAPSED	BOTTOM	TOP	Q	K	HYDRAULIC	HYDRAULIC	HEAD
(PSI)	(YR,MO,DY)	(HR,MN,SC)	<u>°C</u>	MINUTES	BURETTE	BURETTE	(CC)	CM/SEC	GRADIENT	HEAD	LOSS,%
0.0	03-Oct-13	09:40 AM	24.2	0	6.27	23.34			2.33	17.07	
0.0	03-Oct-13	09:46 AM	24.2	6	13.43	16.13	7.16	4.7E-04	0.37	2.70	84.18
0.0	03-Oct-13	09:50 AM	24.2	4	14.39	15.16	0.96	4.8E-04	0.11	0.77	71.48
0.0	03-Oct-13	10:15 AM	24.0	0	7.57	24.18			2.27	16.61	
0.0	03-Oct-13	10:22 AM	24.0	7	14.83	16.85	7.26	4.6E-04	0.28	2.02	87.84
0.0	03-Oct-13	10:27 AM	24.0	5	15.62	16.07	0.79	4.6E-04	0.06	0.45	77.72

Average Temp. = 24.1 AVERAGE K = 4.7E-04

Corrected K for 20° C = 4.2E-04

JOB NO.:	J0221	88.01				WET UNIT V	WEIGHT, pcf:	126.1			
SAMPLE I	ID: ST26	2-35				DRY UNIT	WEIGHT, pcf:	102.2			
LOCATIO	N: MW	-262									
DEPTH:	33.5 -	35.5									
						INITIAL MO	ISTURE CONT	<u>ENT</u>	FINAL MOIS	STURE CONTE	<u>NT</u>
LENGTH,	in.: 3.5	45	LENGTH, ca	m: 9.004		WET WT SP	LE+TARE	880.20	WET WT SPI	LE+TARE	888.98
DIAMETE	ZR, in.: 2.8	54	DIAMETER	R, cm 7.249		DRY WT SP	LE+TARE	737.44	DRY WT SPI	LE+TARE	737.44
WET WT.,	gms.: 750.	94				TARE WEIG	HT	129.26	TARE WEIG	HT	129.26
AREA, sq.i	in.: 6.3	97	AREA, sq cı	m: 41.273		% MOISTU	RE	23.5	% MOISTUR	Е	24.9
B VALUE	(before Permeation):	99%	Cell / Back P	ressure, psi: 43	/ 40						
HEAD	DATE	TIME	ТЕМР	ELAPSED	воттом	ТОР	Q	K	HYDRAULIC	HYDRAULIC	HEAD
HEAD (PSI)	DATE (YR,MO,DY)	TIME (HR,MN,SC)	TEMP °C	ELAPSED MINUTES	BOTTOM BURETTE	TOP BURETTE	Q (CC)	K CM/SEC	HYDRAULIC GRADIENT	HYDRAULIC HEAD	HEAD LOSS,%
<u>(PSI)</u>	(YR,MO,DY)	(HR,MN,SC)	<u>°C</u>	MINUTES	BURETTE	BURETTE			GRADIENT	HEAD	
(PSI) 0.0	(YR,MO,DY) 30-Aug-13	(HR.MN,SC) 10:28 AM	<u>°C</u> 23.4	MINUTES 0	<u>BURETTE</u> 5.05	BURETTE 24.01	<u>(CC)</u>	CM/SEC	GRADIENT 2.11	HEAD 18.96	LOSS,%
(PSI) 0.0 0.0	(YR,MO,DY) 30-Aug-13 30-Aug-13	(HR.MN.SC) 10:28 AM 05:45 PM	°C 23.4 23.7	MINUTES 0 437	5.05 5.69	24.01 24.03	(CC) 0.64	<u>CM/SEC</u> 1.5E-07	2.11 2.04	18.96 18.34	LOSS,% 3.27
0.0 0.0 0.0	(YR,MO,DY) 30-Aug-13 30-Aug-13 02-Sep-13	(HR.MN.SC) 10:28 AM 05:45 PM 09:05 AM	°C 23.4 23.7 22.9	MINUTES 0 437 3800	5.05 5.69 6.48	24.01 24.03 24.41	0.64 0.79	CM/SEC 1.5E-07 1.1E-08	GRADIENT 2.11 2.04 1.99	18.96 18.34 17.93	3.27 2.24
(PSI) 0.0 0.0 0.0 0.0	(YR,MO,DY) 30-Aug-13 30-Aug-13 02-Sep-13 03-Sep-13	(HR.MN.SC) 10:28 AM 05:45 PM 09:05 AM 08:22 AM	°C 23.4 23.7 22.9 23.3	MINUTES 0 437 3800 1397	5.05 5.69 6.48 6.67	24.01 24.03 24.41 24.47	0.64 0.79 0.19	1.5E-07 1.1E-08 9.9E-09	2.11 2.04 1.99 1.98	18.96 18.34 17.93 17.80	3.27 2.24 0.73
(PSI) 0.0 0.0 0.0 0.0 0.0	(YR.MO.DY) 30-Aug-13 30-Aug-13 02-Sep-13 03-Sep-13	(HR.MN.SC) 10:28 AM 05:45 PM 09:05 AM 08:22 AM 05:35 PM	°C 23.4 23.7 22.9 23.3 23.0	MINUTES 0 437 3800 1397 553	5.05 5.69 6.48 6.67 6.77	24.01 24.03 24.41 24.47 24.50	0.64 0.79 0.19	1.5E-07 1.1E-08 9.9E-09	2.11 2.04 1.99 1.98 1.97	18.96 18.34 17.93 17.80 17.73	3.27 2.24 0.73
(PSI) 0.0 0.0 0.0 0.0 0.0 0.0 2.0	(YR,MO,DY) 30-Aug-13 30-Aug-13 02-Sep-13 03-Sep-13 03-Sep-13	(HR.MN.SC) 10:28 AM 05:45 PM 09:05 AM 08:22 AM 05:35 PM 06:02 PM	°C 23.4 23.7 22.9 23.3 23.0 23.0	MINUTES 0 437 3800 1397 553 0	5.05 5.69 6.48 6.67 6.77 5.91	24.01 24.03 24.41 24.47 24.50 23.23	0.64 0.79 0.19 0.10	1.5E-07 1.1E-08 9.9E-09 1.4E-08	2.11 2.04 1.99 1.98 1.97 17.54	18.96 18.34 17.93 17.80 17.73 157.92	3.27 2.24 0.73 0.39

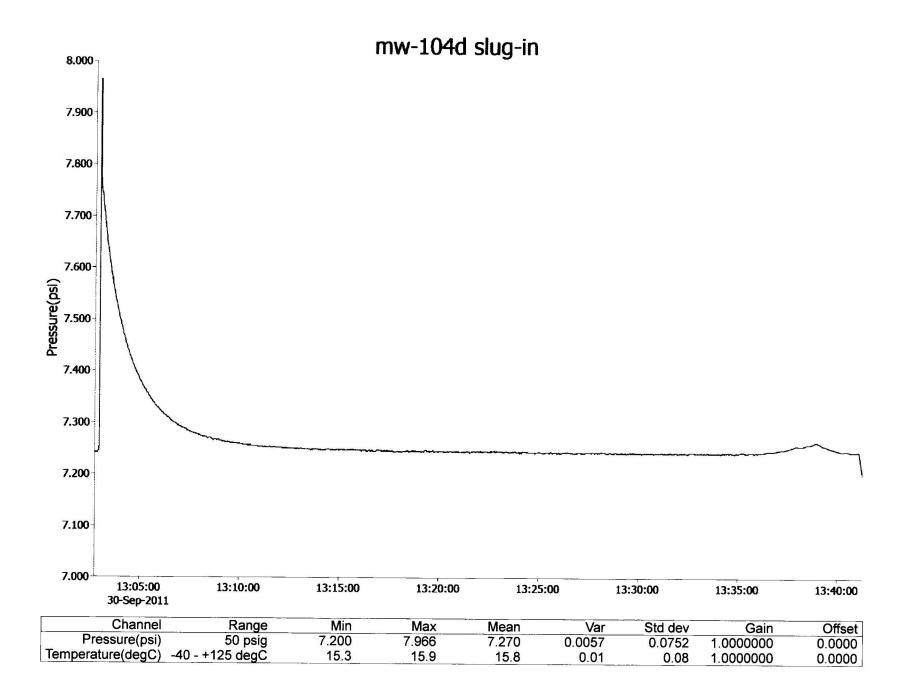
Corrected K for 20° C = 9.9E-09

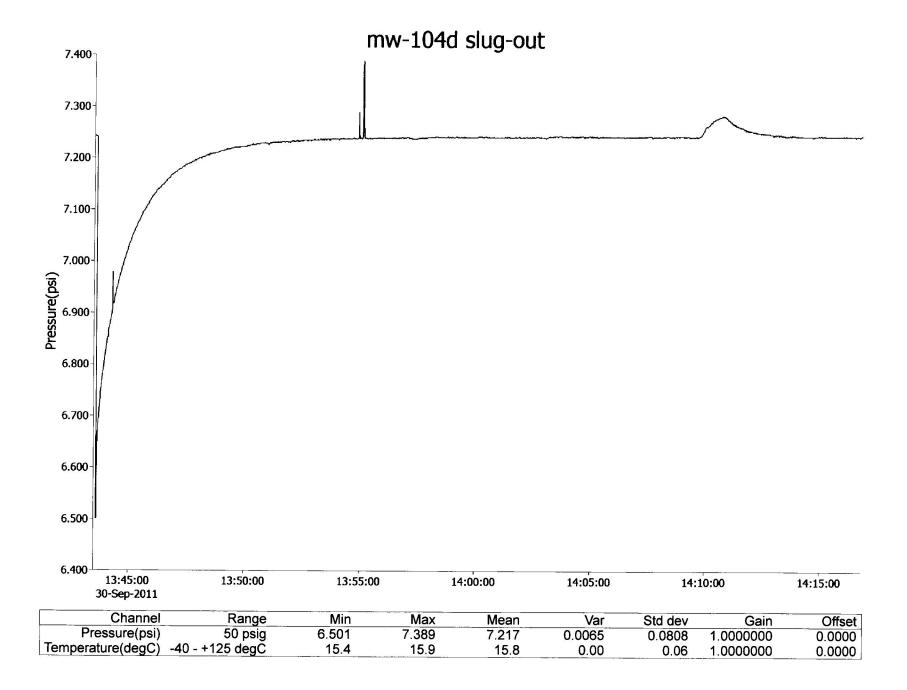
Va = Volume of air				Volume		Mass
Vw = Volume of water Vv = Volume of voids			Volume	 Va	AIR	Ma=0
Vd - Volume of dry soil V = Total volume			of Voids	 Vw	WATER	 Mw
Ma = Mass of air (=0) Mw = Mass of water				 Vd	SOIL	 Md
Md = Mass of dry soil						
M = Total mass				V	Total	М
	=======	======	=======================================	=======================================	= =====================================	
Project No.: Location:	J022188.01 TPZ-163			Volume (cc)		Mass (gms)
Sample No.:	ST163-3					
Depth (Feet):	1.5 - 3.5		161.08	29.90	AIR	0.00
Height Diameter	2.464 2.870	` '		131.18	WATER	131.18
Weight	397.53	` '		 100.13	SOIL	266.35
Volume	261.21					
	=======			261.21	Total	397.53
Bulk Density, Wet	1.522	, ,				
Bulk Density, Dry - ASTM D 2937	1.020	(g/cc)		Specific Gravit	ty - ASTM D 854 =	2.66 (g/cc)
Wet + Tare	527.00	(gms)		Opcomo Oravi	.y A01111 D 004 =	2.00 (g/00)
Dry + Tare	395.82					
Tare	129.47	(gms)		Total Por	rosity (n) = Vv/V =	0.617 (cc/cc)
Water Content - ASTM D 2216	49.3	(%)				
Gravimetric Water Content	0.493	(a/a)		Water Filled Por	osity (n) = Vw/V =	0.5022 (cc/cc)
Gravimetric Water Content	0.493					
Gravimetric Water Content Volumetric Water Content		(g/g) (cc/cc)			osity (n) = Vw/V =	
Volumetric Water Content	0.502	(cc/cc)	:======================================	Air Filled Po		0.1145 (cc/cc)
Volumetric Water Content	0.502	(cc/cc)		Air Filled Poi	rosity (n) = Va/V =	0.1145 (cc/cc)
Volumetric Water Content =================================	0.502 ====== J022188.01	(cc/cc)		Air Filled Po	rosity (n) = Va/V =	0.1145 (cc/cc)
Volumetric Water Content =================================	0.502 ====== J022188.01 TPZ-164	(cc/cc)		Air Filled Por	rosity (n) = Va/V =	0.1145 (cc/cc)
Volumetric Water Content =================================	0.502 ====== J022188.01 TPZ-164 ST164-5	(cc/cc)		Air Filled Por == ==================================	rosity (n) = Va/V =	0.1145 (cc/cc) Mass (gms)
Volumetric Water Content =================================	0.502 ======= J022188.01 TPZ-164 ST164-5 3.0 - 5.0 5.570 2.869	(cc/cc) ======== (in) (in) (in)	266.69	Air Filled Por	osity (n) = Va/V =	0.1145 (cc/cc) Mass (gms) 0.00 1 194.85
Volumetric Water Content =================================	0.502 J022188.01 TPZ-164 ST164-5 3.0 - 5.0 5.570 2.869 1061.5	(cc/cc) =================================	266.69	Air Filled Por	rosity (n) = Va/V = = =================================	0.1145 (cc/cc) Mass (gms) 0.00 1 194.85 1 866.68
Volumetric Water Content =================================	0.502 J022188.01 TPZ-164 ST164-5 3.0 - 5.0 5.570 2.869 1061.5 590.08	(cc/cc) =================================	266.69	Air Filled Por	AIR	0.1145 (cc/cc) Mass (gms) 0.00 194.85 866.68
Volumetric Water Content =================================	0.502 J022188.01 TPZ-164 ST164-5 3.0 - 5.0 5.570 2.869 1061.5 590.08	(cc/cc) =================================	266.69	Air Filled Por	rosity (n) = Va/V = = =================================	0.1145 (cc/cc) Mass (gms) 0.00 1 194.85 1 866.68
Volumetric Water Content	0.502 J022188.01 TPZ-164 ST164-5 3.0 - 5.0 5.570 2.869 1061.5 590.08	(in) (in) (g) (cc)	266.69	Air Filled Por Volume (cc) 71.84 194.85 323.39 590.08	AIR	0.1145 (cc/cc) Mass (gms) 0.00 194.85 866.68 1061.53
Volumetric Water Content	0.502 J022188.01 TPZ-164 ST164-5 3.0 - 5.0 5.570 2.869 1061.5 590.08 1.799 1.469	(in) (in) (g) (cc) (g/cc) (g/cc)	266.69	Air Filled Por Volume (cc) 71.84 194.85 323.39 590.08	AIR	0.1145 (cc/cc) Mass (gms) 0.00 194.85 866.68
Volumetric Water Content	0.502 J022188.01 TPZ-164 ST164-5 3.0 - 5.0 5.570 2.869 1061.5 590.08 1.799 1.469 1191.79	(in) (in) (g) (cc) (g/cc) (g/cc) (gms)	266.69	Air Filled Por Volume (cc) 71.84 194.85 323.39 590.08	AIR	0.1145 (cc/cc) Mass (gms) 0.00 194.85 866.68 1061.53
Volumetric Water Content	0.502 J022188.01 TPZ-164 ST164-5 3.0 - 5.0 5.570 2.869 1061.5 590.08 1.799 1.469 1191.79 996.94	(in) (in) (g) (cc) (g/cc) (g/cc) (gms) (gms)	266.69	Air Filled Por Volume (cc) 71.84 194.85 323.39 590.08	AIR WATER SOIL Total	0.1145 (cc/cc) Mass (gms) 0.00 1 194.85 866.68 1061.53
Volumetric Water Content	0.502 J022188.01 TPZ-164 ST164-5 3.0 - 5.0 5.570 2.869 1061.5 590.08 1.799 1.469 1191.79 996.94 130.26	(in) (in) (g) (cc) (g/cc) (g/cc) (gms) (gms) (gms)	266.69	Air Filled Por Volume (cc) 71.84 194.85 323.39 590.08	AIR	0.1145 (cc/cc) Mass (gms) 0.00 194.85 866.68 1061.53
Volumetric Water Content =================================	0.502 J022188.01 TPZ-164 ST164-5 3.0 - 5.0 5.570 2.869 1061.5 590.08 1.799 1.469 1191.79 996.94 130.26	(in) (in) (g) (cc) (g/cc) (g/cc) (gms) (gms) (gms)	266.69	Air Filled Por Volume (cc) 71.84 194.85 323.39 590.08 Specific Gravit	AIR WATER SOIL Total ty - ASTM D 854 =	0.1145 (cc/cc) Mass (gms) 0.00 194.85 866.68 1061.53 2.68 (g/cc) 0.452 (cc/cc)
Volumetric Water Content	0.502 J022188.01 TPZ-164 ST164-5 3.0 - 5.0 5.570 2.869 1061.5 590.08 1.799 1.469 1191.79 996.94 130.26	(in) (in) (g) (cc) (g/cc) (g/cc) (gms) (gms) (gms)	266.69	Air Filled Por Volume (cc) 71.84 194.85 323.39 590.08 Specific Gravit	AIR WATER SOIL Total	0.1145 (cc/cc) Mass (gms) 0.00 1 194.85 866.68 1061.53

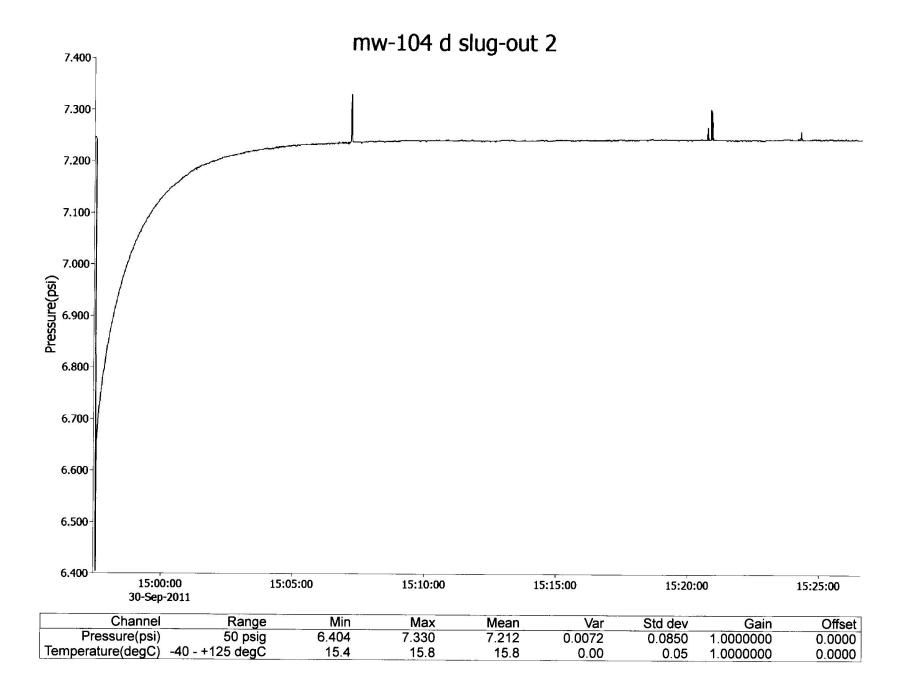
NOTE: Values not representative of effective porosity.

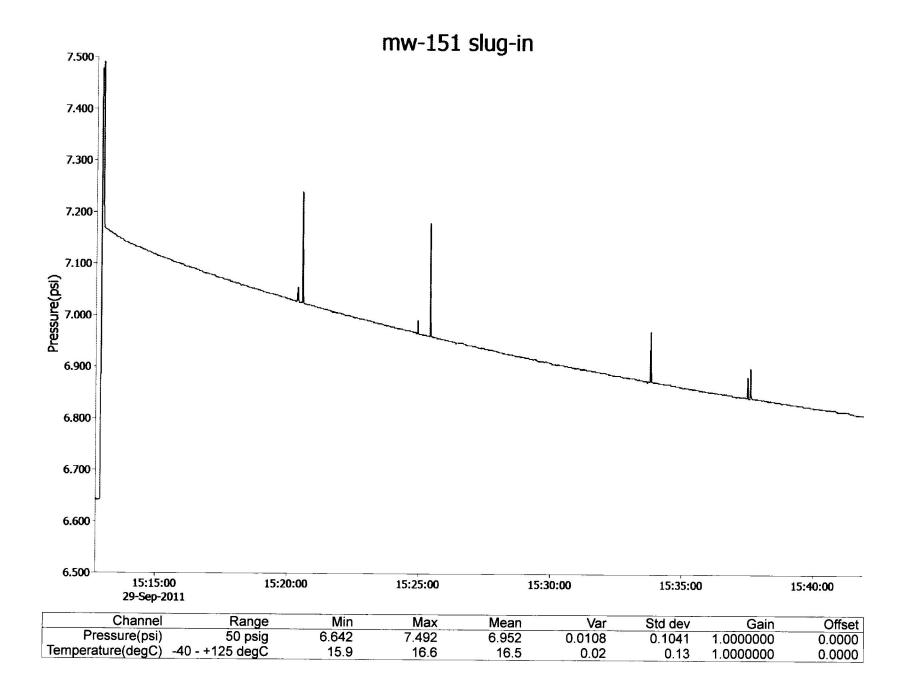
Va = Volume of air				Volume			Mass
Vw = Volume of water Vv = Volume of voids			Volume	 Va	AIR	 	Ma=0
Vd - Volume of dry soil V = Total volume			of Voids	 Vw	WATER	 	Mw
Ma = Mass of air (=0) Mw = Mass of water				 Vd	SOIL	 	Md
Md = Mass of dry soil M = Total mass				V	Total		M
Project No.:	J022188.01	======	=======================================	=======================================	:======================================	=====	=======
Location: Sample No.:	TPZ-167 SS167-30			Volume (cc)		ı	Mass (gms)
Depth (Feet):	29.0 - 30.0		95.12	20.02	AIR	į	0.00
Height Diameter	2.408 2.835		30.12	75.10 75.10	WATER	į	75.10
Weight	473.89	(g)		153.97	SOIL		398.79
Volume ====================================	249.09 ========	(cc)		249.09	Total	l	473.89
Bulk Density, Wet Bulk Density, Dry - ASTM D 2937		(g/cc) (g/cc)					
======================================	586.87			Specific Gravity	y - ASTM D 854 =	2.59	(g/cc)
Dry + Tare	511.77	, ,					
Tare	112.98	(gms)		Total Por	osity (n) = Vv/V =	0.382	(cc/cc)
Water Content - ASTM D 2216	18.8	(%)					
					-: t () \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		11>
Gravimetric Water Content	0.188	(g/g)		Water Filled Porc	osity (n) = Vw/V =	0.3015	(cc/cc)
Gravimetric Water Content Volumetric Water Content		(g/g) (cc/cc)			osity (n) = Vw/V =		,
	0.301	(cc/cc)	ded in Labora	Air Filled Por			,
	0.301	(cc/cc)	ded in Labora	Air Filled Por	osity (n) = Va/V =		(cc/cc)
Volumetric Water Content Project No.: Location:	0.301 Note: Samp J022188.01 TPZ-168	(cc/cc) ble Remol	ded in Labora	Air Filled Pore atory == ==================================	osity (n) = Va/V =	0.0804 =====	(cc/cc) ======= Mass (gms)
Volumetric Water Content =================================	0.301 Note: Samp J022188.01	(cc/cc) ble Remol	ded in Labora	Air Filled Pore atory	osity (n) = Va/V =	0.0804 =====	(cc/cc)
Volumetric Water Content	0.301 Note: Samp ======= J022188.01 TPZ-168 ST168-5 3.0 - 5.0	(cc/cc) ble Remol	ded in Labora	Air Filled Pore atory	osity (n) = Va/V =	0.0804 =====	(cc/cc) Mass (gms) 0.00
Volumetric Water Content =================================	0.301 Note: Samp = ====== J022188.01 TPZ-168 ST168-5	(cc/cc) ple Remol		Air Filled Porce atory	osity (n) = Va/V =	0.0804 	(cc/cc) Mass (gms) 0.00
Volumetric Water Content =================================	0.301 Note: Samp ======== J022188.01 TPZ-168 ST168-5 3.0 - 5.0 2.883 2.874 482.7	(cc/cc) ble Remole :===================================	199.02	Air Filled Porce atory Volume (cc) 25.80 173.22 107.47	osity (n) = Va/V =	0.0804 	(cc/cc) ====== Mass (gms) 0.00 173.22 309.50
Volumetric Water Content =================================	0.301 Note: Samp ======== J022188.01 TPZ-168 ST168-5 3.0 - 5.0 2.883 2.874 482.7 306.48	(in) (in) (g) (cc)	199.02	Air Filled Pore atory Volume (cc) 25.80 173.22	osity (n) = Va/V =	0.0804 	(cc/cc) Mass (gms) 0.00 173.22
Volumetric Water Content	0.301 Note: Samp J022188.01 TPZ-168 ST168-5 3.0 - 5.0 2.883 2.874 482.7 306.48 1.575 1.010	(in) (in) (g) (cc) (g/cc) (g/cc)	199.02	Air Filled Pore atory	osity (n) = Va/V =	0.0804 	(cc/cc) ====== Mass (gms) 0.00 173.22 309.50 482.72
Volumetric Water Content	0.301 Note: Samp J022188.01 TPZ-168 ST168-5 3.0 - 5.0 2.883 2.874 482.7 306.48 1.575 1.010	(in) (in) (g) (cc) (g/cc) (g/cc)	199.02	Air Filled Pore atory	osity (n) = Va/V =	0.0804 	(cc/cc) ====== Mass (gms) 0.00 173.22 309.50
Volumetric Water Content	0.301 Note: Samp J022188.01 TPZ-168 ST168-5 3.0 - 5.0 2.883 2.874 482.7 306.48 1.575 1.010 610.66 437.44 127.94	(in) (in) (g) (cc) (g/cc) (g/sc) (gms) (gms) (gms)	199.02	Air Filled Pore atory	osity (n) = Va/V =	0.0804	(cc/cc) ====== Mass (gms) 0.00 173.22 309.50 482.72
Volumetric Water Content	0.301 Note: Samp J022188.01 TPZ-168 ST168-5 3.0 - 5.0 2.883 2.874 482.7 306.48 1.575 1.010 610.66 437.44 127.94	(in) (in) (g) (cc) (g/cc) (gms) (gms) (gms)	199.02	Air Filled Pore atory	Osity (n) = Va/V = AIR WATER SOIL Total y - ASTM D 854 = osity (n) = Vv/V =	0.0804	(cc/cc) Mass (gms) 0.00 173.22 309.50 482.72 (g/cc) (cc/cc)
Volumetric Water Content	0.301 Note: Samp J022188.01 TPZ-168 ST168-5 3.0 - 5.0 2.883 2.874 482.7 306.48 610.66 437.44 127.94	(in) (in) (g) (cc) (g/cc) (g/sc) (gms) (gms) (gms)	199.02	Air Filled Pore atory	Osity (n) = Va/V = AIR WATER SOIL Total y - ASTM D 854 =	0.0804	(cc/cc) Mass (gms) 0.00 173.22 309.50 482.72

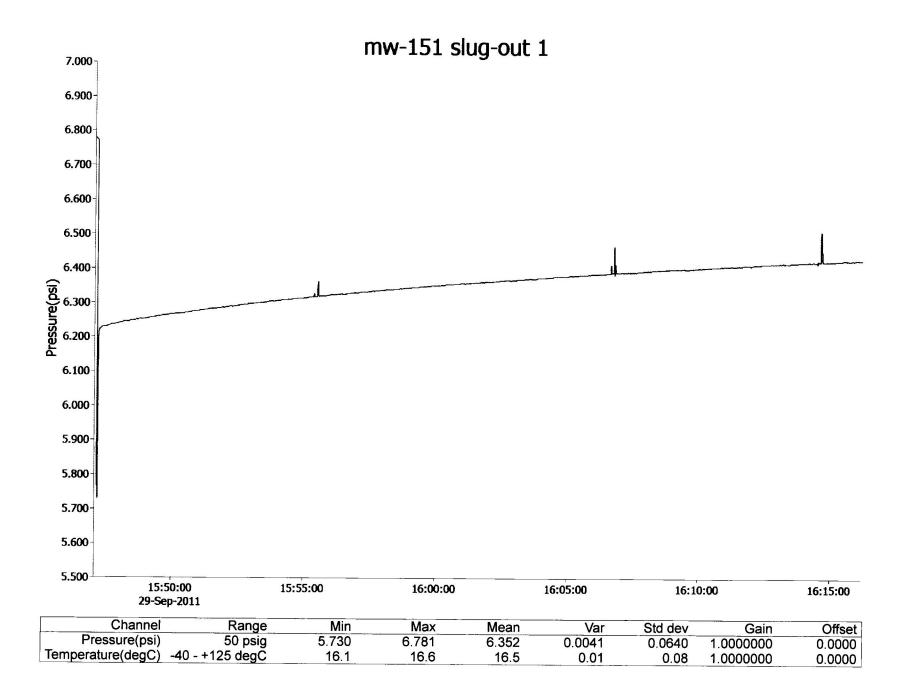
NOTE: Values not representative of effective porosity.

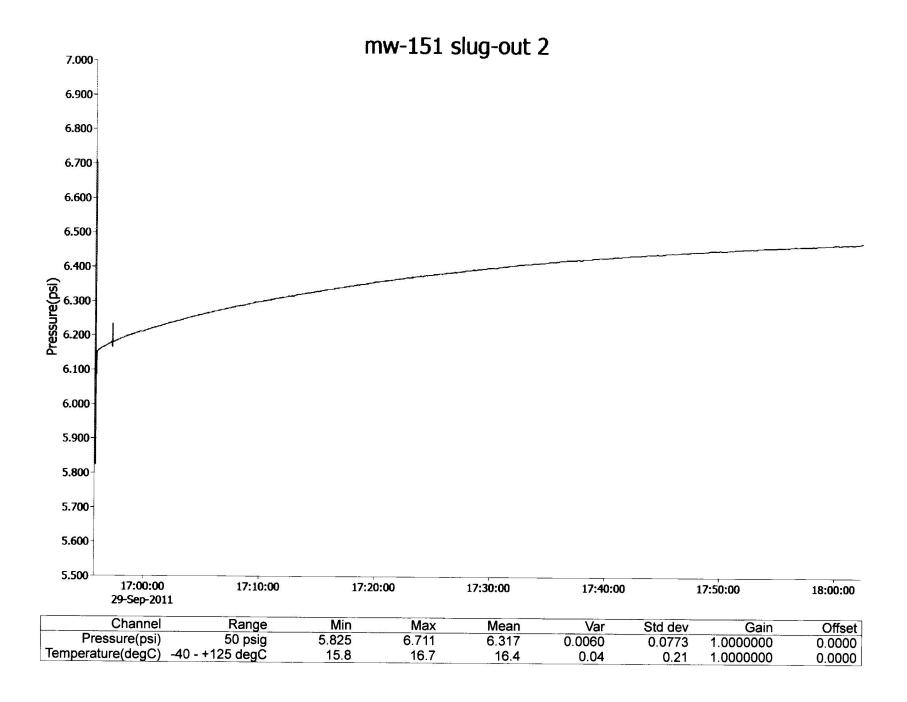

SOIL/SEDIMENT/SLUDGE SAMPLING DATA

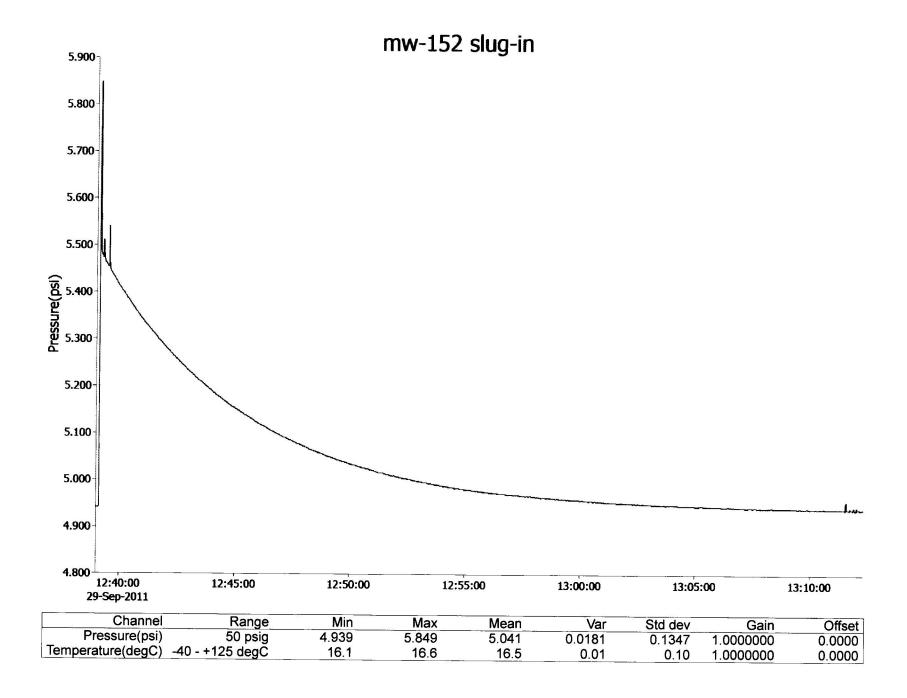

	Client Compar	ny Dynegy, Inc.									
	Site Name	Baldwin Energy	Complex								
	Site Address_	10901 Baldwin	Road, Baldv	vin, IL							_
	Sampling Meth Shelby Split Sp Macroco	Reason For Collection Lab Analysis On-Site Headspace Geotechnical Lab Other				Portable Screening Instrument Used Type Manufacturer Model □ PID (LampeV) □ FID □ CGI					
	Sample No. Location		Date Collected	Sample Type		Analysis 1 (USCS Class)	Analysis 2 (USCS w/ Sieve / Hydrometer)	Analysis 3 (Moisture,Bulk Density,Hyd Cond, SpGr)**	Analysis 4 (Moisture)	Analysis 5	
Depth				ST	ss	МС					
29-30	55167-30	TPZ-167	8-13-13		X			8	28		
32-34	ST167-34		8-13-13	X				X		×	×
47-48	55117-48	V	8-13-13		X		×				
3.5	ST168-5	TFZ-168	8-15-13	×				20	20		
39-40	55168-40		8-14-13		X		×				
68,5-69	55/68-69	V	8-14-13		X		×				
365-37	MC257-37	OW-257	8-15-13			X	X				
8-10	ST185-10	TPZ-163	8-19-13	X				X		×	×
13-14	MC165-14	V	8-19-13			X	×				
17-18	MC262-18	MW-262	8-19-13				×	• •			
335-356	51262-35	1	8-19-13	X				×		X	×
31,5-32,5	MC161-32	MW-161	8-20-13			X	X	> (sfew	e)		
41-42	MC 161-42	V	8-20-13			X	X	13.7	/		
33-33,5	MC256-33	on-256	8-22-13			X	X				
	Comments **C	ody Form Number	, water filled, a	17.76				Analyses 2			

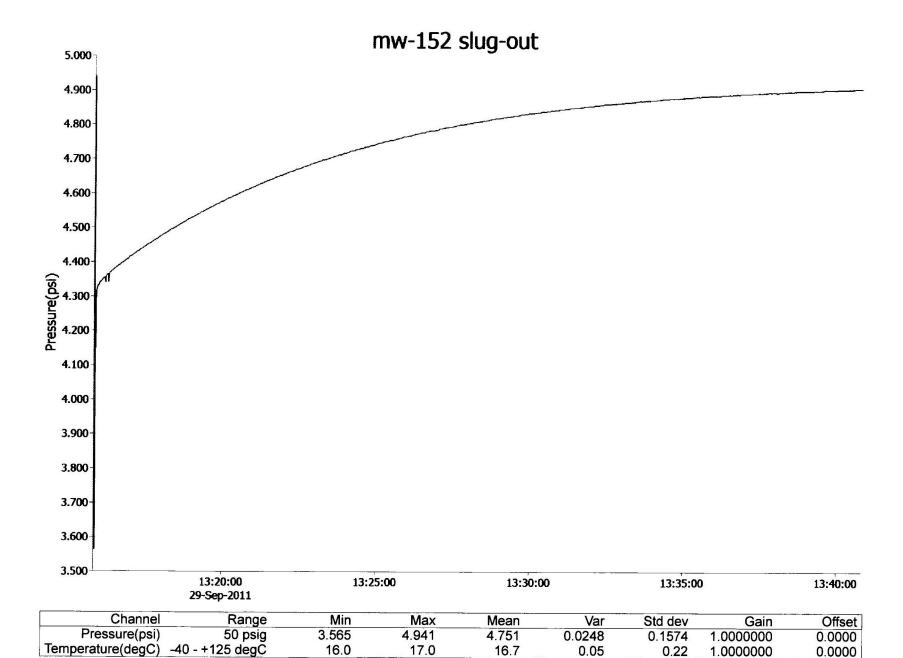

Form A0204 Rev. 7/19/13 C:\Consulting A\Power Plants\Baldwin\Baldwin 2013 Hydrogeologic Study\Field Work Phase\Field Forms\Geotech samples.docx 7/19/13

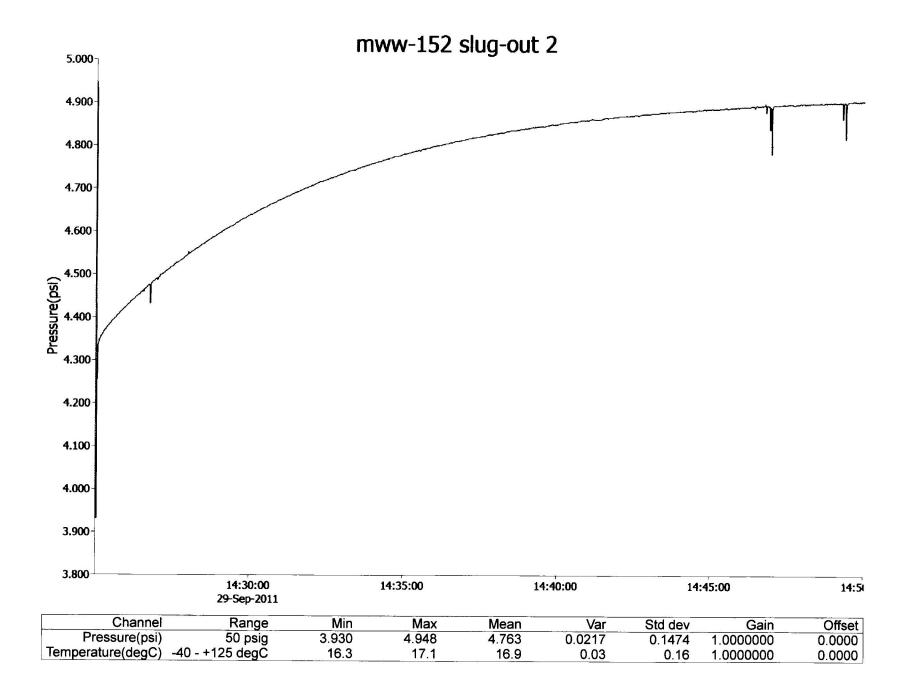

Serial No. SSSS	SD								(100
Project Name_	Hydrogeologic	Investigation	n – BE	C Asl	h Por	nd System	P	roject No. 201	3.009	Co.
Project Manag	er_Stuart Crave	ens, Kelron E	nviron	ment	al		PI	hase.Task No		-
lient Compar	ny Dynegy, Inc.			_	_					
ite NameE	Baldwin Energy	Complex								
ite Address_	10901 Baldwin	Road, Baldy	vin, IL							
Sampling Method Shelby Tube (ST) Split Spoon (SS) Macrocore (MC) Other Reason For Collection Lab Analysis On-Site Headspace Geotechnical Lab Other Other				Portable Screening Instrument Used Type Manufacturer Model PID (LampeV) FID CGI						
				-		Analysis 1	Analysis 2	Analysis 3	Analysis 4	Analysis 5
Sample No. L	Location	Date Collected	Sample Type			(USCS Class)	(USCS w/ Sieve / Hydrometer)	(Moisture,Bulk Density,Hyd Cond, SpGr)**	(Moisture)	(Hyd Cond)
			ST	SS	МС					
7/645	TPZ-164 @ 3-5	8/26/13	X				8	8		
T164-12	TPZ-164/ @ 10-12/	11	×				×		X	×
T163-3	TPZ-16351	8/27/13	×				(8)	8		
T163-30	0 28-30	N/	X				×		×	×
			1 4							


APPENDIX E FIELD PERMEABILITY TEST DATA AND ANALYSES

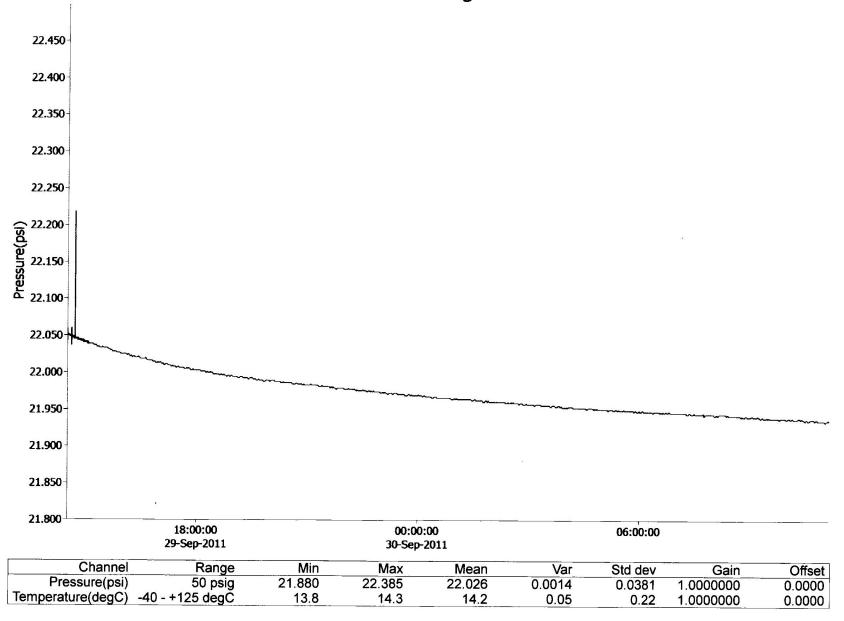


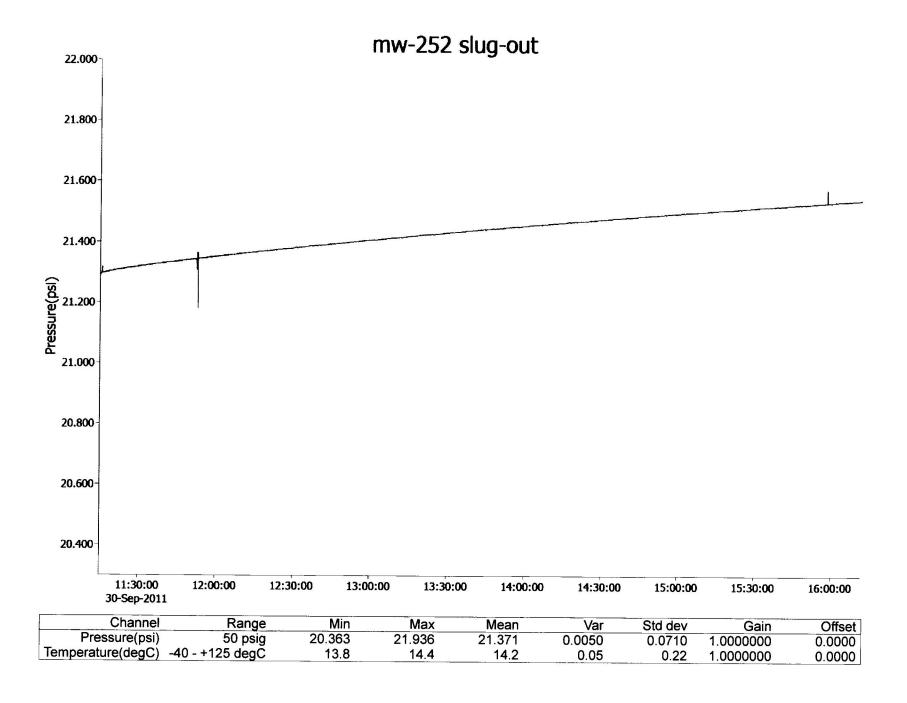


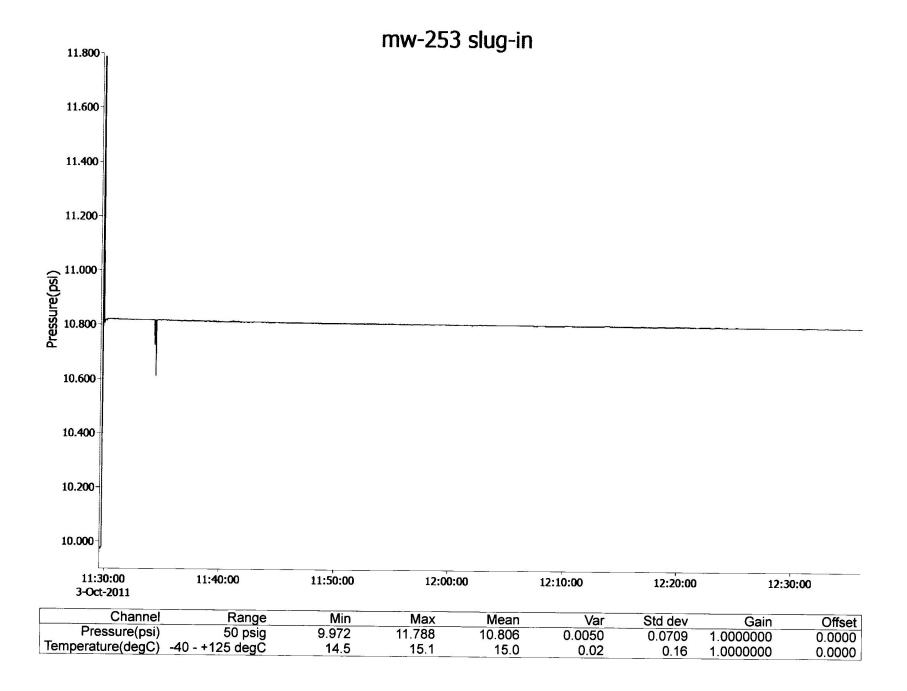


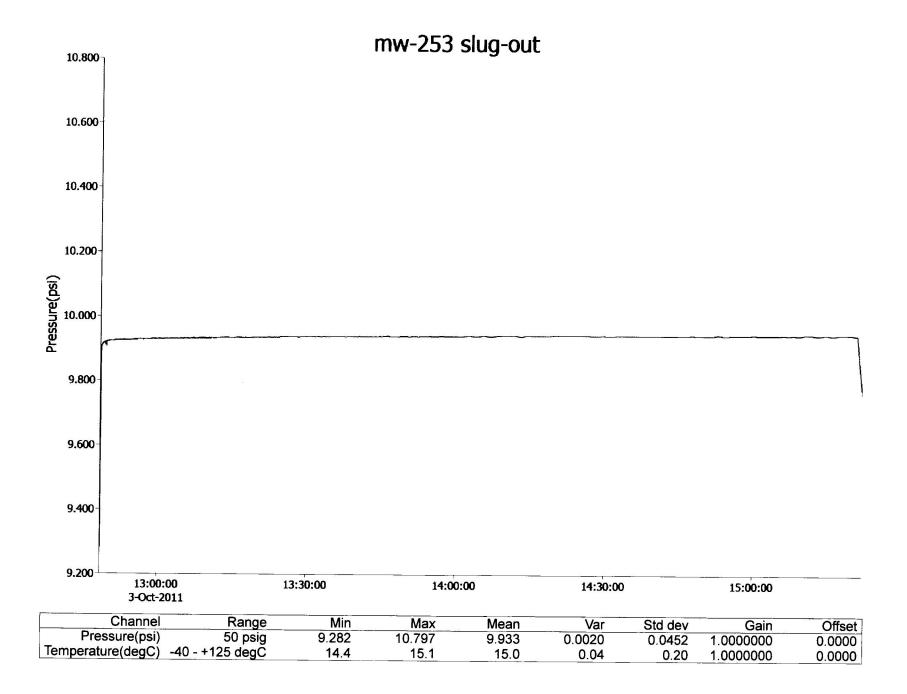


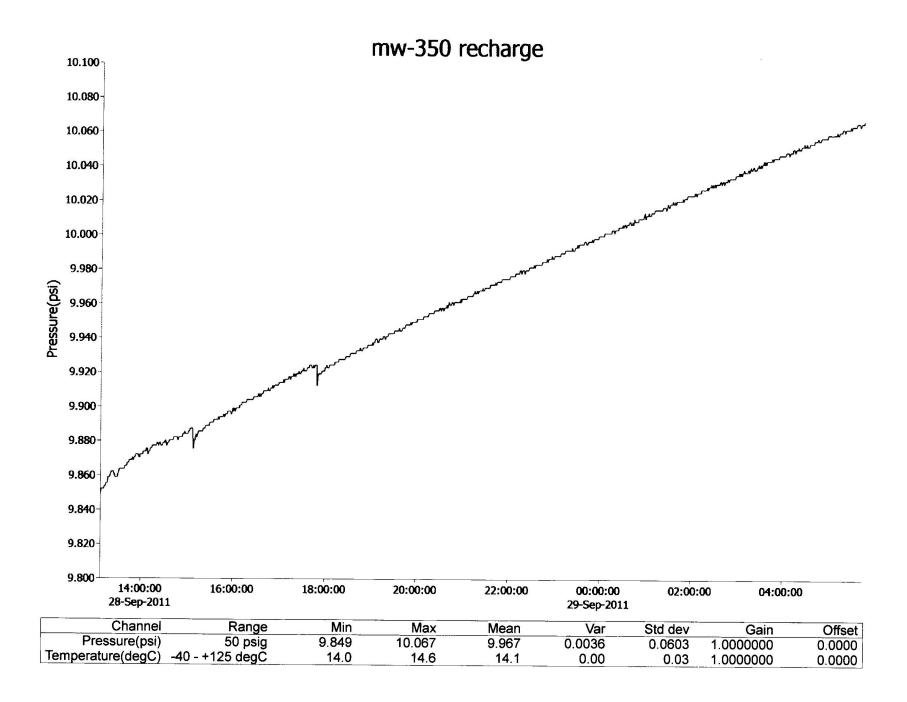
0.05

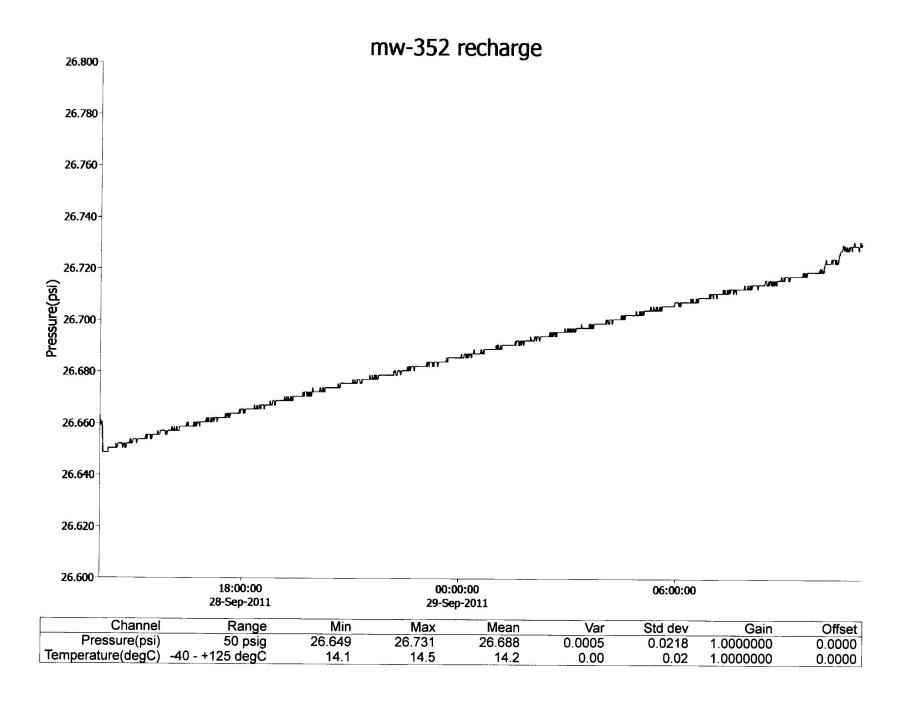

0.22

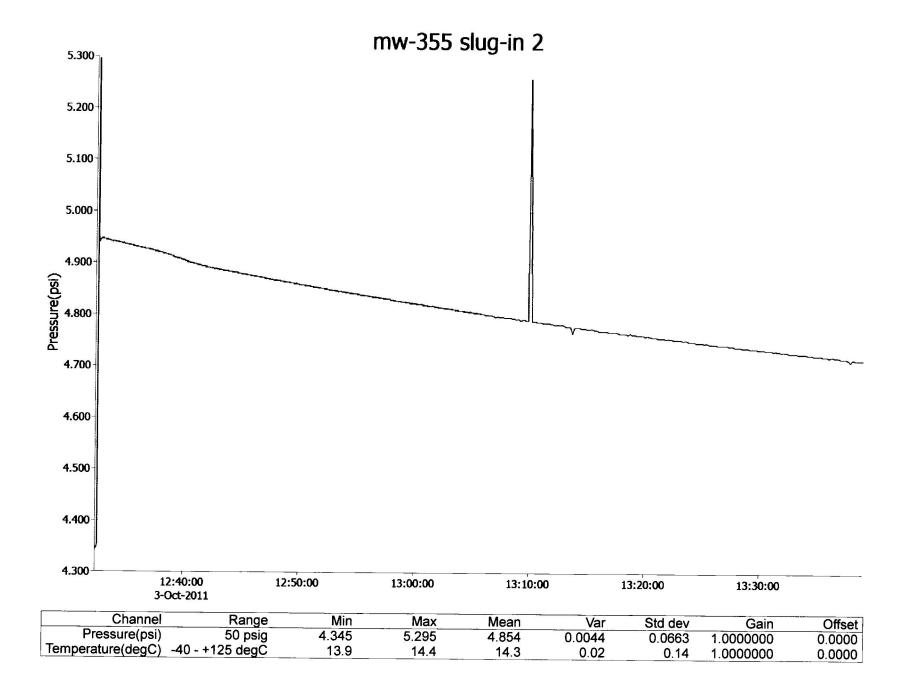

1.0000000

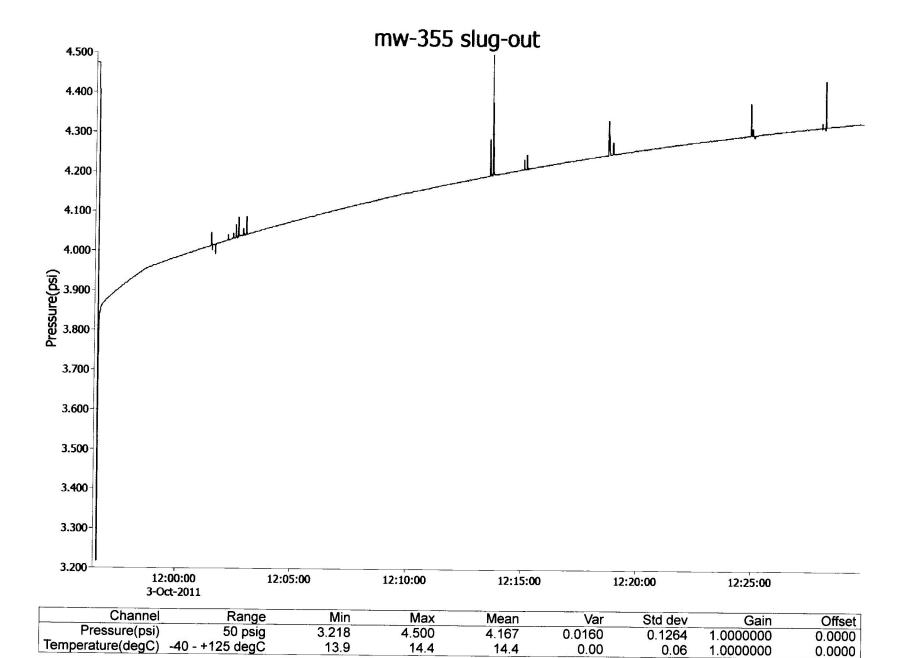

0.0000

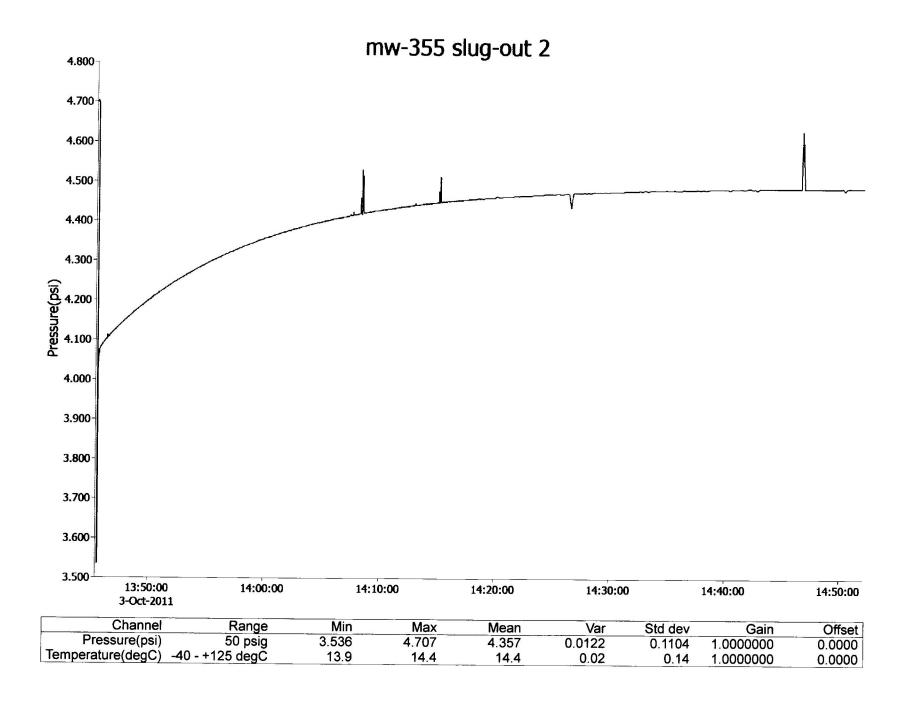


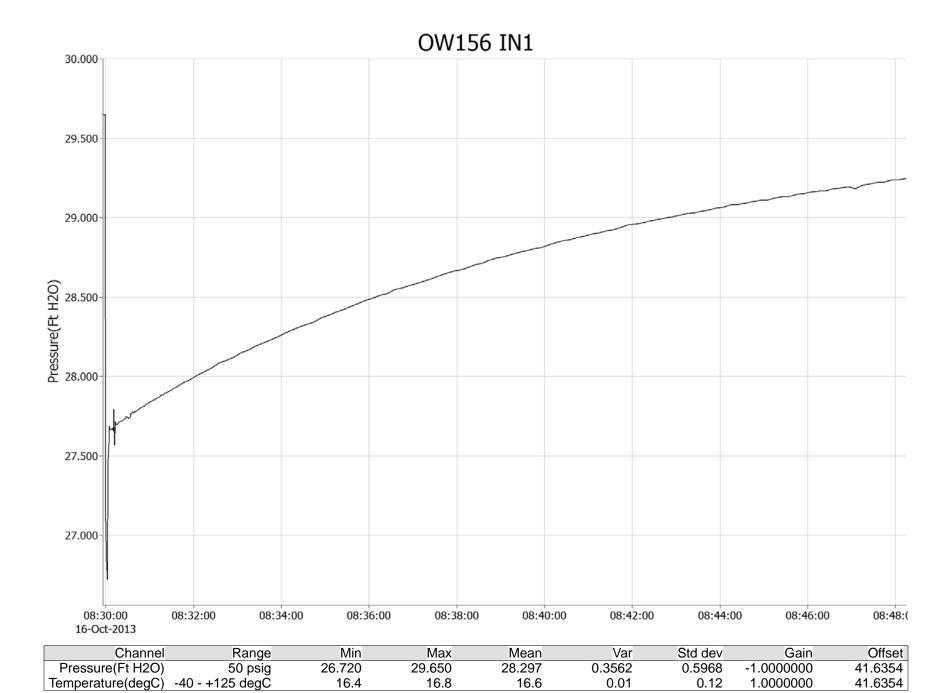

mw-252 slug-in











16.4

16.8

16.6

0.01

0.12

1.0000000

41.6354

OW156OUT1 32.000 31.800-31.600 31.400 31.200 Pressure(Ft H2O) 30.600-30.400-30.200 30.000-29.800 09:00:00 09:05:00 09:10:00 09:15:00 09:20:00 16-Oct-2013

Channel	Range	Min	Max	Mean	Var	Std dev	Gain	Offset
Pressure(Ft H2O)	50 psig	29.938	31.897	30.939	0.2632	0.5130	-1.0000000	41.6354
Temperature(degC)	40 - +125 degC	16.5	16.9	16.8	0.01	0.07	1.0000000	41.6354

OW157IN1 15.800 15.600-15.400 15.200 15.000-Pressure (Ft H2O) 14.400 14.200-14.000 13.800 13.600

Channel	Range	Min	Max	Mean	Var	Std dev	Gain	Offset
Pressure(Ft H2O)	50 psig	13.513	15.712	14.331	0.2630	0.5128	1.0000000	0.0000
Temperature(degC) -40 -	+125 degC	16.3	16.7	16.5	0.02	0.15	1.0000000	0.0000

16:06:00

16:08:00

16:10:00

16:12:00

16:14:0

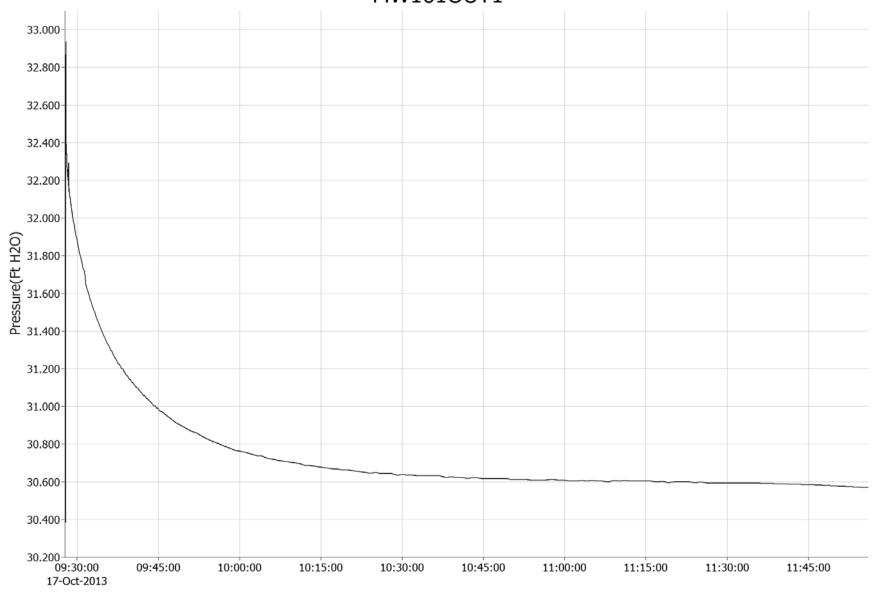
16:04:00

16:02:00

16:00:00

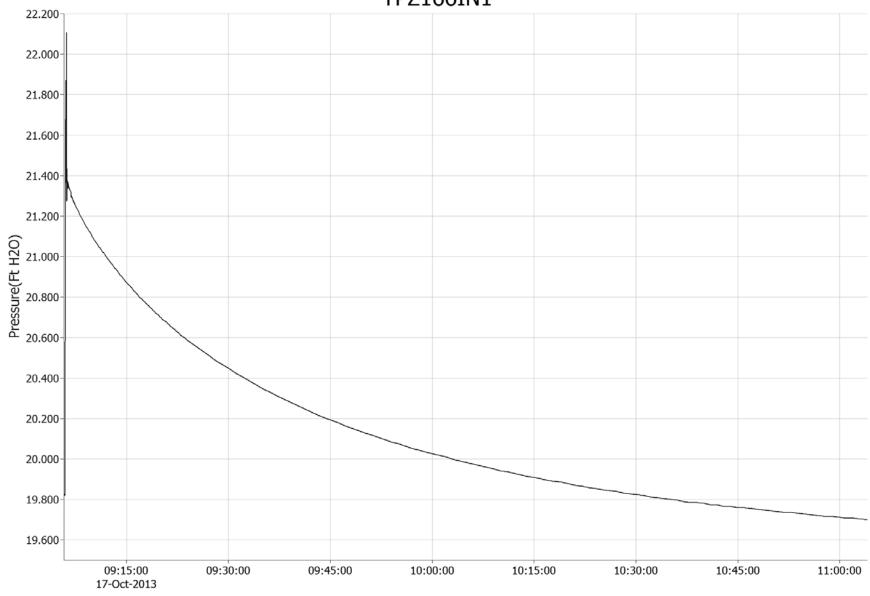
15:58:00

16-Oct-2013


OW157IN2 16.400 16.200 16.000-15.800-15.600-Pressure (F H2O) 15.000 14.800-14.600-14.400 14.200-14.000 16:44:00 16-Oct-2013 16:46:00 16:48:00 16:50:00 16:52:00 16:54:00

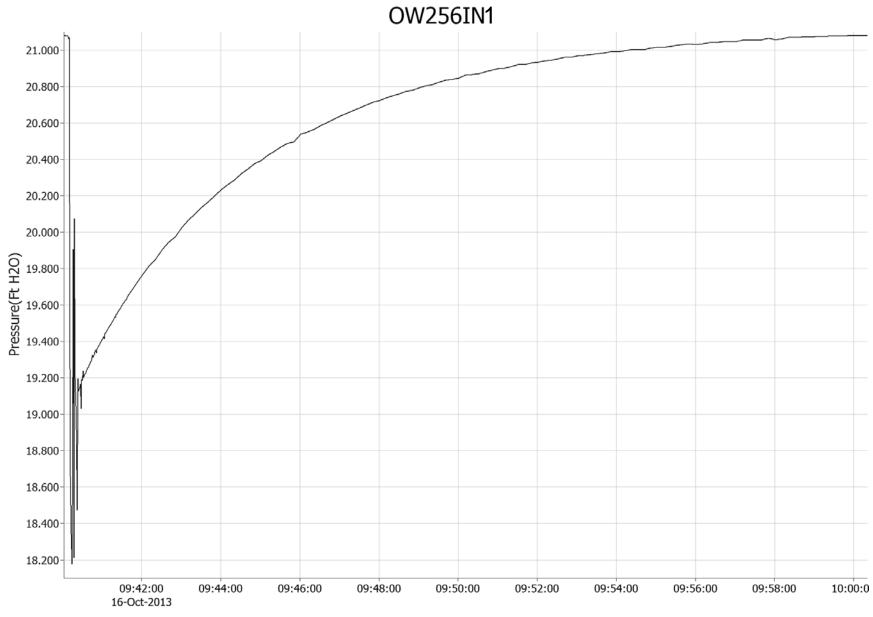
Channel	Range	Min	Max	Mean	Var	Std dev	Gain	Offset
Pressure(Ft H2O)	50 psig	14.055	16.331	14.898	0.2372	0.4870	1.0000000	0.0000
Temperature(degC)	-40 - +125 degC	16.3	16.7	16.5	0.02	0.12	1.0000000	0.0000

MW161IN1 30.800 30.600-30.400-30.200 30.000 29.800-Pressure (Ft H2O) 29.400-29.000-28.800-28.600-28.400 28.200-15:30:00 17:15:00 15:45:00 16:00:00 16:15:00 16:30:00 16:45:00 17:00:00 16-Oct-2013


Channel	Range	Min	Max	Mean	Var	Std dev	Gain	Offset
Pressure(Ft H2O)	50 psig	28.286	30.604	29.852	0.4084	0.6391	-1.0000000	41.6354
Temperature(degC) -	40 - +125 degC	14.7	15.3	14.9	0.04	0.21	1.0000000	41.6354

MW1610UT1

Channel	Range	Min	Max	Mean	Var	Std dev	Gain	Offset
Pressure(Ft H2O)	50 psig	30.385	32.936	31.315	0.4038	0.6354	-1.0000000	41.6354
Temperature(degC)	-40 - +125 degC	14.6	15.1	14.8	0.02	0.13	1.0000000	41.6354


TPZ166IN1

Channel	Range	Min	Max	Mean	Var	Std dev	Gain	Offset
Pressure(Ft H2O)	50 psig	19.700	22.107	20.668	0.3710	0.6091	1.0000000	0.0000
Temperature(degC) -4	0 - +125 degC	14.7	15.2	14.9	0.03	0.17	1.0000000	0.0000

TPZ166OUT1 20.000 19.800 19.600-19.400-19.200-19.000 Bressure (F H2O) 18.400-18.400-18.200-18.200 18.000-17.800-17.600-17.400 17.200 17.000 12:30:00 17-Oct-2013 12:40:00 12:50:00 13:00:00 13:10:00 13:20:00

Channel	Range	Min	Max	Mean	Var	Std dev	Gain	Offset
Pressure(Ft H2O)	50 psig	17.444	19.630	18.400	0.2006	0.4479	1.0000000	0.0000
Temperature(degC)	-40 - +125 degC	14.7	15.1	14.9	0.02	0.13	1.0000000	0.0000

Channel	Range	Min	Max	Mean	Var	Std dev	Gain	Offset
Pressure(Ft H2O)	50 psig	18.178	21.080	20.116	0.6029	0.7765	-1.0000000	41.6354
Temperature(degC) -4	40 - +125 degC	15.7	16.1	15.9	0.01	0.11	1.0000000	41.6354

OW256OUT1 23.600-23.400-23.200-23.000-22.800-Pressure (Pt H2O) 22.200-20.200-20.200-22.000-21.800-21.600 21.400-21.200-21.000 10:12:00 10:18:00 10:24:00 10:14:00 10:16:00 10:20:00 10:22:00 16-Oct-2013

Channel	Range	Min	Max	Mean	Var	Std dev	Gain	Offset
Pressure(Ft H2O)	50 psig	21.123	23.596	22.318	0.5585	0.7473	-1.0000000	41.6354
Temperature(degC)	-40 - +125 degC	15.7	16.1	15.9	0.02	0.13	1.0000000	41.6354

OW257IN1 18.600 18.400-18.200-18.000-17.800 17.600-Pressure (F H20) 17.200-17.000-16.800 16.600 16.400-16.200 16.000-15.800-18:00:00 20:00:00 22:00:00 00:00:00 02:00:00 04:00:00 06:00:00 08:00:00 16-Oct-2013 17-Oct-2013 Channel Range Pressure(Ft H2O) 50 psig Temperature(degC) -40 - +125 degC Min Max Mean Var Std dev Gain Offset

17.552

16.0

15.881

15.8

18.471

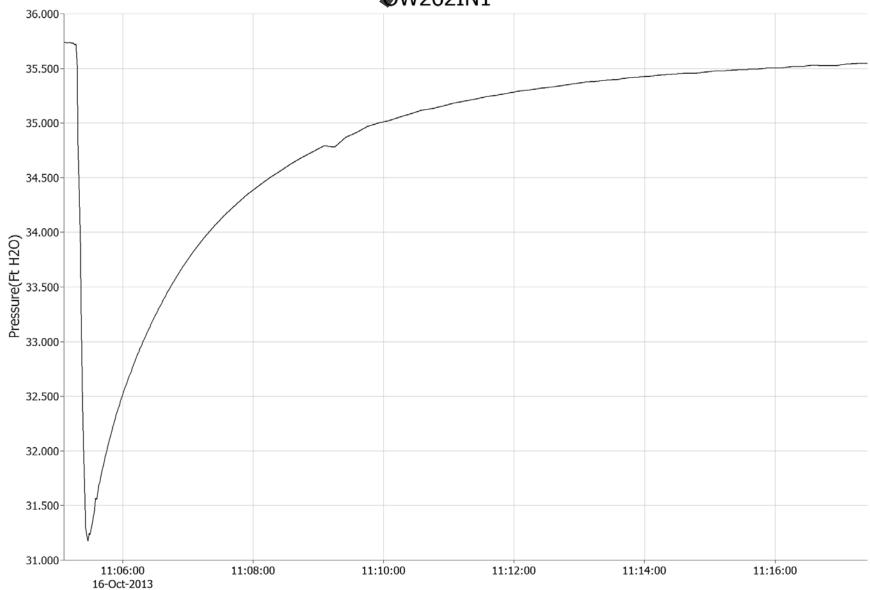
16.3

0.2473

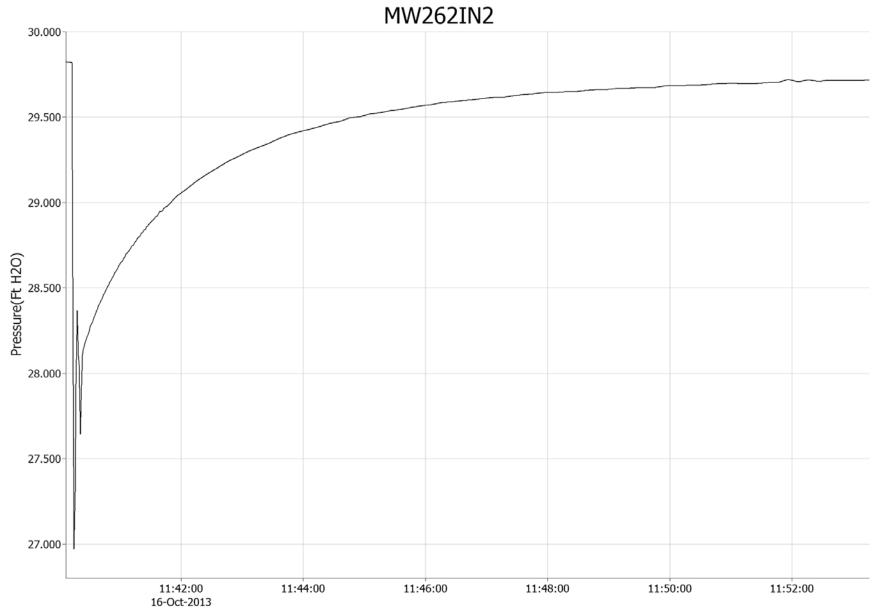
0.02

0.4973

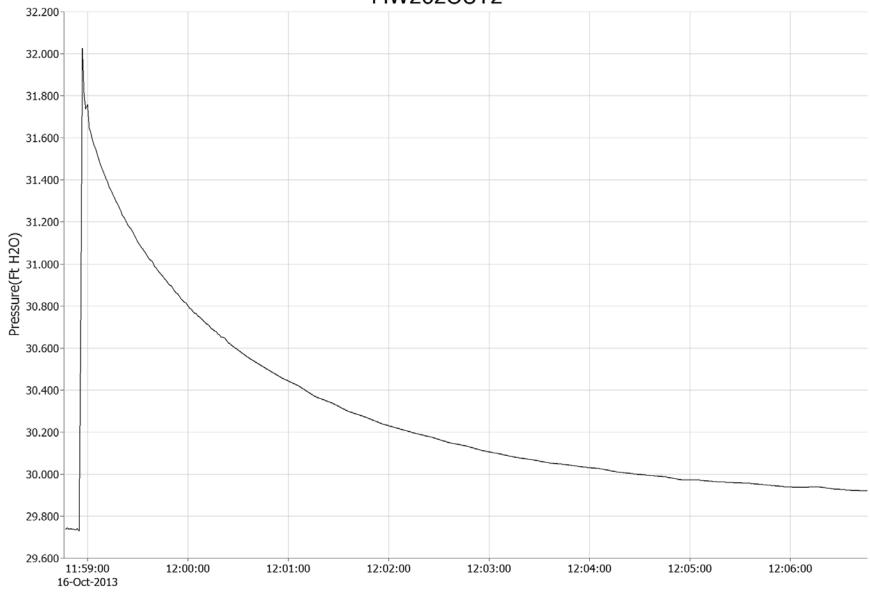
0.15


1.0000000

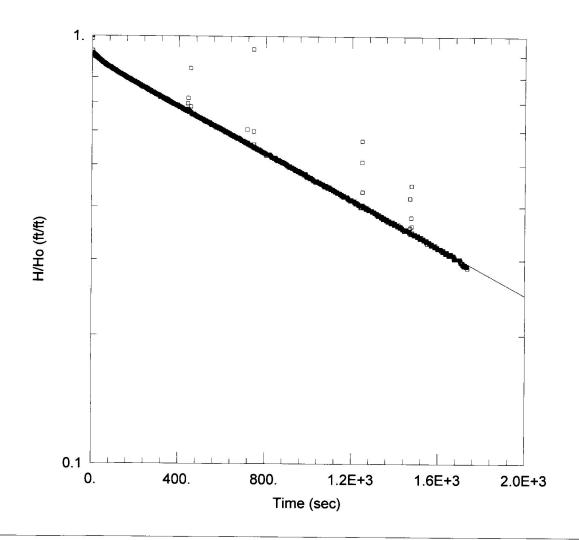
1.0000000


0.0000

0.0000



Channel	Range	Min	Max	Mean	Var	Std dev	Gain	Offset
Pressure(Ft H2O)	50 psig	31.177	35.741	33.824	2.1181	1.4554	-1.0000000	41.6354
Temperature(degC) -4	0 - +125 degC	15.1	16.0	15.4	0.03	0.16	1.0000000	41.6354



Channel	Range	Min	Max	Mean	Var	Std dev	Gain	Offset
Pressure(Ft H2O)	50 psig	26.971	29.827	29.019	0.3484	0.5902	-1.0000000	41.6354
Temperature(degC)	-40 - +125 degC	15.1	15.5	15.3	0.02	0.13	1.0000000	41.6354

MW262OUT2

Channel	Range	Min	Max	Mean	Var	Std dev	Gain	Offset
Pressure(Ft H2O)	50 psig	29.729	32.027	30.700	0.3127	0.5592	-1.0000000	41.6354
Temperature(degC) -40	- +125 degC	15.1	15.4	15.3	0.01	0.10	1.0000000	41.6354

MW-151 SLUG IN 1

Data Set: C:\...\MW-151 IN1.aqt

Date: 01/16/12

Time: 15:27:51

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: <u>MW-151</u> Test Date: <u>9-29-11</u>

AQUIFER DATA

Saturated Thickness: 15.78 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-151)

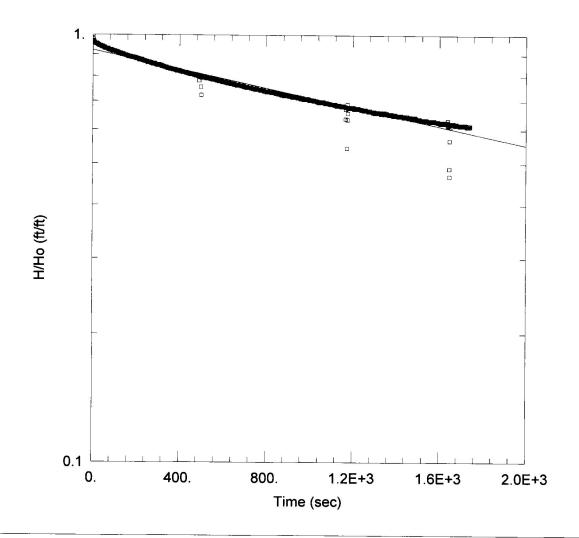
Initial Displacement: 1.335 ft

Total Well Penetration Depth: 15.78 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 16.33 ft

Screen Length: 9.64 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Unconfined

K = 1.97E-5 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.188 ft

MW-151 SLUG OUT1

Data Set: C:\...\MW-151 OUT1.aqt

Date: 01/16/12

Time: 15:32:46

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: <u>MW-151</u> Test Date: <u>9-29-11</u>

AQUIFER DATA

Saturated Thickness: 15.78 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-151)

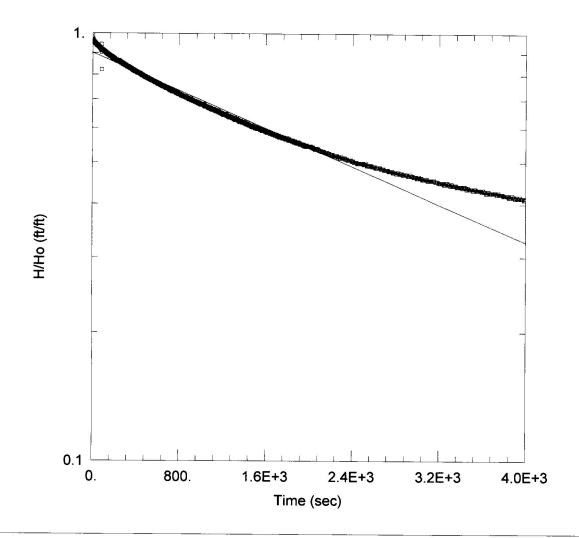
Initial Displacement: 1.335 ft

Total Well Penetration Depth: 15.78 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 16.33 ft

Screen Length: 9.64 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Unconfined

K = 7.879E-6 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.228 ft

MW-151 SLUG OUT 2

Data Set: C:\...\MW-151 OUT2.agt

Date: 01/16/12

Time: 15:34:31

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Energy, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: MW-151
Test Date: 9-29-11

AQUIFER DATA

Saturated Thickness: 15.78 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-151)

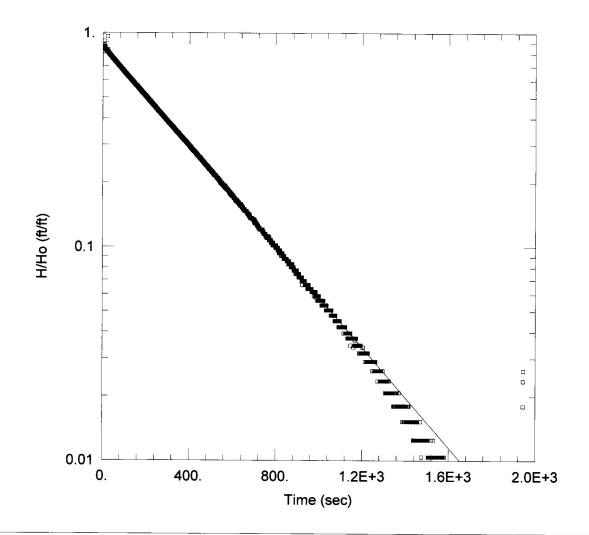
Initial Displacement: 1.335 ft

Total Well Penetration Depth: 15.78 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 16.33 ft

Screen Length: 9.64 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Unconfined

K = 7.853E-6 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.202 ft

MW-152 SLUG IN 1

Data Set: C:\...\MW-152 IN.agt

Date: 01/17/12

Time: 08:49:48

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: MW-152
Test Date: 9-29-11

AQUIFER DATA

Saturated Thickness: 13.32 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-152)

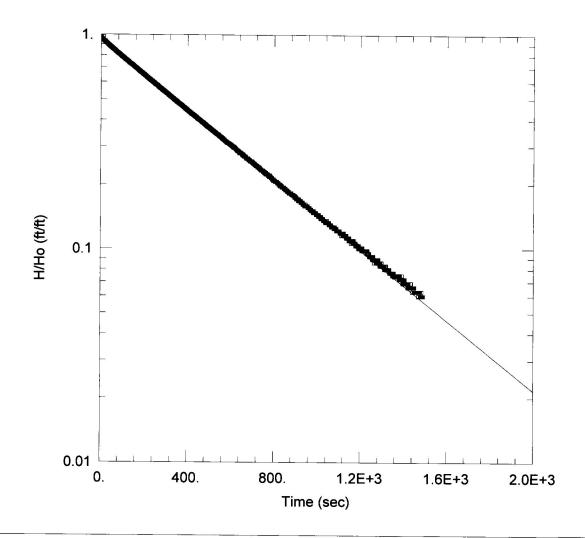
Initial Displacement: 1.444 ft

Total Well Penetration Depth: 13.2 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 13.32 ft

Screen Length: 9.64 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Unconfined

K = 7.974E-5 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.255 ft

MW-152 SLUG IN 2

Data Set: C:\...\MW-152 IN 2.aqt

Date: 01/17/12

Time: 08:56:55

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: MW-152
Test Date: 9-29-11

AQUIFER DATA

Saturated Thickness: 13.32 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-152)

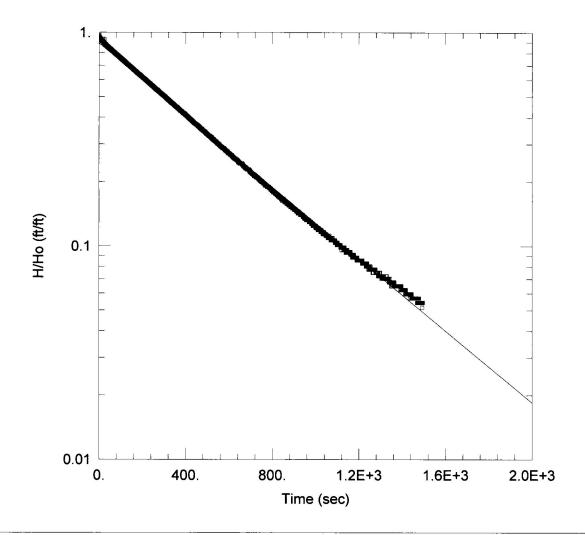
Initial Displacement: 1.334 ft

Total Well Penetration Depth: 13.2 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 13.32 ft

Screen Length: 9.64 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Unconfined

K = 5.576E-5 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.268 ft

MW-152 SLUG OUT 1

Data Set: C:\...\MW-152 OUT.agt

Date: 01/17/12

Time: 08:37:33

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: MW-152
Test Date: 9-29-11

AQUIFER DATA

Saturated Thickness: 13.32 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-152)

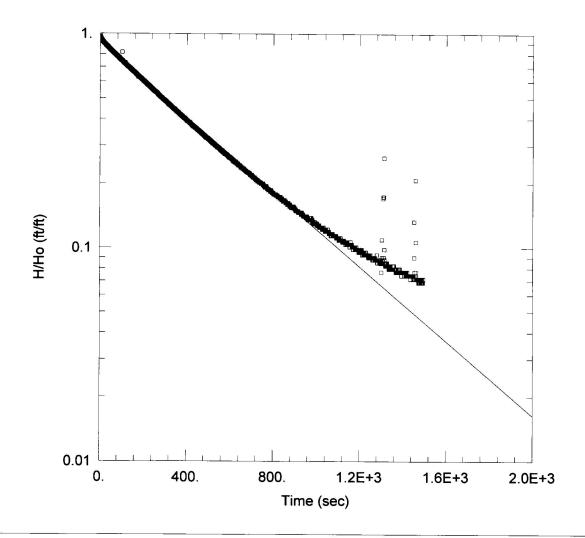
Initial Displacement: 1.491 ft

Total Well Penetration Depth: 13.2 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 13.32 ft

Screen Length: 9.64 ft Well Radius: 0.0833 ft


SOLUTION

Aquifer Model: Unconfined

K = 8.154E-5 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.328 ft

MW-152 SLUG OUT 2

Data Set: C:\...\MW-152 OUT 2.aqt

Date: 01/17/12

Time: 08:45:10

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: <u>MW-152</u> Test Date: <u>9-29-11</u>

AQUIFER DATA

Saturated Thickness: 13.32 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-152)

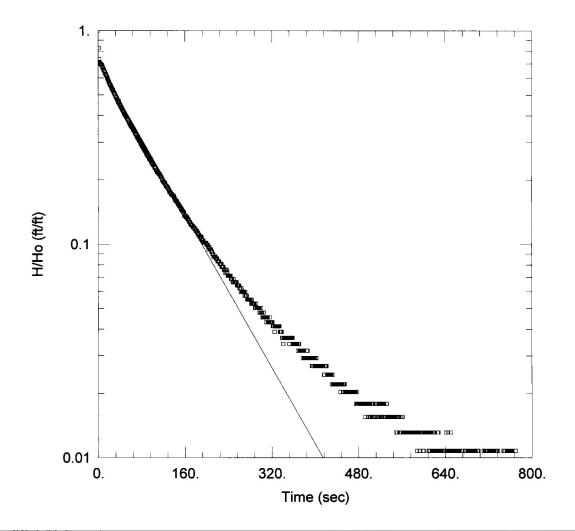
Initial Displacement: 1.456 ft

Total Well Penetration Depth: 19.28 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 13.32 ft

Screen Length: 9.64 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Unconfined

K = 6.465E-5 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.327 ft

MW-104DR SLUG IN 1

Data Set: C:\...\MW-104D IN1.aqt

Date: 01/16/12 Time: 15:00:28

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: MW-104D Test Date: 9-30-11

AQUIFER DATA

Saturated Thickness: 3.75 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-104DR)

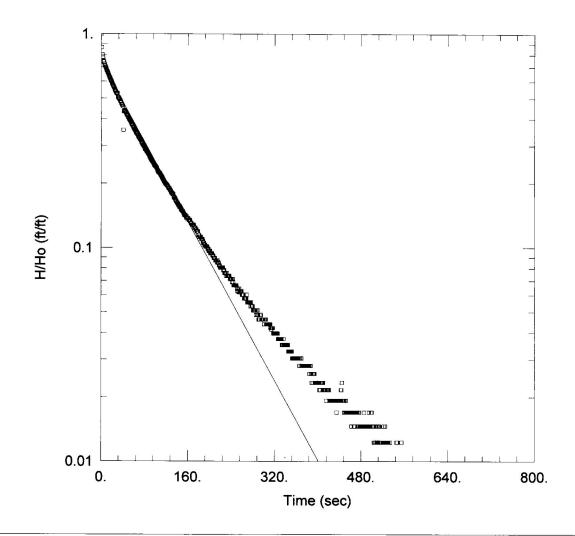
Initial Displacement: 1.672 ft

Total Well Penetration Depth: 11.46 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 11.01 ft

Screen Length: 4.52 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Confined

K = 0.0006664 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.19 ft

MW-104DR SLUG OUT 1

Data Set: C:\...\MW-104D OUT1.aqt

Date: 01/16/12

Time: 15:01:51

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: MW-104DR Test Date: 9-30-11

AQUIFER DATA

Saturated Thickness: 3.75 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-104DR)

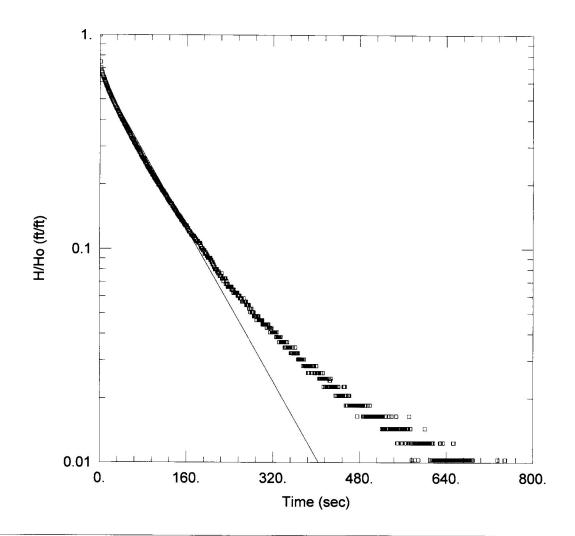
Initial Displacement: 1.712 ft

Total Well Penetration Depth: 11.46 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 11.01 ft

Screen Length: 4.52 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Confined

K = 0.000694 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.263 ft

MW-104DR SLUG OUT 2

Data Set: C:\...\MW-104 OUT2.aqt

Date: 01/16/12

Time: 14:59:48

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: MW-104DR Test Date: 9-30-11

AQUIFER DATA

Saturated Thickness: 3.75 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-104DR)

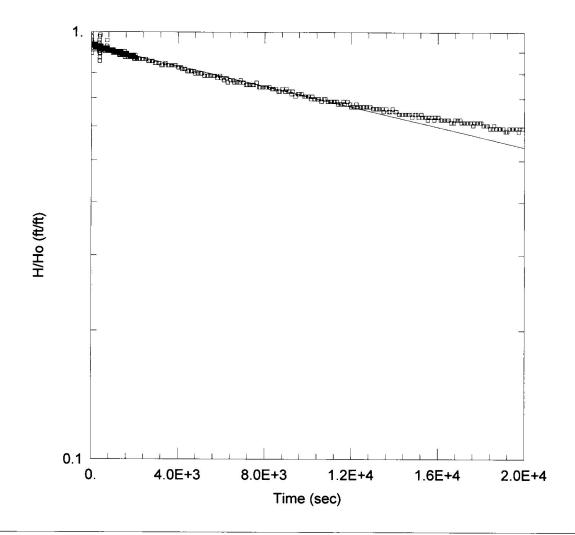
Initial Displacement: 1.945 ft

Total Well Penetration Depth: 11.46 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 11.01 ft

Screen Length: 4.52 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Confined

K = 0.0006686 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.262 ft

MW-252 SLUG IN 1 (TRANSDUCER)

Data Set: C:\...\MW-252 IN.agt

Date: 01/17/12 Time: 09:35:24

PROJECT INFORMATION

Company: Kelron Environmental

Client: <u>Dynegy Inc.</u> Project: <u>62410020011</u>

Location: Baldwin Energy Complex

Test Well: <u>MW-252</u> Test Date: <u>9-29-11</u>

AQUIFER DATA

Saturated Thickness: 4.63 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-252)

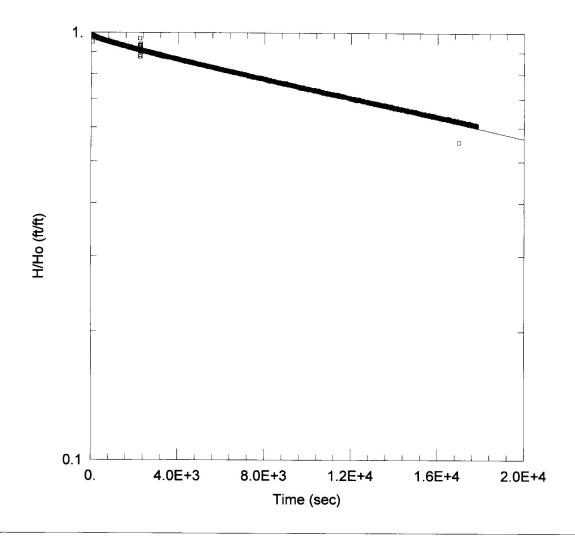
Initial Displacement: 0.423 ft

Total Well Penetration Depth: 49.03 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 51.5 ft

Screen Length: 4.63 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Confined

K = 1.896E-6 cm/sec

Solution Method: Bouwer-Rice

y0 = 0.3926 ft

MW-252 SLUG OUT 1

Data Set: C:\...\MW-252 OUT.agt

Date: 01/17/12

Time: 09:19:05

PROJECT INFORMATION

Company: Kelron Environmental Client: Dynegy Midwest Energy, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: MW-252 Test Date: 9-29-11

AQUIFER DATA

Saturated Thickness: 4.63 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-252)

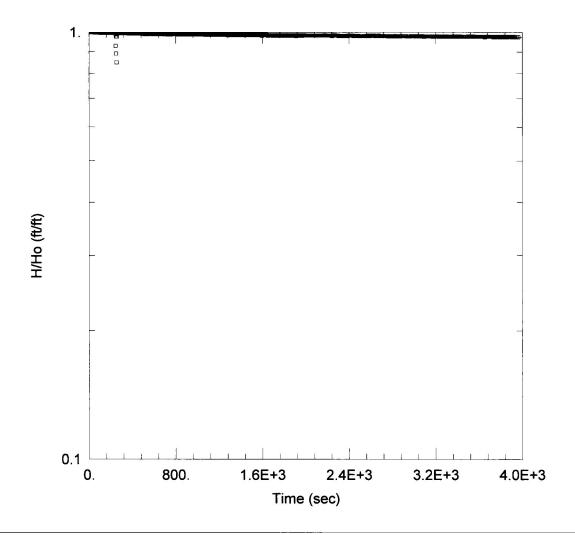
Initial Displacement: 1.499 ft

Total Well Penetration Depth: 49.53 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 51.5 ft

Screen Length: 4.63 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Confined

K = 1.884E-6 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.456 ft

MW-253 SLUG IN

Data Set: C:\...\MW-253 IN.aqt

Date: 01/17/12 Time: 10:06:18

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: MW-253
Test Date: 10-3-11

AQUIFER DATA

Saturated Thickness: 4.63 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-253)

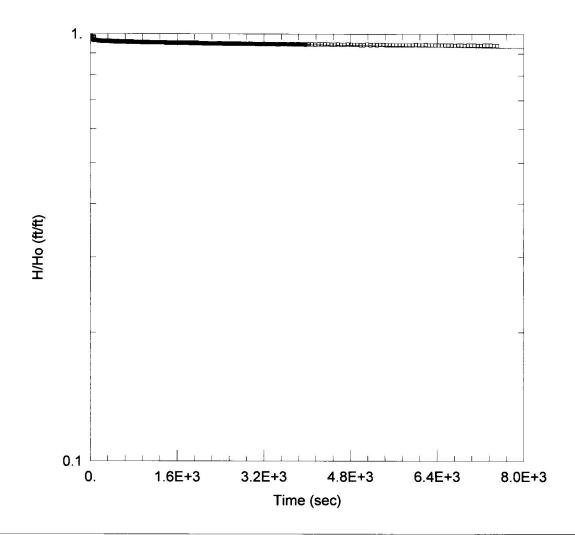
Initial Displacement: 1.956 ft

Total Well Penetration Depth: 34.49 ft

Casing Radius: 0.083 ft

Static Water Column Height: 21.07 ft

Screen Length: 4.63 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 4.035E-7 cm/sec

y0 = 1.947 ft

MW-253 SLUG OUT

Time: 10:21:33

Data Set: C:\...\MW-253 OUT.aqt

Date: 01/17/12

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: <u>MW-253</u> Test Date: <u>10-3-11</u>

AQUIFER DATA

Saturated Thickness: 4.63 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-253)

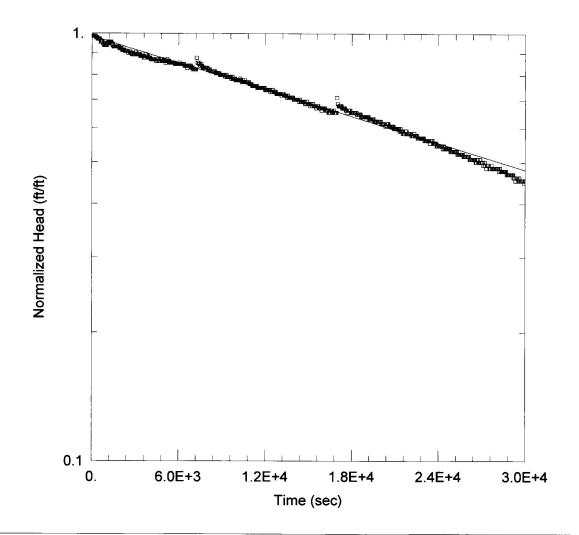
Initial Displacement: 2.085 ft

Total Well Penetration Depth: 34.49 ft

Casing Radius: 0.083 ft

Static Water Column Height: 21.07 ft

Screen Length: 4.63 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Confined

K = 3.072E-7 cm/sec

Solution Method: Bouwer-Rice

y0 = 2.004 ft

MW-350 SLUG OUT

Data Set: C:\...\MW-350 RECHARGE.agt

Date: 01/17/12

Time: 11:05:20

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: MW-350 Test Date: 10-3-11

AQUIFER DATA

Saturated Thickness: 6.7 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-350)

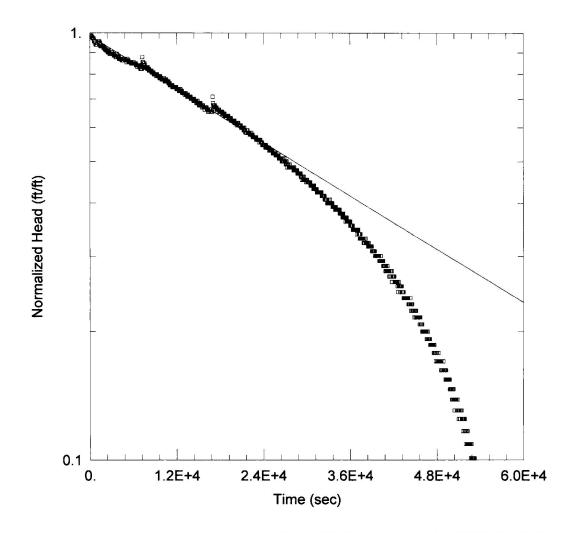
Initial Displacement: 0.505 ft

Static Water Column Height: 26.4 ft

Total Well Penetration Depth: 46.22 ft Casing Radius: 0.083 ft

Screen Length: 4.63 ft

Well Radius: 0.1615 ft


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 2.075E-6 cm/sec

y0 = 0.497 ft

MW-350 SLUG OUT

Data Set: C:\...\MW-350 RECHARGE.aqt

Date: 01/17/12

Time: 11:05:47

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: MW-350
Test Date: 10-3-11

AQUIFER DATA

Saturated Thickness: 6.7 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-350)

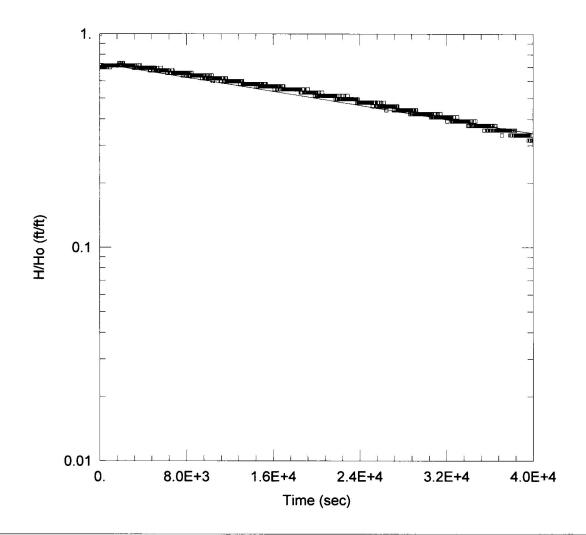
Initial Displacement: 0.505 ft

Total Well Penetration Depth: 46.22 ft

Casing Radius: 0.083 ft

Static Water Column Height: 26.4 ft

Screen Length: 4.63 ft Well Radius: 0.1615 ft


SOLUTION

Aquifer Model: Confined

K = 2.075E-6 cm/sec

Solution Method: Bouwer-Rice

y0 = 0.497 ft

MW-352 SLUG OUT (TRANSDUCER)

Data Set: C:\...\MW-352 RECHARGE.aqt

Date: 01/17/12

Time: 11:29:13

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Inc. Project: 62410020011

Location: Baldwin Energy Complex`

Test Well: MW-352
Test Date: 9-28-11

AQUIFER DATA

Saturated Thickness: 8.05 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-352)

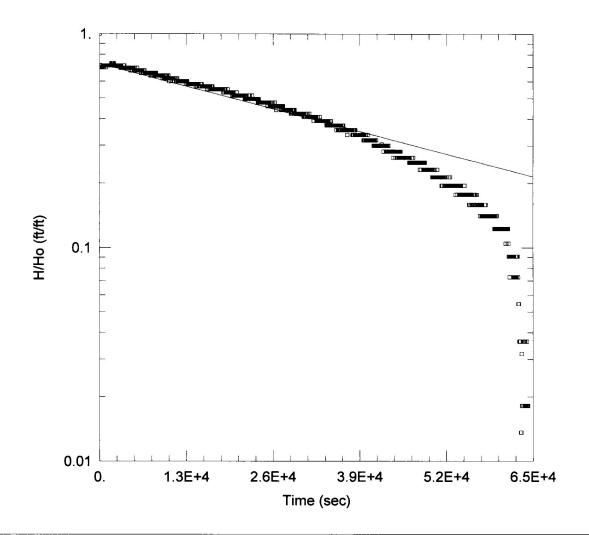
Initial Displacement: 0.22 ft

Total Well Penetration Depth: 72.53 ft

Casing Radius: 0.083 ft

Static Water Column Height: 63.25 ft

Screen Length: 4.63 ft Well Radius: 0.1615 ft


SOLUTION

Aquifer Model: Confined

K = 1.716E-6 cm/sec

Solution Method: Bouwer-Rice

y0 = 0.1593 ft

MW-352 SLUG OUT (TRANSDUCER)

Data Set: C:\...\MW-352 RECHARGE.aqt

Date: 01/17/12 Time: 11:29:54

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Inc. Project: 62410020011

Location: Baldwin Energy Complex`

Test Well: <u>MW-352</u> Test Date: <u>9-28-11</u>

AQUIFER DATA

Saturated Thickness: 8.05 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-352)

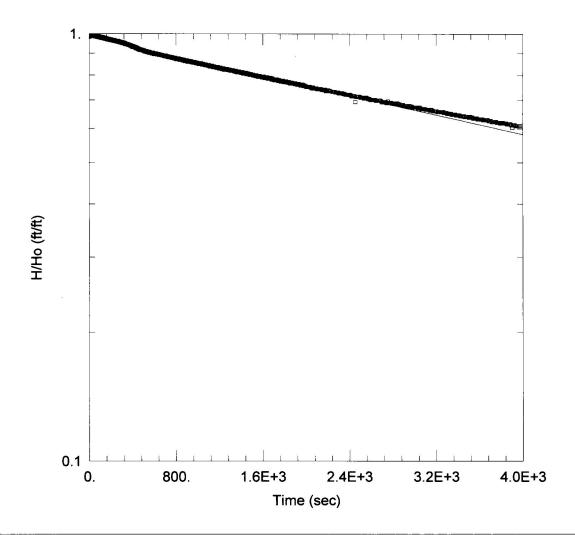
Initial Displacement: 0.22 ft

Total Well Penetration Depth: 72.53 ft

Casing Radius: 0.083 ft

Static Water Column Height: 63.25 ft

Screen Length: 4.63 ft Well Radius: 0.1615 ft


SOLUTION

Aquifer Model: Confined

K = 1.716E-6 cm/sec

Solution Method: Bouwer-Rice

y0 = 0.1593 ft

MW-355 SLUG IN 2

Data Set: C:\...\MW-355 IN 2.aqt

Date: 01/17/12 Time: 13:55:43

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: MW-355
Test Date: 10-3-11

AQUIFER DATA

Saturated Thickness: 10.6 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-355)

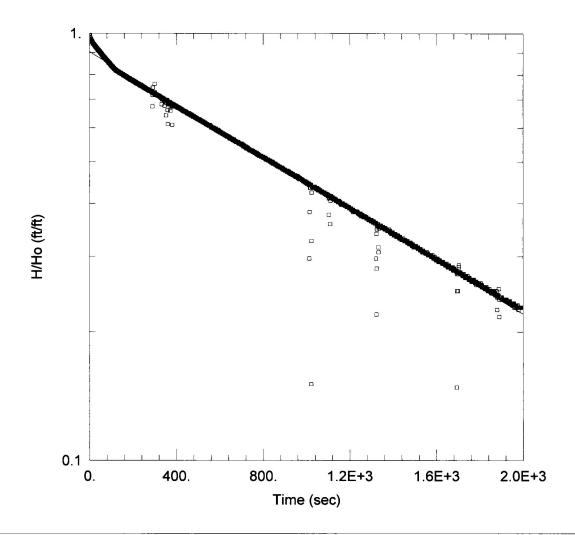
Initial Displacement: 1.391 ft

Total Well Penetration Depth: 32.03 ft

Casing Radius: 0.083 ft

Static Water Column Height: 11.18 ft

Screen Length: 4.63 ft Well Radius: 0.1615 ft


SOLUTION

Aquifer Model: Confined

K = 1.077E-5 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.363 ft

MW-355 SLUG OUT 1

Data Set: C:\...\MW-355 OUT.aqt

Date: 01/17/12

Time: 13:28:46

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Baldwin Energy Complex

Test Well: <u>MW-355</u> Test Date: <u>10-3-11</u>

AQUIFER DATA

Saturated Thickness: 10.6 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-355)

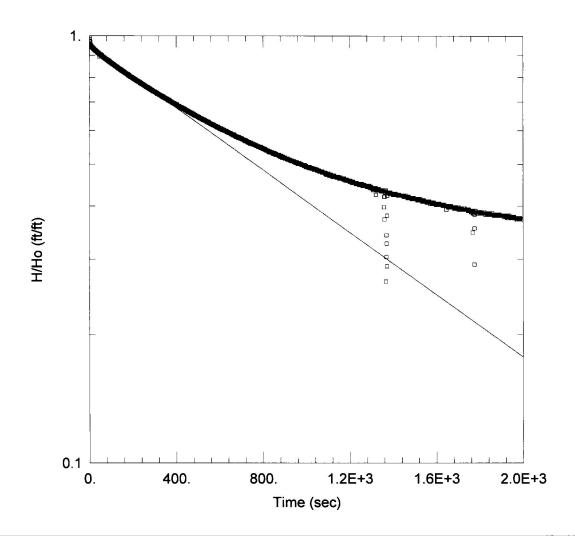
Initial Displacement: 1.464 ft

Total Well Penetration Depth: 32.03 ft

Casing Radius: 0.083 ft

Static Water Column Height: 11.18 ft

Screen Length: 4.63 ft Well Radius: 0.1615 ft


SOLUTION

Aquifer Model: Confined

K = 5.818E-5 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.323 ft

MW-355 SLUG OUT 2

Data Set: C:\...\MW-355 OUT 2.aqt

Date: 01/17/12

Time: 13:35:11

PROJECT INFORMATION

Company: Kelron Environmental

Client: Dynegy Midwest Generation, LLC

Project: 62410020011

Location: Bakdwin Energy Complex

Test Well: MW-355
Test Date: 10-3-11

AQUIFER DATA

Saturated Thickness: 10.6 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-355)

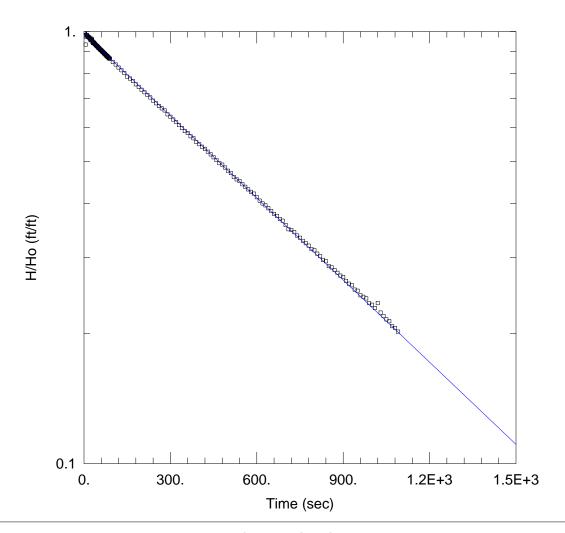
Initial Displacement: 1.534 ft

Total Well Penetration Depth: 32.03 ft

Casing Radius: 0.083 ft

Static Water Column Height: 11.18 ft

Screen Length: 4.63 ft Well Radius: 0.1615 ft


SOLUTION

Aquifer Model: Confined

K = 6.925E-5 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.457 ft

OW-156 SLUG IN

Data Set: C:\...\MW156IN1.aqt

Date: 04/08/14 Time: 14:42:57

PROJECT INFORMATION

Company: Kelron Environmental Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: OW-156 Test Date: 10/16/2013

AQUIFER DATA

Saturated Thickness: 9.33 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (OW-156)

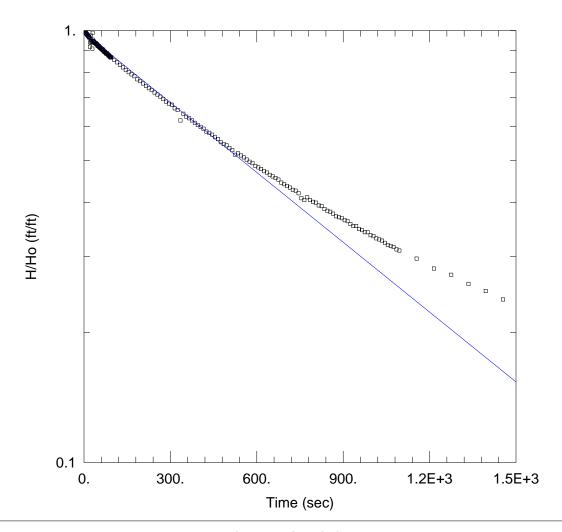
Initial Displacement: 1.99 ft

Casing Radius: 0.083 ft

Total Well Penetration Depth: 17.21 ft

Static Water Column Height: 11.73 ft

Screen Length: 9.33 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 4.688E-5 cm/sec

y0 = 1.969 ft

OW-156 SLUG OUT

Data Set: C:\...\MW156OUT1.aqt

Date: 04/08/14 Time: 14:43:39

PROJECT INFORMATION

Company: Kelron Environmental Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: <u>OW-156</u> Test Date: <u>10/16/2013</u>

AQUIFER DATA

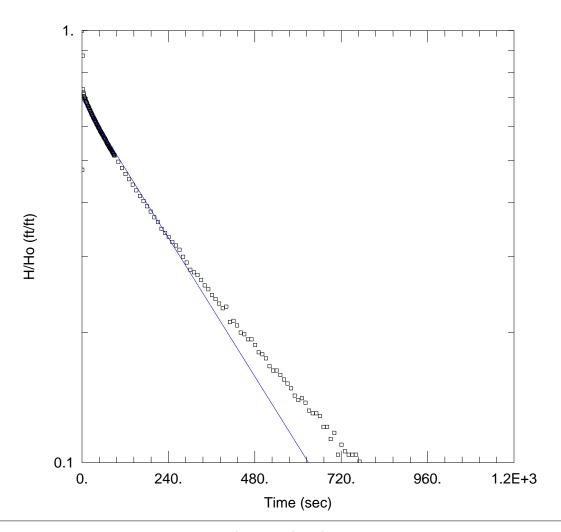
Saturated Thickness: 9.33 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (OW-156)

Initial Displacement: 2.08 ft

Total Well Penetration Depth: 17.21 ft

Casing Radius: 0.083 ft


Static Water Column Height: 11.73 ft

Screen Length: 9.33 ft Well Radius: 0.344 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 3.984E-5 cm/sec y0 = 2.055 ft

OW-157 SLUG IN 1

Data Set: C:\...\MW157IN1.aqt

Date: 04/08/14 Time: 14:44:34

PROJECT INFORMATION

Company: Kelron Environmental
Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: <u>OW-157</u> Test Date: <u>10/16/2013</u>

AQUIFER DATA

Saturated Thickness: 9.33 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (OW-157)

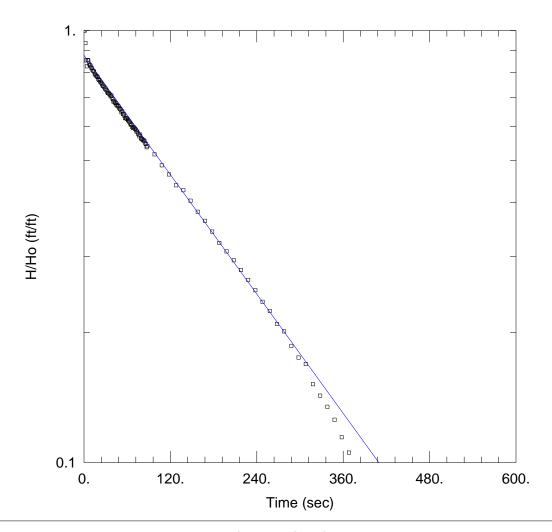
Initial Displacement: 2.1 ft

Total Well Penetration Depth: 17.13 ft

Casing Radius: 0.083 ft

Static Water Column Height: 13.69 ft

Screen Length: 9.33 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 9.873E-5 cm/sec

y0 = 1.455 ft

OW-157 SLUG IN 2

Data Set: C:\...\MW157IN2.aqt

Date: 04/08/14 Time: 14:45:00

PROJECT INFORMATION

Company: Kelron Environmental Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: <u>OW-157</u> Test Date: <u>10/16/2013</u>

AQUIFER DATA

Saturated Thickness: 9.33 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (OW-157)

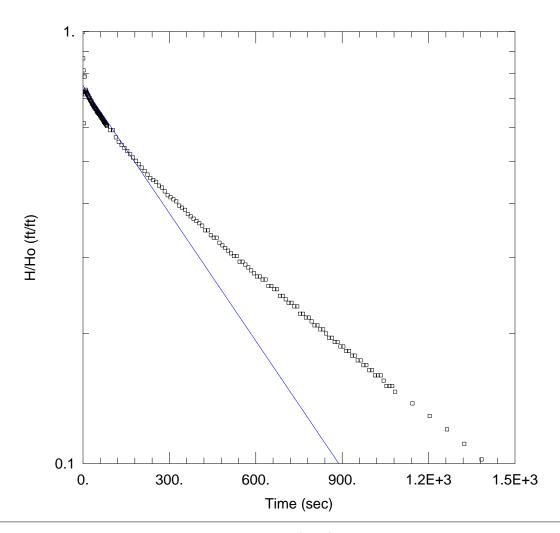
Initial Displacement: 1.337 ft

Total Well Penetration Depth: 17.13 ft

Casing Radius: 0.083 ft

Static Water Column Height: 13.69 ft

Screen Length: 9.33 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0001701 cm/sec

y0 = 1.171 ft

MW-161 SLUG IN

Data Set: C:\...\MW161IN1.aqt

Date: 04/08/14 Time: 14:45:40

PROJECT INFORMATION

Company: Kelron Environmental Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: <u>MW-161</u> Test Date: <u>10/16/2013</u>

AQUIFER DATA

Saturated Thickness: 11.1 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-161)

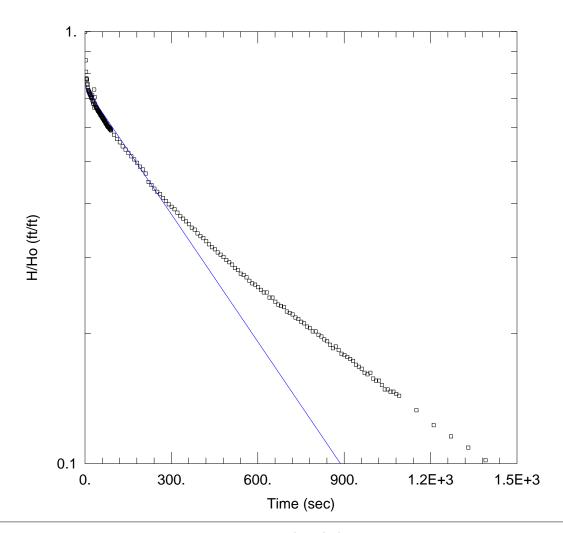
Initial Displacement: 2.25 ft

Total Well Penetration Depth: 32.78 ft

Casing Radius: 0.083 ft

Static Water Column Height: 22.27 ft

Screen Length: 9.45 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 8.124E-5 cm/sec

y0 = 1.687 ft

MW-161 SLUG OUT

Data Set: C:\...\MW161OUT1.aqt

Date: 04/08/14 Time: 14:46:31

PROJECT INFORMATION

Company: Kelron Environmental Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: <u>MW-161</u> Test Date: <u>10/16/2013</u>

AQUIFER DATA

Saturated Thickness: 11.1 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-161)

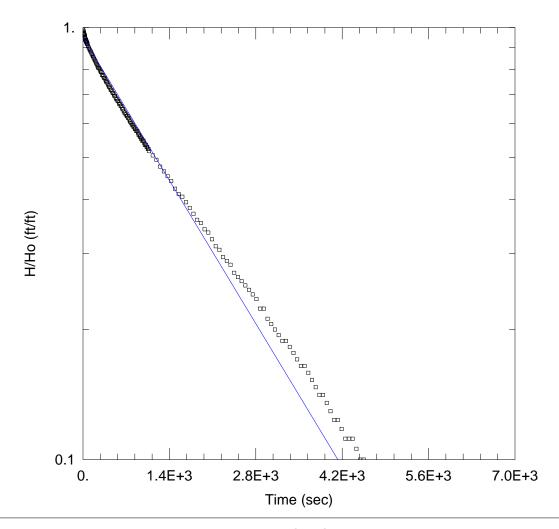
Initial Displacement: 2.25 ft

Total Well Penetration Depth: 32.78 ft

Casing Radius: 0.083 ft

Static Water Column Height: 22.27 ft

Screen Length: 9.45 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 8.108E-5 cm/sec

y0 = 1.675 ft

TPZ-166 SLUG IN 1

Data Set: C:\...\TPZ166IN1.aqt

Date: 04/08/14 Time: 14:54:41

PROJECT INFORMATION

Company: Kelron Environmental Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: <u>TPZ-166</u> Test Date: <u>10/17/2013</u>

AQUIFER DATA

Saturated Thickness: 9.45 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (TPZ-166)

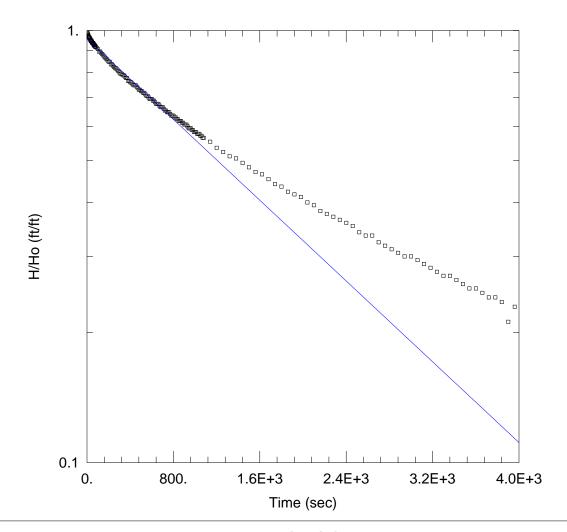
Initial Displacement: 1.7 ft

Total Well Penetration Depth: 24.7 ft

Casing Radius: 0.083 ft

Static Water Column Height: 16.72 ft

Screen Length: 9.45 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 1.857E-5 cm/sec

y0 = 1.615 ft

TPZ-166 SLUG OUT 1

Data Set: C:\...\TPZ166OUT1.aqt

Date: 04/08/14 Time: 14:55:02

PROJECT INFORMATION

Company: Kelron Environmental
Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: <u>TPZ-166</u> Test Date: <u>10/17/2013</u>

AQUIFER DATA

Saturated Thickness: 9.45 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (TPZ-166)

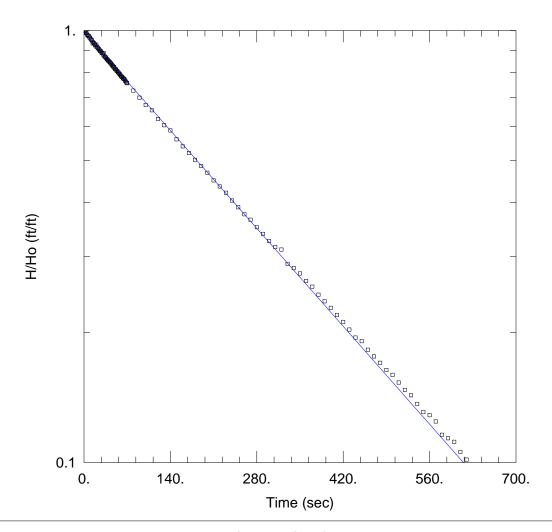
Initial Displacement: 1.7 ft

Total Well Penetration Depth: 24.7 ft

Casing Radius: 0.083 ft

Static Water Column Height: 16.72 ft

Screen Length: 9.45 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 1.833E-5 cm/sec

y0 = 1.628 ft

OW-256 SLUG IN 1

Data Set: C:\...\OW256IN1.aqt

Date: 04/08/14 Time: 14:50:02

PROJECT INFORMATION

Company: Kelron Environmental Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: <u>OW-256</u> Test Date: <u>10/16/2013</u>

AQUIFER DATA

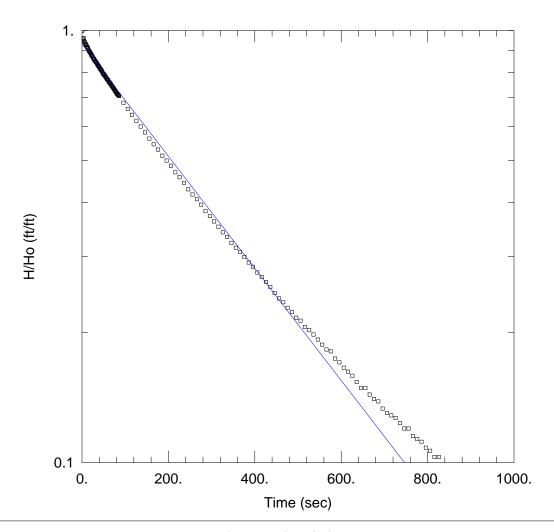
Saturated Thickness: 4.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (OW-256)

Initial Displacement: 1.88 ft

Total Well Penetration Depth: 32.49 ft

Casing Radius: 0.083 ft


Static Water Column Height: 24.93 ft

Screen Length: 4.5 ft Well Radius: 0.344 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0002479 cm/sec y0 = 1.86 ft

OW-256 SLUG OUT 1

Data Set: C:\...\OW256OUT1.aqt

Date: 04/08/14 Time: 14:51:12

PROJECT INFORMATION

Company: Kelron Environmental Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: <u>OW-256</u> Test Date: <u>10/16/2013</u>

AQUIFER DATA

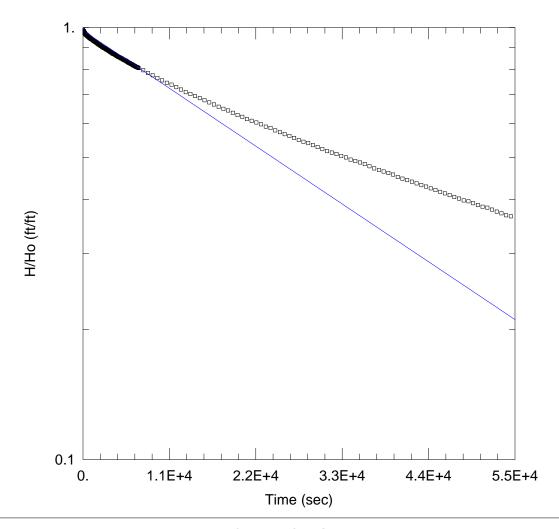
Saturated Thickness: 4.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (OW-256)

Initial Displacement: 2.31 ft

Total Well Penetration Depth: 32.49 ft

Casing Radius: 0.083 ft


Static Water Column Height: 24.93 ft

Screen Length: 4.5 ft Well Radius: 0.344 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0001986 cm/sec y0 = 2.148 ft

OW-257 SLUG IN 1

Data Set: C:\...\OW257IN1 BR soln.aqt

Date: 04/08/14 Time: 14:51:45

PROJECT INFORMATION

Company: Kelron Environmental
Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: <u>OW-257</u> Test Date: <u>10/16/2013</u>

AQUIFER DATA

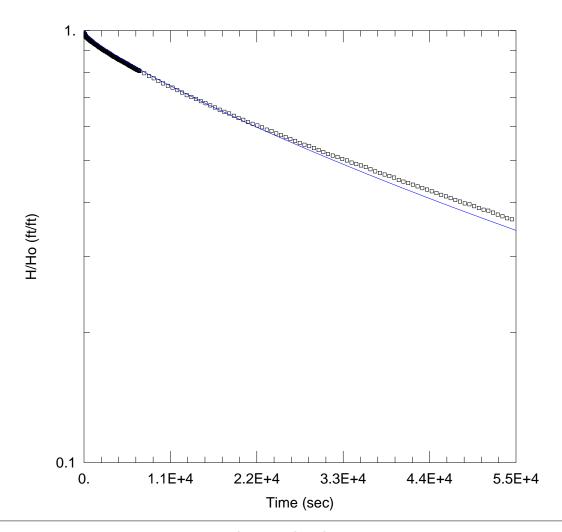
Saturated Thickness: 2.32 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (OW-257)

Initial Displacement: 2.04 ft

Total Well Penetration Depth: 38.48 ft

Casing Radius: 0.083 ft


Static Water Column Height: 36.15 ft

Screen Length: 4.5 ft Well Radius: 0.344 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 3.257E-6 cm/sec y0 = 2.008 ft

OW-257 SLUG IN 1

Data Set: C:\...\OW257IN1 KGS soln.aqt

Date: 04/08/14 Time: 14:52:08

PROJECT INFORMATION

Company: Kelron Environmental Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: OW-257 Test Date: 10/16/2013

AQUIFER DATA

Saturated Thickness: 2.32 ft

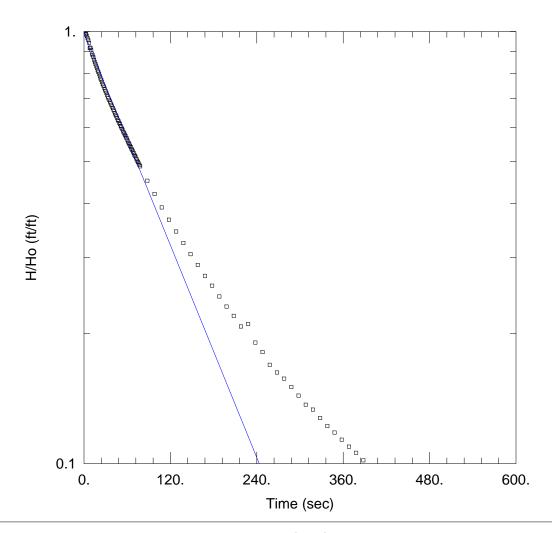
WELL DATA (OW-257)

Initial Displacement: 2.04 ft

Static Water Column Height: 36.15 ft Total Well Penetration Depth: 38.48 ft Screen Length: 4.5 ft

Casing Radius: 0.083 ft

Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Confined

Solution Method: KGS Model

Kr = 3.257E-6 cm/sec $= 0.0002738 \text{ ft}^{-1}$

Kz/Kr = 1.

MW-262 SLUG IN 1

Data Set: C:\...\MW262IN1.aqt

Date: 04/08/14 Time: 14:48:44

PROJECT INFORMATION

Company: Kelron Environmental Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: MW-262 Test Date: 10/16/2013

AQUIFER DATA

Saturated Thickness: 4.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-262)

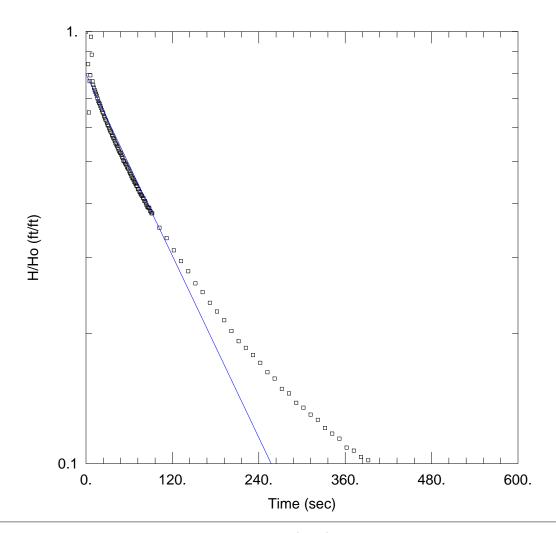
Initial Displacement: 4.56 ft

Static Water Column Height: 12.16 ft

Total Well Penetration Depth: 46.63 ft Casing Radius: 0.083 ft

Screen Length: 4.5 ft

Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 0.0006606 cm/sec

y0 = 4.528 ft

MW-262 SLUG IN 2

Data Set: C:\...\MW262IN2.aqt

Date: 04/08/14 Time: 14:49:03

PROJECT INFORMATION

Company: Kelron Environmental Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: MW-262
Test Date: 10/16/2013

AQUIFER DATA

Saturated Thickness: 4.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-262)

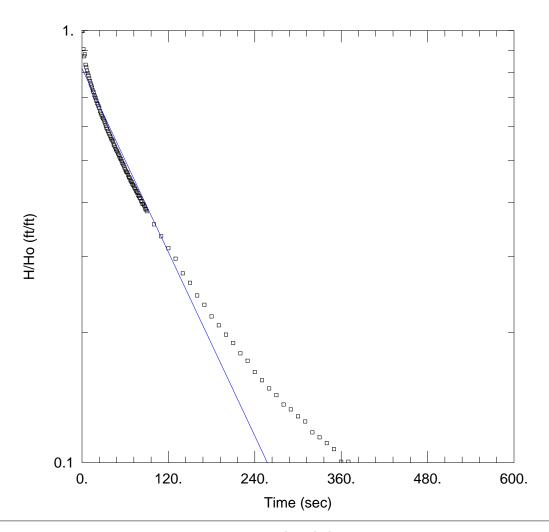
Initial Displacement: 2.25 ft

Total Well Penetration Depth: 46.63 ft

Casing Radius: 0.083 ft

Static Water Column Height: 12.16 ft

Screen Length: 4.5 ft Well Radius: 0.344 ft


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 0.0005654 cm/sec

y0 = 1.794 ft

MW-262 SLUG OUT 2

Data Set: C:\...\MW262OUT2.aqt

Date: 04/08/14 Time: 14:49:43

PROJECT INFORMATION

Company: Kelron Environmental Client: Dynegy Operating Company

Project: 66001-51972

Location: Baldwin Energy Complex

Test Well: MW-262
Test Date: 10/16/2013

AQUIFER DATA

Saturated Thickness: 4.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-262)

Initial Displacement: 2.29 ft

Total Well Penetration Depth: 46.63 ft

Casing Radius: 0.083 ft

Static Water Column Height: 12.16 ft

Screen Length: 4.5 ft Well Radius: 0.344 ft

SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 0.0005714 cm/sec

y0 = 1.87 ft

APPENDIX F

LABORATORY ANALYTICAL REPORTS: SEPTEMBER 2013, NOVEMBER 2013, AND FEBRUARY 2014

October 02, 2013

Brian Voelker Dynegy Midwest Generation, LLC 604 Pierce Blvd. O'Fallon, IL 62269

TEL: (618) 206-5800

FAX:

RE: Baldwin - Groundwater Monitoring

Dear Brian Voelker:

TEKLAB, INC received 32 samples on 9/18/2013 8:00:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin Project Manager

(618)344-1004 ex 16

MAustin@teklabinc.com

WorkOrder: 13090807

Report Contents

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring Report Date: 02-Oct-13

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Sample Summary	37
Dates Report	38
Quality Control Results	49
Receiving Check List	58
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
 - MB Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- X Value exceeds Maximum Contaminant Level

Case Narrative

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring Report Date: 02-Oct-13

Cooler Receipt Temp: 1.6 °C

MW 162 not sampled, Well Dry.

Locations and Accreditations

	Collinsville	Springfield	Kansas City	Collinsville Air
Address	5445 Horseshoe Lake Road	3920 Pintail Dr	8421 Nieman Road	5445 Horseshoe Lake Road
	Collinsville, IL 62234-7425	Springfield, IL 62711-9415	Lenexa, KS 66214	Collinsville, IL 62234-7425
Phone	(618) 344-1004	(217) 698-1004	(913) 541-1998	(618) 344-1004
Fax	(618) 344-1005	(217) 698-1005	(913) 541-1998	(618) 344-1005
Email	jhriley@teklabinc.com	KKlostermann@teklabinc.com	dthompson@teklabinc.com	EHurley@teklabinc.com
	State	Dent Cert	# NELAP Exi	n Date Lah

State	Dept	Cert #	NELAP	Exp Date	Lab	
Illinois	IEPA	100226	NELAP	1/31/2014	Collinsville	
Kansas	KDHE	E-10374	NELAP	1/31/2014	Collinsville	
Louisiana	LDEQ	166493	NELAP	6/30/2014	Collinsville	
Louisiana	LDEQ	166578	NELAP	6/30/2014	Springfield	
Texas	TCEQ	T104704515-12-1	NELAP	7/31/2014	Collinsville	
Arkansas	ADEQ	88-0966		3/14/2014	Collinsville	
Illinois	IDPH	17584		5/31/2015	Collinsville	
Kentucky	UST	0073		4/5/2014	Collinsville	
Missouri	MDNR	00930		5/31/2015	Collinsville	
Oklahoma	ODEQ	9978		8/31/2014	Collinsville	

Matrix: GROUNDWATER

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

Lab ID: 13090807-001 Client Sample ID: MW104D

Collection Date: 09/16/2013 9:50

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS							
Depth to water from measuring	g point	0		14.97	ft	1	09/16/2013 9:50	R182124
STANDARD METHODS 25	50 B							
Temperature		0		15.5	${\mathfrak C}$	1	09/16/2013 9:50	R182124
SW-846 9040B								
pH, Field		1		6.9		1	09/16/2013 9:50	R182124
SW-846 9050A								
Spec. Conductance, Field		1		1130	µmhos/cm	1	09/16/2013 9:50	R182124
STANDARD METHODS 25	40 C (TOTAL)							
Total Dissolved Solids	NELAP	20		676	mg/L	1	09/19/2013 11:45	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	100		198	mg/L	10	09/18/2013 18:52	R181951
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		20	mg/L	1	09/18/2013 18:47	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)							
Boron	NELAP	0.02	J	0.018	mg/L	1	09/19/2013 18:24	92049
Iron	NELAP	0.02		4.82	mg/L	1	09/19/2013 18:24	92049
Manganese	NELAP	0.005		0.933	mg/L	1	09/19/2013 18:24	92049

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

Lab ID: 13090807-002

Client Sample ID: MW104S

Matrix: GROUNDWATER Collection Date: 09/16/2013 9:45

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	REMENTS							
Depth to water from measuring	point	0		13.96	ft	1	09/16/2013 9:45	R182124
STANDARD METHODS 2550	В							
Temperature		0		17	${\mathcal C}$	1	09/16/2013 9:45	R182124
SW-846 9040B								
pH, Field		1		6.72		1	09/16/2013 9:45	R182124
SW-846 9050A								
Spec. Conductance, Field		1		1310	µmhos/cm	1	09/16/2013 9:45	R182124
STANDARD METHODS 2540	C (TOTAL)							
Total Dissolved Solids	NELAP	20		724	mg/L	1	09/19/2013 11:46	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	10	S	43	mg/L	1	09/18/2013 19:11	R181951
MS and/or MSD did not recover w	vithin control limits due to	matrix interfere	ence.					
SW-846 9251 (TOTAL)								
Chloride	NELAP	5	S	19	mg/L	1	09/18/2013 19:11	R181953
MS and/or MSD did not recover w	vithin control limits due to	matrix interfere	ence.					
SW-846 3005A, 6010B, META	ALS BY ICP (TOTAL)							
Boron	NELAP	0.02		0.141	mg/L	1	09/19/2013 18:27	92049
Iron	NELAP	0.02		3.18	mg/L	1	09/19/2013 18:27	92049
Manganese	NELAP	0.005		4.97	mg/L	1	09/19/2013 18:27	92049

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Report Date: 02-Oct-13

Lab ID: 13090807-003 Client Sample ID: MW150

Matrix: GROUNDWATER Collection Date: 09/16/2013 11:15

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASI	UREMENTS							
Depth to water from measuring	ng point	0		21.03	ft	1	09/16/2013 11:15	R182124
STANDARD METHODS 25	50 B							
Temperature		0		14.8	${\mathfrak C}$	1	09/16/2013 11:15	R182124
SW-846 9040B								
pH, Field		1		7.55		1	09/16/2013 11:15	R182124
SW-846 9050A								
Spec. Conductance, Field		1		1350	µmhos/cm	1	09/16/2013 11:15	R182124
STANDARD METHODS 25	40 C (TOTAL)							
Total Dissolved Solids	NELAP	20		1090	mg/L	1	09/19/2013 11:46	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	200		570	mg/L	20	09/19/2013 23:30	R182015
SW-846 9251 (TOTAL)								
Chloride	NELAP	50		54	mg/L	10	09/18/2013 19:38	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)							
Boron	NELAP	0.02		0.682	mg/L	1	09/19/2013 18:38	92049
Iron	NELAP	0.02		20.1	mg/L	1	09/19/2013 18:38	92049
Manganese	NELAP	0.005		0.32	mg/L	1	09/19/2013 18:38	92049

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Report Date: 02-Oct-13

Lab ID: 13090807-004 Client Sample ID: MW151

Matrix: GROUNDWATER Collection Date: 09/16/2013 10:45

Analyses	Certification	RL Qı	ual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEAS	UREMENTS						
Depth to water from measuring	ng point	0	4.09	ft	1	09/16/2013 10:45	R182124
STANDARD METHODS 25	50 B						
Temperature		0	17.3	${\mathbb C}$	1	09/16/2013 10:45	R182124
SW-846 9040B							
pH, Field		1	7.17		1	09/16/2013 10:45	R182124
SW-846 9050A							
Spec. Conductance, Field		1	855	µmhos/cm	1	09/16/2013 10:45	R182124
STANDARD METHODS 25	40 C (TOTAL)						
Total Dissolved Solids	NELAP	20	526	mg/L	1	09/19/2013 11:46	R182010
SW-846 9036 (TOTAL)							
Sulfate	NELAP	50	90	mg/L	5	09/19/2013 23:32	R182015
SW-846 9251 (TOTAL)							
Chloride	NELAP	5	36	mg/L	1	09/18/2013 19:41	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)						
Boron	NELAP	0.02	0.246	mg/L	1	09/19/2013 18:42	92049
Iron	NELAP	0.02	19.3	mg/L	1	09/19/2013 18:42	92049
Manganese	NELAP	0.005	1.53	mg/L	1	09/19/2013 18:42	92049

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807 Report Date: 02-Oct-13

Lab ID: 13090807-005 Client Sample ID: MW152

Matrix: GROUNDWATER Collection Date: 09/16/2013 10:15

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEAS	JREMENTS							
Depth to water from measuring	ng point	0		8.25	ft	1	09/16/2013 10:15	R182124
STANDARD METHODS 25	50 B							
Temperature		0		16.2	${\mathbb C}$	1	09/16/2013 10:15	R182124
SW-846 9040B								
pH, Field		1		6.96		1	09/16/2013 10:15	R182124
SW-846 9050A								
Spec. Conductance, Field		1		1920	µmhos/cm	1	09/16/2013 10:15	R182124
STANDARD METHODS 25	40 C (TOTAL)							
Total Dissolved Solids	NELAP	20		1620	mg/L	1	09/19/2013 11:46	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	200		873	mg/L	20	09/19/2013 23:38	R182015
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		49	mg/L	1	09/18/2013 20:05	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)							
Boron	NELAP	0.02		9.09	mg/L	1	09/19/2013 18:46	92049
Iron	NELAP	0.02		19.4	mg/L	1	09/19/2013 18:46	92049
Manganese	NELAP	0.005		1.37	mg/L	1	09/19/2013 18:46	92049

Matrix: GROUNDWATER

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

Lab ID: 13090807-006 Client Sample ID: MW153

Collection Date: 09/17/2013 9:25

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS							
Depth to water from measurin	g point	0		16.32	ft	1	09/17/2013 9:25	R182124
STANDARD METHODS 25	50 B							
Temperature		0		15.5	${\mathfrak C}$	1	09/17/2013 9:25	R182124
SW-846 9040B								
pH, Field		1		7.32		1	09/17/2013 9:25	R182124
SW-846 9050A								
Spec. Conductance, Field		1		778	µmhos/cm	1	09/17/2013 9:25	R182124
STANDARD METHODS 254	40 C (TOTAL)							
Total Dissolved Solids	NELAP	20		448	mg/L	1	09/19/2013 11:47	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	50		75	mg/L	5	09/20/2013 18:39	R182065
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		23	mg/L	1	09/18/2013 20:13	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)							
Boron	NELAP	0.02	J	0.02	mg/L	1	09/19/2013 18:50	92049
Iron	NELAP	0.02		7.34	mg/L	1	09/19/2013 18:50	92049
Manganese	NELAP	0.005		0.163	mg/L	1	09/19/2013 18:50	92049

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

Client Sample ID: MW154

Matrix: GROUNDWATER

Lab ID: 13090807-007

Collection Date: 09/17/2013 9:00

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS							
Depth to water from measurin	g point	0		13.86	ft	1	09/17/2013 9:00	R182124
STANDARD METHODS 255	50 B							
Temperature		0		16	${\mathfrak C}$	1	09/17/2013 9:00	R182124
SW-846 9040B								
pH, Field		1		7.31		1	09/17/2013 9:00	R182124
SW-846 9050A								
Spec. Conductance, Field		1		869	µmhos/cm	1	09/17/2013 9:00	R182124
STANDARD METHODS 254	40 C (TOTAL)							
Total Dissolved Solids	NELAP	20		516	mg/L	1	09/19/2013 11:47	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	50		64	mg/L	5	09/19/2013 23:46	R182015
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		6	mg/L	1	09/18/2013 20:22	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)							
Boron	NELAP	0.02	J	0.019	mg/L	1	09/19/2013 18:53	92049
Iron	NELAP	0.02		7.1	mg/L	1	09/19/2013 18:53	92049
Manganese	NELAP	0.005		0.194	mg/L	1	09/19/2013 18:53	92049

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

Lab ID: 13090807-008 Client Sample ID: MW155

Matrix: GROUNDWATER Collection Date: 09/17/2013 8:25

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASURE	MENTS							
Depth to water from measuring po	oint	0		21.28	ft	1	09/17/2013 8:25	R182124
STANDARD METHODS 2550 I	В							
Temperature		0		14.1	${\mathfrak C}$	1	09/17/2013 8:25	R182124
SW-846 9040B								
pH, Field		1		7.41		1	09/17/2013 8:25	R182124
SW-846 9050A								
Spec. Conductance, Field		1		773	µmhos/cm	1	09/17/2013 8:25	R182124
STANDARD METHODS 2540	C (TOTAL)							
Total Dissolved Solids	NELAP	20		470	mg/L	1	09/19/2013 11:48	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	10		49	mg/L	1	09/18/2013 20:30	R181951
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		9	mg/L	1	09/18/2013 20:30	R181953
SW-846 3005A, 6010B, META	LS BY ICP (TOTAL)							
Boron	NELAP	0.02		< 0.02	mg/L	1	09/19/2013 18:57	92049
Iron	NELAP	0.02		48.3	mg/L	1	09/20/2013 19:26	92049
Manganese	NELAP	0.005		24.4	mg/L	1	09/20/2013 19:26	92049

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807 Report Date: 02-Oct-13

Lab ID: 13090807-009 Client Sample ID: MW252

Matrix: GROUNDWATER Collection Date: 09/16/2013 10:25

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS							
Depth to water from measuring	ng point	0		19.7	ft	1	09/16/2013 10:25	R182124
STANDARD METHODS 25	50 B							
Temperature		0		14.1	${\mathfrak C}$	1	09/16/2013 10:25	R182124
SW-846 9040B								
pH, Field		1		7.01		1	09/16/2013 10:25	R182124
SW-846 9050A								
Spec. Conductance, Field		1		1650	µmhos/cm	1	09/16/2013 10:25	R182124
STANDARD METHODS 25	40 C (TOTAL)							
Total Dissolved Solids	NELAP	20		1260	mg/L	1	09/19/2013 11:48	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	100		500	mg/L	10	09/18/2013 20:43	R181951
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		39	mg/L	1	09/18/2013 20:39	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)							
Boron	NELAP	0.02		0.243	mg/L	1	09/19/2013 19:08	92049
Iron	NELAP	0.02		9.04	mg/L	1	09/19/2013 19:08	92049
Manganese	NELAP	0.005		1.3	mg/L	1	09/19/2013 19:08	92049

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Report Date: 02-Oct-13

Lab ID: 13090807-010 Client Sample ID: MW253

Matrix: GROUNDWATER Collection Date: 09/17/2013 9:35

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to water from measuring p	point	0		13.69	ft	1	09/17/2013 9:35	R182124
STANDARD METHODS 2550	В							
Temperature		0		15.6	${\mathbb C}$	1	09/17/2013 9:35	R182124
SW-846 9040B								
pH, Field		1		10.6		1	09/17/2013 9:35	R182124
SW-846 9050A								
Spec. Conductance, Field		1		833	µmhos/cm	1	09/17/2013 9:35	R182124
STANDARD METHODS 2540	C (TOTAL)							
Total Dissolved Solids	NELAP	20		546	mg/L	1	09/19/2013 11:49	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	200	SR	349	mg/L	20	09/20/2013 18:44	R182065
RPD, MS and/or MSD did not reco	over within control limits o	lue to matrix i	nterference	9.				
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		15	mg/L	1	09/18/2013 21:04	R181953
SW-846 3005A, 6010B, META	ALS BY ICP (TOTAL)							
Boron	NELAP	0.02		0.064	mg/L	1	09/19/2013 19:12	92049
Iron	NELAP	0.02		0.16	mg/L	1	09/19/2013 19:12	92049
Manganese	NELAP	0.005		0.025	mg/L	1	09/19/2013 19:12	92049

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring Report Date: 02-Oct-13

Matrix: GROUNDWATER Collection Date: 09/16/2013 11:00

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to water from measuring p	point	0		22.75	ft	1	09/16/2013 11:00	R182124
STANDARD METHODS 2550	В							
Temperature		0		14.6	${\mathbb C}$	1	09/16/2013 11:00	R182124
SW-846 9040B								
pH, Field		1		12.3		1	09/16/2013 11:00	R182124
SW-846 9050A								
Spec. Conductance, Field		1		5190	µmhos/cm	1	09/16/2013 11:00	R182124
STANDARD METHODS 2540	C (TOTAL)							
Total Dissolved Solids	NELAP	20		1640	mg/L	1	09/19/2013 11:49	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	10		< 10	mg/L	1	09/18/2013 21:26	R181951
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		33	mg/L	1	09/18/2013 21:26	R181953
SW-846 3005A, 6010B, META	ALS BY ICP (TOTAL)							
Boron	NELAP	0.02		0.029	mg/L	1	09/23/2013 16:10	92055
Iron	NELAP	0.02		0.143	mg/L	1	09/20/2013 18:20	92055
Manganese	NELAP	0.005	J	0.004	mg/L	1	09/20/2013 18:20	92055

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807 Report Date: 02-Oct-13

Lab ID: 13090807-012 Client Sample ID: MW352

Matrix: GROUNDWATER Collection Date: 09/16/2013 10:35

Analyses	Certification	RL Q	ual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS						
Depth to water from measuring	g point	0	9.18	ft	1	09/16/2013 10:35	R182124
STANDARD METHODS 255	50 B						
Temperature		0	14.6	${\mathfrak C}$	1	09/16/2013 10:35	R182124
SW-846 9040B							
pH, Field		1	9.36		1	09/16/2013 10:35	R182124
SW-846 9050A							
Spec. Conductance, Field		1	1740	µmhos/cm	1	09/16/2013 10:35	R182124
STANDARD METHODS 254	40 C (TOTAL)						
Total Dissolved Solids	NELAP	20	1130	mg/L	1	09/19/2013 11:49	R182010
SW-846 9036 (TOTAL)							
Sulfate	NELAP	10	< 10	mg/L	1	09/18/2013 21:32	R181951
SW-846 9251 (TOTAL)							
Chloride	NELAP	100	580	mg/L	20	09/26/2013 15:22	R182243
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)						
Boron	NELAP	0.02	1.42	mg/L	1	09/23/2013 16:16	92055
Iron	NELAP	0.02	0.179	mg/L	1	09/20/2013 15:27	92055
Manganese	NELAP	0.005	0.007	mg/L	1	09/20/2013 15:27	92055

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

Lab ID: 13090807-013 Client Sample ID: MW355

Matrix: GROUNDWATER Collection Date: 09/17/2013 8:35

Analyses	Certification	RL	Qual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS						
Depth to water from measuring	g point	0	24.42	ft	1	09/17/2013 8:35	R182124
STANDARD METHODS 255	50 B						
Temperature		0	14.1	${\mathfrak C}$	1	09/17/2013 8:35	R182124
SW-846 9040B							
pH, Field		1	7.37		1	09/17/2013 8:35	R182124
SW-846 9050A							
Spec. Conductance, Field		1	811	µmhos/cm	1	09/17/2013 8:35	R182124
STANDARD METHODS 254	10 C (TOTAL)						
Total Dissolved Solids	NELAP	20	468	mg/L	1	09/19/2013 11:50	R182010
SW-846 9036 (TOTAL)							
Sulfate	NELAP	50	70	mg/L	5	09/20/2013 18:58	R182065
SW-846 9251 (TOTAL)							
Chloride	NELAP	5	12	mg/L	1	09/18/2013 21:56	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)						
Boron	NELAP	0.02	0.034	mg/L	1	09/23/2013 16:41	92055
Iron	NELAP	0.02	3.82	mg/L	1	09/20/2013 18:26	92055
Manganese	NELAP	0.005	0.586	mg/L	1	09/20/2013 18:26	92055

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Report Date: 02-Oct-13

Lab ID: 13090807-014 Client Sample ID: OW156

Matrix: GROUNDWATER Collection Date: 09/16/2013 12:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	REMENTS							
Depth to water from measuring	point	0		9.18	ft	1	09/16/2013 12:30	R182124
STANDARD METHODS 2550) B							
Temperature		0		16.4	C	1	09/16/2013 12:30	R182124
SW-846 9040B								
pH, Field		1		6.69		1	09/16/2013 12:30	R182124
SW-846 9050A								
Spec. Conductance, Field		1		814	µmhos/cm	1	09/16/2013 12:30	R182124
STANDARD METHODS 2540	C (TOTAL)							
Total Dissolved Solids	NELAP	20		480	mg/L	1	09/19/2013 11:50	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	50		94	mg/L	5	09/20/2013 19:00	R182065
SW-846 9251 (TOTAL)								
Chloride	NELAP	50		58	mg/L	10	09/18/2013 22:10	R181953
SW-846 3005A, 6010B, MET	ALS BY ICP (TOTAL)							
Boron	NELAP	0.02		0.04	mg/L	1	09/20/2013 16:01	92055
Iron	NELAP	0.02		2.04	mg/L	1	09/20/2013 16:01	92055
Manganese	NELAP	0.005		0.079	mg/L	1	09/20/2013 16:01	92055

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807 Report Date: 02-Oct-13

Lab ID: 13090807-015 Client Sample ID: OW157

Matrix: GROUNDWATER Collection Date: 09/16/2013 13:20

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS							
Depth to water from measuring	g point	0		7.72	ft	1	09/16/2013 13:20	R182124
STANDARD METHODS 255	50 B							
Temperature		0		16.4	${\mathfrak C}$	1	09/16/2013 13:20	R182124
SW-846 9040B								
pH, Field		1		7.63		1	09/16/2013 13:20	R182124
SW-846 9050A								
Spec. Conductance, Field		1		3270	µmhos/cm	1	09/16/2013 13:20	R182124
STANDARD METHODS 254	40 C (TOTAL)							
Total Dissolved Solids	NELAP	20		3170	mg/L	1	09/19/2013 11:50	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	1000		1750	mg/L	100	09/20/2013 19:06	R182065
SW-846 9251 (TOTAL)								
Chloride	NELAP	50		117	mg/L	10	09/18/2013 22:18	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)							
Boron	NELAP	0.2		48.6	mg/L	10	09/23/2013 16:47	92055
Iron	NELAP	0.02		12.7	mg/L	1	09/20/2013 16:07	92055
Manganese	NELAP	0.005		0.26	mg/L	1	09/20/2013 16:07	92055

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Report Date: 02-Oct-13

Lab ID: 13090807-016 Client Sample ID: MW161

Matrix: GROUNDWATER Collection Date: 09/16/2013 11:50

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASURE	MENTS							
Depth to water from measuring po	oint	0		23.11	ft	1	09/16/2013 11:50	R182124
STANDARD METHODS 2550 I	В							
Temperature		0		15.1	${\mathbb C}$	1	09/16/2013 11:50	R182124
SW-846 9040B								
pH, Field		1		6.91		1	09/16/2013 11:50	R182124
SW-846 9050A								
Spec. Conductance, Field		1		746	µmhos/cm	1	09/16/2013 11:50	R182124
STANDARD METHODS 2540	C (TOTAL)							
Total Dissolved Solids	NELAP	20		446	mg/L	1	09/19/2013 11:51	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	10		42	mg/L	1	09/26/2013 14:50	R182263
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		6	mg/L	1	09/18/2013 22:20	R181953
SW-846 3005A, 6010B, META	LS BY ICP (TOTAL)							
Boron	NELAP	0.02	J	0.011	mg/L	1	09/23/2013 16:53	92055
Iron	NELAP	0.02		11.8	mg/L	1	09/20/2013 16:13	92055
Manganese	NELAP	0.005		1.84	mg/L	1	09/20/2013 16:13	92055

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Report Date: 02-Oct-13

Lab ID: 13090807-017 Client Sample ID: MW262

Matrix: GROUNDWATER Collection Date: 09/16/2013 11:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	REMENTS							
Depth to water from measuring	point	0		35.95	ft	1	09/16/2013 11:30	R182124
STANDARD METHODS 255	0 B							
Temperature		0		14.8	${\mathbb C}$	1	09/16/2013 11:30	R182124
SW-846 9040B								
pH, Field		1		6.99		1	09/16/2013 11:30	R182124
SW-846 9050A								
Spec. Conductance, Field		1		448	µmhos/cm	1	09/16/2013 11:30	R182124
STANDARD METHODS 254	0 C (TOTAL)							
Total Dissolved Solids	NELAP	20		318	mg/L	1	09/19/2013 11:51	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	10		42	mg/L	1	09/18/2013 22:28	R181951
SW-846 9251 (TOTAL)								
Chloride	NELAP	5	J	4	mg/L	1	09/18/2013 22:28	R181953
SW-846 3005A, 6010B, MET	ALS BY ICP (TOTAL)							
Boron	NELAP	0.02	J	0.015	mg/L	1	09/20/2013 16:19	92055
Iron	NELAP	0.02		69.4	mg/L	1	09/20/2013 16:19	92055
Manganese	NELAP	0.005		2.42	mg/L	1	09/20/2013 16:19	92055

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Report Date: 02-Oct-13

Lab ID: 13090807-018 Client Sample ID: OW256

Matrix: GROUNDWATER Collection Date: 09/16/2013 12:15

Analyses	Certification	RL	Qual Res	ult	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASI	UREMENTS							
Depth to water from measuring	ng point	0	11	.95	ft	1	09/16/2013 12:15	R182124
STANDARD METHODS 25	50 B							
Temperature		0	1	5.1	${\mathfrak C}$	1	09/16/2013 12:15	R182124
SW-846 9040B								
pH, Field		1	7	'.11		1	09/16/2013 12:15	R182124
SW-846 9050A								
Spec. Conductance, Field		1		862	µmhos/cm	1	09/16/2013 12:15	R182124
STANDARD METHODS 25	40 C (TOTAL)							
Total Dissolved Solids	NELAP	20		520	mg/L	1	09/19/2013 11:52	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	50		92	mg/L	5	09/20/2013 19:11	R182065
SW-846 9251 (TOTAL)								
Chloride	NELAP	50		65	mg/L	10	09/18/2013 22:58	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)							
Boron	NELAP	0.02	0.	153	mg/L	1	09/20/2013 16:25	92055
Iron	NELAP	0.02		4.6	mg/L	1	09/20/2013 16:25	92055
Manganese	NELAP	0.005	0.	446	mg/L	1	09/20/2013 16:25	92055

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring Report Date: 02-Oct-13

Lab ID: 13090807-019 Client Sample ID: OW257

Matrix: GROUNDWATER Collection Date: 09/16/2013 12:50

Analyses	Certification	RL	Qual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	REMENTS						
Depth to water from measuring	point	0	6.66	ft	1	09/16/2013 12:50	R182124
STANDARD METHODS 2550	В						
Temperature		0	15.7	$\mathcal C$	1	09/16/2013 12:50	R182124
SW-846 9040B							
pH, Field		1	6.99		1	09/16/2013 12:50	R182124
SW-846 9050A							
Spec. Conductance, Field		1	1430	µmhos/cm	1	09/16/2013 12:50	R182124
STANDARD METHODS 2540	C (TOTAL)						
Total Dissolved Solids	NELAP	20	960	mg/L	1	09/19/2013 11:53	R182010
SW-846 9036 (TOTAL)							
Sulfate	NELAP	100	328	mg/L	10	09/18/2013 23:06	R181951
SW-846 9251 (TOTAL)							
Chloride	NELAP	5	20	mg/L	1	09/18/2013 23:02	R181953
SW-846 3005A, 6010B, MET	ALS BY ICP (TOTAL)						
Boron	NELAP	0.02	3.68	mg/L	1	09/20/2013 16:31	92055
Iron	NELAP	0.02	0.245	mg/L	1	09/20/2013 16:31	92055
Manganese	NELAP	0.005	0.996	mg/L	1	09/20/2013 16:31	92055

Matrix: GROUNDWATER

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

Lab ID: 13090807-020 Client Sample ID: TPZ158

Collection Date: 09/17/2013 10:10

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	REMENTS							
Depth to water from measuring	g point	0		12.89	ft	1	09/17/2013 10:10	R182124
STANDARD METHODS 255	i0 B							
Temperature		0		16.4	C	1	09/17/2013 10:10	R182124
SW-846 9040B								
pH, Field		1		7.1		1	09/17/2013 10:10	R182124
SW-846 9050A								
Spec. Conductance, Field		1		720	µmhos/cm	1	09/17/2013 10:10	R182124
STANDARD METHODS 254	0 C (TOTAL)							
Total Dissolved Solids	NELAP	20		394	mg/L	1	09/19/2013 11:53	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	10		38	mg/L	1	09/18/2013 23:09	R181951
SW-846 9251 (TOTAL)								
Chloride	NELAP	50		61	mg/L	10	09/18/2013 23:14	R181953
SW-846 3005A, 6010B, MET	TALS BY ICP (TOTAL)							
Boron	NELAP	0.02	J	0.012	mg/L	1	09/20/2013 16:37	92055
Iron	NELAP	0.02		6.93	mg/L	1	09/20/2013 16:37	92055
Manganese	NELAP	0.005		0.125	mg/L	1	09/20/2013 16:37	92055

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807 Report Date: 02-Oct-13

Lab ID: 13090807-021 Client Sample ID: TPZ159

Matrix: GROUNDWATER Collection Date: 09/17/2013 13:35

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS							
Depth to water from measuring	g point	0		18.34	ft	1	09/17/2013 13:35	R182124
STANDARD METHODS 255	50 B							
Temperature		0		17.9	${\mathfrak C}$	1	09/17/2013 13:35	R182124
SW-846 9040B								
pH, Field		1		6.63		1	09/17/2013 13:35	R182124
SW-846 9050A								
Spec. Conductance, Field		1		849	µmhos/cm	1	09/17/2013 13:35	R182124
STANDARD METHODS 254	10 C (TOTAL)							
Total Dissolved Solids	NELAP	20		588	mg/L	1	09/19/2013 11:54	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	100		103	mg/L	10	09/18/2013 23:22	R181951
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		34	mg/L	1	09/18/2013 23:17	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)							
Boron	NELAP	0.02		0.106	mg/L	1	09/20/2013 16:43	92055
Iron	NELAP	0.02		1.77	mg/L	1	09/20/2013 16:43	92055
Manganese	NELAP	0.005		0.475	mg/L	1	09/20/2013 16:43	92055

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

Lab ID: 13090807-022

Client Sample ID: TPZ160

Matrix: GROUNDWATER

Collection Date: 09/17/2013 13:15

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	REMENTS							
Depth to water from measuring	point	0		15.76	ft	1	09/17/2013 13:15	R182124
STANDARD METHODS 255	0 B							
Temperature		0		17.7	${\mathfrak C}$	1	09/17/2013 13:15	R182124
SW-846 9040B								
pH, Field		1		7.2		1	09/17/2013 13:15	R182124
SW-846 9050A								
Spec. Conductance, Field		1		880	µmhos/cm	1	09/17/2013 13:15	R182124
STANDARD METHODS 254	0 C (TOTAL)							
Total Dissolved Solids	NELAP	20		490	mg/L	1	09/19/2013 11:54	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	50		60	mg/L	5	09/20/2013 19:30	R182065
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		44	mg/L	1	09/18/2013 23:25	R181953
SW-846 3005A, 6010B, MET	ALS BY ICP (TOTAL)							
Boron	NELAP	0.02		0.259	mg/L	1	09/23/2013 16:59	92055
Iron	NELAP	0.02		8.62	mg/L	1	09/20/2013 17:01	92055
Manganese	NELAP	0.005		0.361	mg/L	1	09/20/2013 17:01	92055

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807 Report Date: 02-Oct-13

Lab ID: 13090807-023 Client Sample ID: TPZ163

Matrix: GROUNDWATER Collection Date: 09/17/2013 10:55

Analyses	Certification	RL	Qual R	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEAS	UREMENTS							
Depth to water from measuring	ng point	0		12.45	ft	1	09/17/2013 10:55	R182124
STANDARD METHODS 25	50 B							
Temperature		0		15.6	${\mathcal C}$	1	09/17/2013 10:55	R182124
SW-846 9040B								
pH, Field		1		9.69		1	09/17/2013 10:55	R182124
SW-846 9050A								
Spec. Conductance, Field		1		1650	µmhos/cm	1	09/17/2013 10:55	R182124
STANDARD METHODS 25	40 C (TOTAL)							
Total Dissolved Solids	NELAP	20		1410	mg/L	1	09/19/2013 11:54	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	200		750	mg/L	20	09/20/2013 19:33	R182065
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		32	mg/L	1	09/18/2013 23:49	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)							
Boron	NELAP	0.2		39.7	mg/L	10	09/23/2013 17:05	92055
Iron	NELAP	0.02		7.86	mg/L	1	09/20/2013 17:07	92055
Manganese	NELAP	0.005		0.133	mg/L	1	09/20/2013 17:07	92055

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Report Date: 02-Oct-13

Lab ID: 13090807-024 Client Sample ID: TPZ164

Matrix: GROUNDWATER Collection Date: 09/17/2013 14:00

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to water from measuring p	point	0		4.73	ft	1	09/17/2013 14:00	R182124
STANDARD METHODS 2550	В							
Temperature		0		19.3	C	1	09/17/2013 14:00	R182124
SW-846 9040B								
pH, Field		1		7.03		1	09/17/2013 14:00	R182124
SW-846 9050A								
Spec. Conductance, Field		1		941	µmhos/cm	1	09/17/2013 14:00	R182124
STANDARD METHODS 2540	C (TOTAL)							
Total Dissolved Solids	NELAP	20		586	mg/L	1	09/19/2013 11:55	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	100		172	mg/L	10	09/19/2013 0:03	R181951
SW-846 9251 (TOTAL)								
Chloride	NELAP	50		55	mg/L	10	09/19/2013 0:03	R181953
SW-846 3005A, 6010B, META	ALS BY ICP (TOTAL)							
Boron	NELAP	0.02		2.64	mg/L	1	09/23/2013 17:23	92055
Iron	NELAP	0.02		20.8	mg/L	1	09/20/2013 17:13	92055
Manganese	NELAP	0.005		1.45	mg/L	1	09/20/2013 17:13	92055

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

Lab ID: 13090807-025

Client Sample ID: TPZ165

Matrix: GROUNDWATER Collection Date: 09/17/2013 12:45

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to water from measuring p	point	0		13.42	ft	1	09/17/2013 12:45	R182124
STANDARD METHODS 2550	В							
Temperature		0		18.3	${\mathfrak C}$	1	09/17/2013 12:45	R182124
SW-846 9040B								
pH, Field		1		6.62		1	09/17/2013 12:45	R182124
SW-846 9050A								
Spec. Conductance, Field		1		2400	µmhos/cm	1	09/17/2013 12:45	R182124
STANDARD METHODS 2540	C (TOTAL)							
Total Dissolved Solids	NELAP	20		1800	mg/L	1	09/19/2013 11:55	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	200	S	472	mg/L	20	09/20/2013 19:38	R182065
MS and/or MSD did not recover w	rithin control limits due to	matrix interfere	ence.					
SW-846 9251 (TOTAL)								
Chloride	NELAP	50		84	mg/L	10	09/19/2013 0:19	R181953
SW-846 3005A, 6010B, META	ALS BY ICP (TOTAL)							
Boron	NELAP	0.02		0.295	mg/L	1	09/23/2013 17:29	92055
Iron	NELAP	0.02		6.04	mg/L	1	09/20/2013 17:19	92055
Manganese	NELAP	0.005		1.91	mg/L	1	09/20/2013 17:19	92055

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Report Date: 02-Oct-13

Lab ID: 13090807-026 Client Sample ID: TPZ166

Matrix: GROUNDWATER Collection Date: 09/17/2013 12:20

Analyses	Certification	RL (Qual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEAS	UREMENTS						
Depth to water from measuring	ng point	0	8.72	ft	1	09/17/2013 12:20	R182124
STANDARD METHODS 25	50 B						
Temperature		0	16.5	${\mathbb C}$	1	09/17/2013 12:20	R182124
SW-846 9040B							
pH, Field		1	7.05		1	09/17/2013 12:20	R182124
SW-846 9050A							
Spec. Conductance, Field		1	612	µmhos/cm	1	09/17/2013 12:20	R182124
STANDARD METHODS 25	40 C (TOTAL)						
Total Dissolved Solids	NELAP	20	396	mg/L	1	09/19/2013 11:56	R182010
SW-846 9036 (TOTAL)							
Sulfate	NELAP	100	103	mg/L	10	09/19/2013 0:49	R181951
SW-846 9251 (TOTAL)							
Chloride	NELAP	5	12	mg/L	1	09/19/2013 0:43	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)						
Boron	NELAP	0.02	0.228	mg/L	1	09/23/2013 17:35	92055
Iron	NELAP	0.02	0.093	mg/L	1	09/20/2013 17:25	92055
Manganese	NELAP	0.005	0.234	mg/L	1	09/20/2013 17:25	92055

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Report Date: 02-Oct-13

Lab ID: 13090807-027 Client Sample ID: TPZ167

Matrix: GROUNDWATER Collection Date: 09/17/2013 11:55

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS							
Depth to water from measuring	ng point	0		15.23	ft	1	09/17/2013 11:55	R182124
STANDARD METHODS 25	50 B							
Temperature		0		17.7	${\mathcal C}$	1	09/17/2013 11:55	R182124
SW-846 9040B								
pH, Field		1		9.91		1	09/17/2013 11:55	R182124
SW-846 9050A								
Spec. Conductance, Field		1		3830	µmhos/cm	1	09/17/2013 11:55	R182124
STANDARD METHODS 25	40 C (TOTAL)							
Total Dissolved Solids	NELAP	20		3250	mg/L	1	09/19/2013 11:56	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	1000		1740	mg/L	100	09/20/2013 19:49	R182065
SW-846 9251 (TOTAL)								
Chloride	NELAP	50		102	mg/L	10	09/19/2013 0:57	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)							
Boron	NELAP	0.2		64.4	mg/L	10	09/23/2013 17:53	92055
Iron	NELAP	0.02		0.575	mg/L	1	09/20/2013 17:44	92055
Manganese	NELAP	0.005		0.01	mg/L	1	09/20/2013 17:44	92055

Matrix: GROUNDWATER

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

Lab ID: 13090807-028 Client Sample ID: TPZ168

Collection Date: 09/17/2013 11:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEAS	UREMENTS							
Depth to water from measuring	ng point	0		17.64	ft	1	09/17/2013 11:30	R182124
STANDARD METHODS 25	50 B							
Temperature		0		16.4	${\mathbb C}$	1	09/17/2013 11:30	R182124
SW-846 9040B								
pH, Field		1		10.8		1	09/17/2013 11:30	R182124
SW-846 9050A								
Spec. Conductance, Field		1		5330	µmhos/cm	1	09/17/2013 11:30	R182124
STANDARD METHODS 25	40 C (TOTAL)							
Total Dissolved Solids	NELAP	20		3910	mg/L	1	09/19/2013 11:56	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	1000		2630	mg/L	100	09/20/2013 19:52	R182065
SW-846 9251 (TOTAL)								
Chloride	NELAP	50		110	mg/L	10	09/19/2013 1:05	R181953
SW-846 3005A, 6010B, ME	TALS BY ICP (TOTAL)							
Boron	NELAP	0.2		102	mg/L	10	09/23/2013 18:00	92055
Iron	NELAP	0.02		90.6	mg/L	1	09/20/2013 17:50	92055
Manganese	NELAP	0.005		1.58	mg/L	1	09/20/2013 17:50	92055

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring Report Date: 02-Oct-13

Lab ID: 13090807-029 Client Sample ID: DUP 1

Matrix: GROUNDWATER Collection Date: 09/16/2013 12:50

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 254	0 C (TOTAL)						
Total Dissolved Solids	NELAP	20	1030	mg/L	1	09/19/2013 11:57	R182010
SW-846 9036 (TOTAL)							
Sulfate	NELAP	100	339	mg/L	10	09/19/2013 1:13	R181951
SW-846 9251 (TOTAL)							
Chloride	NELAP	5	22	mg/L	1	09/19/2013 1:08	R181953
SW-846 3005A, 6010B, MET	TALS BY ICP (TOTAL)						
Boron	NELAP	0.02	3.59	mg/L	1	09/23/2013 18:06	92055
Iron	NELAP	0.02	0.428	mg/L	1	09/20/2013 17:56	92055
Manganese	NELAP	0.005	0.936	mg/L	1	09/20/2013 17:56	92055

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring Report Date: 02-Oct-13

Lab ID: 13090807-030 Client Sample ID: DUP 2

Matrix: GROUNDWATER Collection Date: 09/17/2013 10:55

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 254	0 C (TOTAL)						
Total Dissolved Solids	NELAP	20	1390	mg/L	1	09/19/2013 11:57	R182010
SW-846 9036 (TOTAL)							
Sulfate	NELAP	200	757	mg/L	20	09/20/2013 20:00	R182065
SW-846 9251 (TOTAL)							
Chloride	NELAP	20	34	mg/L	2	09/23/2013 16:59	R182109
SW-846 3005A, 6010B, MET	TALS BY ICP (TOTAL)						
Boron	NELAP	0.2	39.3	mg/L	10	09/23/2013 18:12	92055
Iron	NELAP	0.02	11.5	mg/L	1	09/20/2013 18:14	92055
Manganese	NELAP	0.005	0.205	mg/L	1	09/20/2013 18:14	92055

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring Report Date: 02-Oct-13

Lab ID: 13090807-031 Client Sample ID: Field Blank 1

Matrix: GROUNDWATER Collection Date: 09/16/2013 13:50

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 254	0 C (TOTAL)							
Total Dissolved Solids	NELAP	20	J	14	mg/L	1	09/19/2013 11:58	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	10		< 10	mg/L	1	09/19/2013 1:39	R181951
SW-846 9251 (TOTAL)								
Chloride	NELAP	5	J	2	mg/L	1	09/19/2013 1:39	R181953
SW-846 3005A, 6010B, MET	TALS BY ICP (TOTAL)							
Boron	NELAP	0.02		< 0.02	mg/L	1	09/19/2013 19:23	92061
Iron	NELAP	0.02		< 0.02	mg/L	1	09/19/2013 19:23	92061
Manganese	NELAP	0.005		< 0.005	mg/L	1	09/19/2013 19:23	92061

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring Report Date: 02-Oct-13

Lab ID: 13090807-032 Client Sample ID: Field Blank 2

Matrix: GROUNDWATER Collection Date: 09/17/2013 14:40

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 254	0 C (TOTAL)							
Total Dissolved Solids	NELAP	20	J	10	mg/L	1	09/19/2013 11:58	R182010
SW-846 9036 (TOTAL)								
Sulfate	NELAP	10		< 10	mg/L	1	09/19/2013 1:41	R181951
SW-846 9251 (TOTAL)								
Chloride	NELAP	5	J	2	mg/L	1	09/19/2013 1:41	R181953
SW-846 3005A, 6010B, MET	TALS BY ICP (TOTAL)							
Boron	NELAP	0.02		< 0.02	mg/L	1	09/19/2013 19:26	92061
Iron	NELAP	0.02		< 0.02	mg/L	1	09/19/2013 19:26	92061
Manganese	NELAP	0.005		< 0.005	mg/L	1	09/19/2013 19:26	92061

Sample Summary

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

3090807-002 MW104S Groundwater 4 09/16/2013 9:45 3090807-003 MW150 Groundwater 4 09/16/2013 11:15 3090807-004 MW151 Groundwater 4 09/16/2013 10:15 3090807-005 MW152 Groundwater 4 09/17/2013 9:25 3090807-006 MW153 Groundwater 4 09/17/2013 9:25 3090807-007 MW154 Groundwater 4 09/17/2013 9:25 3090807-008 MW155 Groundwater 4 09/17/2013 8:25 3090807-010 MW253 Groundwater 4 09/17/2013 9:35 3090807-011 MW350 Groundwater 4 09/16/2013 10:35 3090807-012 MW352 Groundwater 4 09/16/2013 10:35 3090807-013 MW355 Groundwater 4 09/16/2013 10:35 3090807-015 OW157 Groundwater 4 09/16/2013 12:35 3090807-016 MW161 Groundwater 4 09/16/2013 12:55 3090807-018 OW256	Lab Sample ID	Client Sample ID	Matrix	Fractions	Collection Date
3090807-003 MW150 Groundwater 4 09/16/2013 11:15 3090807-004 MW151 Groundwater 4 09/16/2013 10:45 3090807-005 MW152 Groundwater 4 09/16/2013 10:15 3090807-006 MW153 Groundwater 4 09/17/2013 9:05 3090807-007 MW154 Groundwater 4 09/17/2013 9:05 3090807-008 MW155 Groundwater 4 09/17/2013 9:05 3090807-009 MW252 Groundwater 4 09/16/2013 10:25 3090807-010 MW253 Groundwater 4 09/16/2013 10:35 3090807-012 MW352 Groundwater 4 09/16/2013 10:35 3090807-013 MW355 Groundwater 4 09/16/2013 10:35 3090807-014 OW156 Groundwater 4 09/16/2013 12:30 3090807-015 OW157 Groundwater 4 09/16/2013 12:30 3090807-016 MW161 Groundwater 4 09/16/2013 12:30 3090807-018 OW256 <td>13090807-001</td> <td>MW104D</td> <td>Groundwater</td> <td>4</td> <td>09/16/2013 9:50</td>	13090807-001	MW104D	Groundwater	4	09/16/2013 9:50
3090807-004 MW151 Groundwater 4 09/16/2013 10:15 3090807-005 MW152 Groundwater 4 09/16/2013 10:15 3090807-006 MW153 Groundwater 4 09/17/2013 9:25 3090807-007 MW154 Groundwater 4 09/17/2013 9:00 3090807-008 MW155 Groundwater 4 09/17/2013 8:25 3090807-009 MW252 Groundwater 4 09/17/2013 8:25 3090807-010 MW353 Groundwater 4 09/16/2013 10:35 3090807-011 MW350 Groundwater 4 09/16/2013 10:35 3090807-013 MW355 Groundwater 4 09/16/2013 10:35 3090807-014 OW156 Groundwater 4 09/16/2013 12:30 3090807-015 OW157 Groundwater 4 09/16/2013 12:30 3090807-016 MW161 Groundwater 4 09/16/2013 12:50 3090807-018 OW256 Groundwater 4 09/16/2013 12:50 3090807-020 TPZ158 <td>13090807-002</td> <td>MW104S</td> <td>Groundwater</td> <td>4</td> <td>09/16/2013 9:45</td>	13090807-002	MW104S	Groundwater	4	09/16/2013 9:45
3090807-005 MW152 Groundwater 4 09/16/2013 10:15 3090807-006 MW153 Groundwater 4 09/17/2013 9:25 3090807-007 MW154 Groundwater 4 09/17/2013 9:00 3090807-008 MW155 Groundwater 4 09/17/2013 0:05 3090807-009 MW252 Groundwater 4 09/16/2013 10:25 3090807-010 MW253 Groundwater 4 09/16/2013 11:00 3090807-011 MW350 Groundwater 4 09/16/2013 11:00 3090807-012 MW352 Groundwater 4 09/16/2013 11:00 3090807-013 MW355 Groundwater 4 09/16/2013 12:30 3090807-015 OW156 Groundwater 4 09/16/2013 12:30 3090807-016 MW161 Groundwater 4 09/16/2013 11:50 3090807-018 OW256 Groundwater 4 09/16/2013 12:30 3090807-019 OW257 Groundwater 4 09/17/2013 10:10 3090807-020 TPZ158 </td <td>13090807-003</td> <td>MW150</td> <td>Groundwater</td> <td>4</td> <td>09/16/2013 11:15</td>	13090807-003	MW150	Groundwater	4	09/16/2013 11:15
3090807-006 MW153 Groundwater 4 09/17/2013 9:25 3090807-007 MW154 Groundwater 4 09/17/2013 9:00 3090807-008 MW155 Groundwater 4 09/17/2013 8:25 3090807-009 MW252 Groundwater 4 09/16/2013 10:25 3090807-010 MW253 Groundwater 4 09/16/2013 11:00 3090807-011 MW350 Groundwater 4 09/16/2013 11:00 3090807-012 MW352 Groundwater 4 09/16/2013 11:00 3090807-013 MW355 Groundwater 4 09/16/2013 12:30 3090807-014 OW156 Groundwater 4 09/16/2013 12:30 3090807-015 OW157 Groundwater 4 09/16/2013 12:30 3090807-016 MW161 Groundwater 4 09/16/2013 12:50 3090807-017 MW262 Groundwater 4 09/16/2013 12:50 3090807-019 OW257 Groundwater 4 09/17/2013 12:50 3090807-021 TPZ159 </td <td>13090807-004</td> <td>MW151</td> <td>Groundwater</td> <td>4</td> <td>09/16/2013 10:45</td>	13090807-004	MW151	Groundwater	4	09/16/2013 10:45
3090807-007 MW154 Groundwater 4 09/17/2013 9:00 3090807-008 MW155 Groundwater 4 09/17/2013 8:25 3090807-009 MW252 Groundwater 4 09/16/2013 10:25 3090807-010 MW253 Groundwater 4 09/16/2013 11:00 3090807-011 MW350 Groundwater 4 09/16/2013 11:03 3090807-013 MW352 Groundwater 4 09/16/2013 10:35 3090807-014 OW156 Groundwater 4 09/16/2013 12:30 3090807-015 OW157 Groundwater 4 09/16/2013 12:30 3090807-016 MW161 Groundwater 4 09/16/2013 11:30 3090807-017 MW262 Groundwater 4 09/16/2013 11:30 3090807-018 OW256 Groundwater 4 09/16/2013 12:15 3090807-021 TPZ159 Groundwater 4 09/17/2013 10:10 3090807-022 TPZ160 Groundwater 4 09/17/2013 11:30 3090807-023 TPZ16	13090807-005	MW152	Groundwater	4	09/16/2013 10:15
3090807-008 MW155 Groundwater 4 09/17/2013 8:25 3090807-009 MW252 Groundwater 4 09/16/2013 10:25 3090807-010 MW253 Groundwater 4 09/16/2013 11:00 3090807-011 MW350 Groundwater 4 09/16/2013 11:00 3090807-012 MW352 Groundwater 4 09/16/2013 10:35 3090807-013 MW355 Groundwater 4 09/16/2013 12:30 3090807-014 OW156 Groundwater 4 09/16/2013 12:30 3090807-015 OW157 Groundwater 4 09/16/2013 12:30 3090807-016 MW161 Groundwater 4 09/16/2013 11:50 3090807-018 OW256 Groundwater 4 09/16/2013 11:30 3090807-019 OW257 Groundwater 4 09/16/2013 12:50 3090807-020 TPZ158 Groundwater 4 09/17/2013 10:10 3090807-021 TPZ159 Groundwater 4 09/17/2013 13:35 3090807-022 TPZ1	13090807-006	MW153	Groundwater	4	09/17/2013 9:25
3090807-009 MW252 Groundwater 4 09/16/2013 10:25 3090807-010 MW253 Groundwater 4 09/17/2013 9:35 3090807-011 MW350 Groundwater 4 09/16/2013 11:00 3090807-012 MW352 Groundwater 4 09/16/2013 10:35 3090807-013 MW355 Groundwater 4 09/16/2013 12:30 3090807-014 OW156 Groundwater 4 09/16/2013 12:30 3090807-015 OW157 Groundwater 4 09/16/2013 12:30 3090807-016 MW161 Groundwater 4 09/16/2013 11:50 3090807-017 MW262 Groundwater 4 09/16/2013 11:30 3090807-018 OW256 Groundwater 4 09/16/2013 11:30 3090807-029 TPZ158 Groundwater 4 09/16/2013 12:50 3090807-020 TPZ159 Groundwater 4 09/17/2013 12:50 3090807-021 TPZ163 Groundwater 4 09/17/2013 12:50 3090807-022 TPZ	13090807-007	MW154	Groundwater	4	09/17/2013 9:00
3090807-010 MW253 Groundwater 4 09/17/2013 9:35 3090807-011 MW350 Groundwater 4 09/16/2013 11:00 3090807-012 MW352 Groundwater 4 09/16/2013 10:35 3090807-013 MW355 Groundwater 4 09/16/2013 12:30 3090807-014 OW156 Groundwater 4 09/16/2013 12:30 3090807-015 OW157 Groundwater 4 09/16/2013 12:30 3090807-016 MW161 Groundwater 4 09/16/2013 11:50 3090807-017 MW262 Groundwater 4 09/16/2013 11:30 3090807-018 OW256 Groundwater 4 09/16/2013 12:15 3090807-020 TPZ158 Groundwater 4 09/16/2013 12:50 3090807-021 TPZ159 Groundwater 4 09/17/2013 13:35 3090807-022 TPZ160 Groundwater 4 09/17/2013 10:55 3090807-024 TPZ163 Groundwater 4 09/17/2013 12:45 3090807-025 TP	13090807-008	MW155	Groundwater	4	09/17/2013 8:25
3090807-011 MW350 Groundwater 4 09/16/2013 11:00 3090807-012 MW352 Groundwater 4 09/16/2013 10:35 3090807-013 MW355 Groundwater 4 09/16/2013 12:30 3090807-014 OW156 Groundwater 4 09/16/2013 13:20 3090807-015 OW157 Groundwater 4 09/16/2013 13:20 3090807-016 MW161 Groundwater 4 09/16/2013 11:30 3090807-017 MW262 Groundwater 4 09/16/2013 12:15 3090807-018 OW256 Groundwater 4 09/16/2013 12:50 3090807-020 TPZ158 Groundwater 4 09/17/2013 10:10 3090807-021 TPZ159 Groundwater 4 09/17/2013 10:10 3090807-022 TPZ160 Groundwater 4 09/17/2013 13:5 3090807-023 TPZ163 Groundwater 4 09/17/2013 10:5 3090807-024 TPZ164 Groundwater 4 09/17/2013 12:4 3090807-025 TPZ	13090807-009	MW252	Groundwater	4	09/16/2013 10:25
3090807-012 MW352 Groundwater 4 09/16/2013 10:35 3090807-013 MW355 Groundwater 4 09/17/2013 8:35 3090807-014 OW156 Groundwater 4 09/16/2013 12:30 3090807-015 OW157 Groundwater 4 09/16/2013 13:20 3090807-016 MW161 Groundwater 4 09/16/2013 11:50 3090807-017 MW262 Groundwater 4 09/16/2013 12:15 3090807-018 OW256 Groundwater 4 09/16/2013 12:50 3090807-019 OW257 Groundwater 4 09/16/2013 12:50 3090807-020 TPZ158 Groundwater 4 09/17/2013 10:10 3090807-021 TPZ159 Groundwater 4 09/17/2013 13:35 3090807-022 TPZ160 Groundwater 4 09/17/2013 13:55 3090807-023 TPZ163 Groundwater 4 09/17/2013 12:50 3090807-024 TPZ164 Groundwater 4 09/17/2013 12:50 3090807-025 TPZ165 Groundwater 4 09/17/2013 12:50 3090807-	13090807-010	MW253	Groundwater	4	09/17/2013 9:35
3090807-013 MW355 Groundwater 4 09/17/2013 8:35 3090807-014 OW156 Groundwater 4 09/16/2013 12:30 3090807-015 OW157 Groundwater 4 09/16/2013 12:20 3090807-016 MW161 Groundwater 4 09/16/2013 11:50 3090807-017 MW262 Groundwater 4 09/16/2013 12:15 3090807-018 OW256 Groundwater 4 09/16/2013 12:50 3090807-019 OW257 Groundwater 4 09/16/2013 12:50 3090807-020 TPZ158 Groundwater 4 09/17/2013 12:50 3090807-021 TPZ159 Groundwater 4 09/17/2013 13:55 3090807-022 TPZ160 Groundwater 4 09/17/2013 13:55 3090807-023 TPZ163 Groundwater 4 09/17/2013 12:55 3090807-024 TPZ165 Groundwater 4 09/17/2013 12:55 3090807-025 TPZ166 Groundwater 4 09/17/2013 12:55 3090807-026	13090807-011	MW350	Groundwater	4	09/16/2013 11:00
3090807-014 OW156 Groundwater 4 09/16/2013 12:30 3090807-015 OW157 Groundwater 4 09/16/2013 13:20 3090807-016 MW161 Groundwater 4 09/16/2013 11:50 3090807-017 MW262 Groundwater 4 09/16/2013 11:30 3090807-018 OW256 Groundwater 4 09/16/2013 12:15 3090807-019 OW257 Groundwater 4 09/16/2013 12:50 3090807-020 TPZ158 Groundwater 4 09/17/2013 10:10 3090807-021 TPZ159 Groundwater 4 09/17/2013 13:35 3090807-022 TPZ160 Groundwater 4 09/17/2013 13:15 3090807-023 TPZ163 Groundwater 4 09/17/2013 10:55 3090807-024 TPZ164 Groundwater 4 09/17/2013 12:45 3090807-025 TPZ165 Groundwater 4 09/17/2013 12:20 3090807-026 TPZ166 Groundwater 4 09/17/2013 11:55 3090807-028 TPZ168 Groundwater 4 09/17/2013 11:50 30908	13090807-012	MW352	Groundwater	4	09/16/2013 10:35
3090807-015 OW157 Groundwater 4 09/16/2013 13:20 3090807-016 MW161 Groundwater 4 09/16/2013 11:50 3090807-017 MW262 Groundwater 4 09/16/2013 11:30 3090807-018 OW256 Groundwater 4 09/16/2013 12:15 3090807-019 OW257 Groundwater 4 09/17/2013 10:10 3090807-020 TPZ158 Groundwater 4 09/17/2013 10:10 3090807-021 TPZ159 Groundwater 4 09/17/2013 13:15 3090807-022 TPZ160 Groundwater 4 09/17/2013 13:15 3090807-023 TPZ163 Groundwater 4 09/17/2013 10:55 3090807-024 TPZ164 Groundwater 4 09/17/2013 12:45 3090807-025 TPZ165 Groundwater 4 09/17/2013 12:20 3090807-026 TPZ166 Groundwater 4 09/17/2013 11:50 3090807-028 TPZ168 Groundwater 4 09/17/2013 11:50 3090807-029 <	13090807-013	MW355	Groundwater	4	09/17/2013 8:35
3090807-016 MW161 Groundwater 4 09/16/2013 11:50 3090807-017 MW262 Groundwater 4 09/16/2013 11:30 3090807-018 OW256 Groundwater 4 09/16/2013 12:15 3090807-019 OW257 Groundwater 4 09/16/2013 12:50 3090807-020 TPZ158 Groundwater 4 09/17/2013 10:10 3090807-021 TPZ159 Groundwater 4 09/17/2013 13:35 3090807-022 TPZ160 Groundwater 4 09/17/2013 13:15 3090807-023 TPZ163 Groundwater 4 09/17/2013 10:55 3090807-024 TPZ164 Groundwater 4 09/17/2013 12:45 3090807-025 TPZ165 Groundwater 4 09/17/2013 12:20 3090807-026 TPZ166 Groundwater 4 09/17/2013 11:55 3090807-028 TPZ168 Groundwater 4 09/17/2013 11:50 3090807-029 DUP 1 Groundwater 4 09/17/2013 12:50 3090807-030 DUP 2 Groundwater 3 09/16/2013 12:50 30908	13090807-014	OW156	Groundwater	4	09/16/2013 12:30
3090807-017 MW262 Groundwater 4 09/16/2013 11:30 3090807-018 OW256 Groundwater 4 09/16/2013 12:15 3090807-019 OW257 Groundwater 4 09/16/2013 12:50 3090807-020 TPZ158 Groundwater 4 09/17/2013 10:10 3090807-021 TPZ159 Groundwater 4 09/17/2013 13:35 3090807-022 TPZ160 Groundwater 4 09/17/2013 10:55 3090807-023 TPZ163 Groundwater 4 09/17/2013 10:55 3090807-024 TPZ164 Groundwater 4 09/17/2013 12:45 3090807-025 TPZ165 Groundwater 4 09/17/2013 12:20 3090807-026 TPZ166 Groundwater 4 09/17/2013 11:55 3090807-028 TPZ168 Groundwater 4 09/17/2013 11:55 3090807-029 DUP 1 Groundwater 4 09/17/2013 12:50 3090807-030 DUP 2 Groundwater 3 09/16/2013 12:50 3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:55 <td>13090807-015</td> <td>OW157</td> <td>Groundwater</td> <td>4</td> <td>09/16/2013 13:20</td>	13090807-015	OW157	Groundwater	4	09/16/2013 13:20
3090807-018 OW256 Groundwater 4 09/16/2013 12:50 3090807-019 OW257 Groundwater 4 09/16/2013 12:50 3090807-020 TPZ158 Groundwater 4 09/17/2013 10:10 3090807-021 TPZ159 Groundwater 4 09/17/2013 13:35 3090807-022 TPZ160 Groundwater 4 09/17/2013 13:15 3090807-023 TPZ163 Groundwater 4 09/17/2013 10:55 3090807-024 TPZ164 Groundwater 4 09/17/2013 12:45 3090807-025 TPZ165 Groundwater 4 09/17/2013 12:45 3090807-026 TPZ166 Groundwater 4 09/17/2013 12:20 3090807-027 TPZ167 Groundwater 4 09/17/2013 11:55 3090807-028 TPZ168 Groundwater 4 09/17/2013 11:30 3090807-029 DUP 1 Groundwater 3 09/16/2013 12:50 3090807-030 DUP 2 Groundwater 3 09/16/2013 10:55 3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:50 </td <td>13090807-016</td> <td>MW161</td> <td>Groundwater</td> <td>4</td> <td>09/16/2013 11:50</td>	13090807-016	MW161	Groundwater	4	09/16/2013 11:50
3090807-019 OW257 Groundwater 4 09/16/2013 12:50 3090807-020 TPZ158 Groundwater 4 09/17/2013 10:10 3090807-021 TPZ159 Groundwater 4 09/17/2013 13:35 3090807-022 TPZ160 Groundwater 4 09/17/2013 13:15 3090807-023 TPZ163 Groundwater 4 09/17/2013 10:55 3090807-024 TPZ164 Groundwater 4 09/17/2013 12:45 3090807-025 TPZ165 Groundwater 4 09/17/2013 12:45 3090807-026 TPZ166 Groundwater 4 09/17/2013 12:20 3090807-027 TPZ167 Groundwater 4 09/17/2013 11:55 3090807-028 TPZ168 Groundwater 4 09/17/2013 11:30 3090807-029 DUP 1 Groundwater 3 09/16/2013 12:50 3090807-030 DUP 2 Groundwater 3 09/17/2013 10:55 3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:50	13090807-017	MW262	Groundwater	4	09/16/2013 11:30
3090807-020 TPZ158 Groundwater 4 09/17/2013 10:10 3090807-021 TPZ159 Groundwater 4 09/17/2013 13:35 3090807-022 TPZ160 Groundwater 4 09/17/2013 13:15 3090807-023 TPZ163 Groundwater 4 09/17/2013 10:55 3090807-024 TPZ164 Groundwater 4 09/17/2013 12:45 3090807-025 TPZ165 Groundwater 4 09/17/2013 12:20 3090807-026 TPZ166 Groundwater 4 09/17/2013 12:20 3090807-027 TPZ167 Groundwater 4 09/17/2013 11:55 3090807-028 TPZ168 Groundwater 4 09/17/2013 12:50 3090807-029 DUP 1 Groundwater 3 09/16/2013 12:50 3090807-030 DUP 2 Groundwater 3 09/17/2013 10:55 3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:50	13090807-018	OW256	Groundwater	4	09/16/2013 12:15
3090807-021 TPZ159 Groundwater 4 09/17/2013 13:35 3090807-022 TPZ160 Groundwater 4 09/17/2013 13:15 3090807-023 TPZ163 Groundwater 4 09/17/2013 10:55 3090807-024 TPZ164 Groundwater 4 09/17/2013 14:00 3090807-025 TPZ165 Groundwater 4 09/17/2013 12:45 3090807-026 TPZ166 Groundwater 4 09/17/2013 12:20 3090807-027 TPZ167 Groundwater 4 09/17/2013 11:55 3090807-028 TPZ168 Groundwater 4 09/17/2013 11:30 3090807-029 DUP 1 Groundwater 3 09/16/2013 12:50 3090807-030 DUP 2 Groundwater 3 09/17/2013 10:55 3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:50	13090807-019	OW257	Groundwater	4	09/16/2013 12:50
3090807-022 TPZ160 Groundwater 4 09/17/2013 13:15 3090807-023 TPZ163 Groundwater 4 09/17/2013 10:55 3090807-024 TPZ164 Groundwater 4 09/17/2013 14:00 3090807-025 TPZ165 Groundwater 4 09/17/2013 12:45 3090807-026 TPZ166 Groundwater 4 09/17/2013 12:20 3090807-027 TPZ167 Groundwater 4 09/17/2013 11:55 3090807-028 TPZ168 Groundwater 4 09/17/2013 11:30 3090807-029 DUP 1 Groundwater 3 09/16/2013 12:50 3090807-030 DUP 2 Groundwater 3 09/17/2013 10:55 3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:50	13090807-020	TPZ158	Groundwater	4	09/17/2013 10:10
3090807-023 TPZ163 Groundwater 4 09/17/2013 10:55 3090807-024 TPZ164 Groundwater 4 09/17/2013 14:00 3090807-025 TPZ165 Groundwater 4 09/17/2013 12:45 3090807-026 TPZ166 Groundwater 4 09/17/2013 12:20 3090807-027 TPZ167 Groundwater 4 09/17/2013 11:55 3090807-028 TPZ168 Groundwater 4 09/17/2013 11:30 3090807-029 DUP 1 Groundwater 3 09/16/2013 12:50 3090807-030 DUP 2 Groundwater 3 09/17/2013 10:55 3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:50	13090807-021	TPZ159	Groundwater	4	09/17/2013 13:35
3090807-024 TPZ164 Groundwater 4 09/17/2013 14:00 3090807-025 TPZ165 Groundwater 4 09/17/2013 12:45 3090807-026 TPZ166 Groundwater 4 09/17/2013 12:20 3090807-027 TPZ167 Groundwater 4 09/17/2013 11:55 3090807-028 TPZ168 Groundwater 4 09/17/2013 11:30 3090807-029 DUP 1 Groundwater 3 09/16/2013 12:50 3090807-030 DUP 2 Groundwater 3 09/17/2013 10:55 3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:50	13090807-022	TPZ160	Groundwater	4	09/17/2013 13:15
3090807-025 TPZ165 Groundwater 4 09/17/2013 12:45 3090807-026 TPZ166 Groundwater 4 09/17/2013 12:20 3090807-027 TPZ167 Groundwater 4 09/17/2013 11:55 3090807-028 TPZ168 Groundwater 4 09/17/2013 11:30 3090807-029 DUP 1 Groundwater 3 09/16/2013 12:50 3090807-030 DUP 2 Groundwater 3 09/17/2013 10:55 3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:50	13090807-023	TPZ163	Groundwater	4	09/17/2013 10:55
3090807-026 TPZ166 Groundwater 4 09/17/2013 12:20 3090807-027 TPZ167 Groundwater 4 09/17/2013 11:55 3090807-028 TPZ168 Groundwater 4 09/17/2013 11:30 3090807-029 DUP 1 Groundwater 3 09/16/2013 12:50 3090807-030 DUP 2 Groundwater 3 09/17/2013 10:55 3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:50	13090807-024	TPZ164	Groundwater	4	09/17/2013 14:00
3090807-027 TPZ167 Groundwater 4 09/17/2013 11:55 3090807-028 TPZ168 Groundwater 4 09/17/2013 11:30 3090807-029 DUP 1 Groundwater 3 09/16/2013 12:50 3090807-030 DUP 2 Groundwater 3 09/17/2013 10:55 3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:50	13090807-025	TPZ165	Groundwater	4	09/17/2013 12:45
3090807-028 TPZ168 Groundwater 4 09/17/2013 11:30 3090807-029 DUP 1 Groundwater 3 09/16/2013 12:50 3090807-030 DUP 2 Groundwater 3 09/17/2013 10:55 3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:50	13090807-026	TPZ166	Groundwater	4	09/17/2013 12:20
3090807-029 DUP 1 Groundwater 3 09/16/2013 12:50 3090807-030 DUP 2 Groundwater 3 09/17/2013 10:55 3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:50	3090807-027	TPZ167	Groundwater	4	09/17/2013 11:55
3090807-030 DUP 2 Groundwater 3 09/17/2013 10:55 3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:50	3090807-028	TPZ168	Groundwater	4	09/17/2013 11:30
3090807-031 Field Blank 1 Groundwater 3 09/16/2013 13:50	13090807-029	DUP 1	Groundwater	3	09/16/2013 12:50
	13090807-030	DUP 2	Groundwater	3	09/17/2013 10:55
3090807-032 Field Blank 2 Groundwater 3 09/17/2013 14:40	13090807-031	Field Blank 1	Groundwater	3	09/16/2013 13:50
	3090807-032	Field Blank 2	Groundwater	3	09/17/2013 14:40

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
13090807-001A	MW104D	09/16/2013 9:50	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:45
13090807-001B	MW104D	09/16/2013 9:50	09/18/2013 8:00		
	Field Elevation Measurements				09/16/2013 9:50
	Standard Methods 2550 B				09/16/2013 9:50
	SW-846 9040B				09/16/2013 9:50
	SW-846 9050A				09/16/2013 9:50
3090807-001C	MW104D	09/16/2013 9:50	09/18/2013 8:00		
	SW-846 9036 (Total)				09/18/2013 18:52
	SW-846 9251 (Total)				09/18/2013 18:47
13090807-001D	MW104D	09/16/2013 9:50	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 14:15	09/19/2013 18:24
13090807-002A	MW104S	09/16/2013 9:45	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:46
13090807-002B	MW104S	09/16/2013 9:45	09/18/2013 8:00		
	Field Elevation Measurements				09/16/2013 9:45
	Standard Methods 2550 B				09/16/2013 9:45
	SW-846 9040B				09/16/2013 9:45
	SW-846 9050A				09/16/2013 9:45
13090807-002C	MW104S	09/16/2013 9:45	09/18/2013 8:00		
	SW-846 9036 (Total)				09/18/2013 19:11
	SW-846 9251 (Total)				09/18/2013 19:11
3090807-002D	MW104S	09/16/2013 9:45	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 14:15	09/19/2013 18:27
13090807-003A	MW150	09/16/2013 11:15	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:46
13090807-003B	MW150	09/16/2013 11:15	09/18/2013 8:00		
	Field Elevation Measurements				09/16/2013 11:15
	Standard Methods 2550 B				09/16/2013 11:15
	SW-846 9040B				09/16/2013 11:15
	SW-846 9050A				09/16/2013 11:15
13090807-003C	MW150	09/16/2013 11:15	09/18/2013 8:00		
	SW-846 9036 (Total)				09/19/2013 23:30
	SW-846 9251 (Total)				09/18/2013 19:38
13090807-003D	MW150	09/16/2013 11:15	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 14:15	09/19/2013 18:38

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
13090807-004A	MW151	09/16/2013 10:45	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:46
13090807-004B	MW151	09/16/2013 10:45	09/18/2013 8:00		
	Field Elevation Measurements				09/16/2013 10:45
	Standard Methods 2550 B				09/16/2013 10:45
	SW-846 9040B				09/16/2013 10:45
	SW-846 9050A				09/16/2013 10:45
3090807-004C	MW151	09/16/2013 10:45	09/18/2013 8:00		
	SW-846 9036 (Total)				09/19/2013 23:32
	SW-846 9251 (Total)				09/18/2013 19:41
13090807-004D	MW151	09/16/2013 10:45	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 14:15	09/19/2013 18:42
13090807-005A	MW152	09/16/2013 10:15	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:46
13090807-005B	MW152	09/16/2013 10:15	09/18/2013 8:00		
	Field Elevation Measurements				09/16/2013 10:15
	Standard Methods 2550 B				09/16/2013 10:15
	SW-846 9040B				09/16/2013 10:15
	SW-846 9050A				09/16/2013 10:15
13090807-005C	MW152	09/16/2013 10:15	09/18/2013 8:00		
	SW-846 9036 (Total)				09/19/2013 23:38
	SW-846 9251 (Total)				09/18/2013 20:05
3090807-005D	MW152	09/16/2013 10:15	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 14:15	09/19/2013 18:46
13090807-006A	MW153	09/17/2013 9:25	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:47
13090807-006B	MW153	09/17/2013 9:25	09/18/2013 8:00		
	Field Elevation Measurements				09/17/2013 9:25
	Standard Methods 2550 B				09/17/2013 9:25
	SW-846 9040B				09/17/2013 9:25
	SW-846 9050A				09/17/2013 9:25
13090807-006C	MW153	09/17/2013 9:25	09/18/2013 8:00		
	SW-846 9036 (Total)				09/20/2013 18:39
	SW-846 9251 (Total)				09/18/2013 20:13
13090807-006D	MW153	09/17/2013 9:25	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 14:15	09/19/2013 18:50

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
3090807-007A	MW154	09/17/2013 9:00	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:47
13090807-007B	MW154	09/17/2013 9:00	09/18/2013 8:00		
	Field Elevation Measurements				09/17/2013 9:00
	Standard Methods 2550 B				09/17/2013 9:00
	SW-846 9040B				09/17/2013 9:00
	SW-846 9050A				09/17/2013 9:00
3090807-007C	MW154	09/17/2013 9:00	09/18/2013 8:00		
	SW-846 9036 (Total)				09/19/2013 23:46
	SW-846 9251 (Total)				09/18/2013 20:22
13090807-007D	MW154	09/17/2013 9:00	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 14:15	09/19/2013 18:53
3090807-008A	MW155	09/17/2013 8:25	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:48
13090807-008B	MW155	09/17/2013 8:25	09/18/2013 8:00		
	Field Elevation Measurements				09/17/2013 8:25
	Standard Methods 2550 B				09/17/2013 8:25
	SW-846 9040B				09/17/2013 8:25
	SW-846 9050A				09/17/2013 8:25
3090807-008C	MW155	09/17/2013 8:25	09/18/2013 8:00		
	SW-846 9036 (Total)				09/18/2013 20:30
	SW-846 9251 (Total)				09/18/2013 20:30
3090807-008D	MW155	09/17/2013 8:25	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 14:15	09/19/2013 18:57
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 14:15	09/20/2013 19:26
13090807-009A	MW252	09/16/2013 10:25	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:48
3090807-009B	MW252	09/16/2013 10:25	09/18/2013 8:00		
	Field Elevation Measurements				09/16/2013 10:25
	Standard Methods 2550 B				09/16/2013 10:25
	SW-846 9040B				09/16/2013 10:25
	SW-846 9050A				09/16/2013 10:25
3090807-009C	MW252	09/16/2013 10:25	09/18/2013 8:00		
	SW-846 9036 (Total)				09/18/2013 20:43
	SW-846 9251 (Total)				09/18/2013 20:39
13090807-009D	MW252	09/16/2013 10:25	09/18/2013 8:00		

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807 Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 14:15	09/19/2013 19:08
3090807-010A	MW253	09/17/2013 9:35	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:49
3090807-010B	MW253	09/17/2013 9:35	09/18/2013 8:00		
	Field Elevation Measurements				09/17/2013 9:35
	Standard Methods 2550 B				09/17/2013 9:35
	SW-846 9040B				09/17/2013 9:35
	SW-846 9050A				09/17/2013 9:35
3090807-010C	MW253	09/17/2013 9:35	09/18/2013 8:00		
	SW-846 9036 (Total)				09/20/2013 18:44
	SW-846 9251 (Total)				09/18/2013 21:04
3090807-010D	MW253	09/17/2013 9:35	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 14:15	09/19/2013 19:12
.3090807-011A	MW350	09/16/2013 11:00	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:49
3090807-011B	MW350	09/16/2013 11:00	09/18/2013 8:00		
	Field Elevation Measurements				09/16/2013 11:00
	Standard Methods 2550 B				09/16/2013 11:00
	SW-846 9040B				09/16/2013 11:00
	SW-846 9050A				09/16/2013 11:00
3090807-011C	MW350	09/16/2013 11:00	09/18/2013 8:00		
	SW-846 9036 (Total)				09/18/2013 21:26
	SW-846 9251 (Total)				09/18/2013 21:26
3090807-011D	MW350	09/16/2013 11:00	09/18/2013 8:00		0,710,2010 21.20
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 18:20
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/23/2013 16:10
3090807-012A	MW352	09/16/2013 10:35	09/18/2013 8:00	09/18/2013 13.33	07/23/2013 10.10
3070007 01271		0)/10/2013 10.33	07/10/2013 0:00		00/10/2012 11 40
2000007.012D	Standard Methods 2540 C (Total)	00/16/0012 10 25	00/10/2012 0 00		09/19/2013 11:49
3090807-012B	MW352	09/16/2013 10:35	09/18/2013 8:00		
	Field Elevation Measurements				09/16/2013 10:35
	Standard Methods 2550 B				09/16/2013 10:35
	SW-846 9040B				09/16/2013 10:35
	SW-846 9050A				09/16/2013 10:35
13090807-012C	MW352	09/16/2013 10:35	09/18/2013 8:00		
	SW-846 9036 (Total)				09/18/2013 21:32
	SW-846 9251 (Total)				09/26/2013 15:22

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
3090807-012D	MW352	09/16/2013 10:35	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 15:27
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/23/2013 16:16
13090807-013A	MW355	09/17/2013 8:35	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:50
13090807-013B	MW355	09/17/2013 8:35	09/18/2013 8:00		
	Field Elevation Measurements				09/17/2013 8:35
	Standard Methods 2550 B				09/17/2013 8:35
	SW-846 9040B				09/17/2013 8:35
	SW-846 9050A				09/17/2013 8:35
13090807-013C	MW355	09/17/2013 8:35	09/18/2013 8:00		03/17/2018 0.08
	SW-846 9036 (Total)				09/20/2013 18:58
	SW-846 9251 (Total)				09/18/2013 13:56
13090807-013D	MW355	09/17/2013 8:35	09/18/2013 8:00		07/10/2013 21.30
13090607-013D		09/17/2013 8.33	09/18/2013 8.00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 18:26
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/23/2013 16:41
13090807-014A	OW156	09/16/2013 12:30	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:50
13090807-014B	OW156	09/16/2013 12:30	09/18/2013 8:00		
	Field Elevation Measurements				09/16/2013 12:30
	Standard Methods 2550 B				09/16/2013 12:30
	SW-846 9040B				09/16/2013 12:30
	SW-846 9050A				09/16/2013 12:30
3090807-014C	OW156	09/16/2013 12:30	09/18/2013 8:00		
	SW-846 9036 (Total)				09/20/2013 19:00
	SW-846 9251 (Total)				09/18/2013 22:10
13090807-014D	OW156	09/16/2013 12:30	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 16:01
13090807-015A	OW157	09/16/2013 13:20	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:50
13090807-015B	OW157	09/16/2013 13:20	09/18/2013 8:00		
	Field Elevation Measurements				09/16/2013 13:20
	Standard Methods 2550 B				09/16/2013 13:20
	SW-846 9040B				09/16/2013 13:20
	SW-846 9050A				09/16/2013 13:20
13090807-015C	OW157	09/16/2013 13:20	09/18/2013 8:00		

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9036 (Total)				09/20/2013 19:06
	SW-846 9251 (Total)				09/18/2013 22:18
13090807-015D	OW157	09/16/2013 13:20	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 16:07
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/23/2013 16:47
13090807-016A	MW161	09/16/2013 11:50	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:51
13090807-016B	MW161	09/16/2013 11:50	09/18/2013 8:00		
	Field Elevation Measurements				09/16/2013 11:50
	Standard Methods 2550 B				09/16/2013 11:50
	SW-846 9040B				09/16/2013 11:50
	SW-846 9050A				09/16/2013 11:50
13090807-016C	MW161	09/16/2013 11:50	09/18/2013 8:00		
	SW-846 9036 (Total)				09/26/2013 14:50
	SW-846 9251 (Total)				09/18/2013 22:20
13090807-016D	MW161	09/16/2013 11:50	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 16:13
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/23/2013 16:53
13090807-017A	MW262	09/16/2013 11:30	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:51
13090807-017B	MW262	09/16/2013 11:30	09/18/2013 8:00		
	Field Elevation Measurements				09/16/2013 11:30
	Standard Methods 2550 B				09/16/2013 11:30
	SW-846 9040B				09/16/2013 11:30
	SW-846 9050A				09/16/2013 11:30
13090807-017C	MW262	09/16/2013 11:30	09/18/2013 8:00		
	SW-846 9036 (Total)				09/18/2013 22:28
	SW-846 9251 (Total)				09/18/2013 22:28
13090807-017D	MW262	09/16/2013 11:30	09/18/2013 8:00		57, TG, E015 E2.20
	SW-846 3005A, 6010B, Metals by ICP (Total)	25.20,2010 11100	23, 20, 2010 0.00	00/19/2012 15:52	09/20/2013 16:19
13090807-018A	OW256	09/16/2013 12:15	09/18/2013 8:00	09/18/2013 15:53	09/20/2013 10:19
15070007-010A		07/10/2013 12.13	07/10/2013 0.00		00/10/2012 11 72
12000007 0100	Standard Methods 2540 C (Total)	00/16/2012 12 15	00/19/2012 0.00		09/19/2013 11:52
13090807-018B	OW256	09/16/2013 12:15	09/18/2013 8:00		
	Field Elevation Measurements				09/16/2013 12:15
	Standard Methods 2550 B				09/16/2013 12:15
	SW-846 9040B				09/16/2013 12:15

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9050A				09/16/2013 12:15
13090807-018C	OW256	09/16/2013 12:15	09/18/2013 8:00		
	SW-846 9036 (Total)				09/20/2013 19:11
	SW-846 9251 (Total)				09/18/2013 22:58
13090807-018D	OW256	09/16/2013 12:15	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 16:25
13090807-019A	OW257	09/16/2013 12:50	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:53
13090807-019B	OW257	09/16/2013 12:50	09/18/2013 8:00		
	Field Elevation Measurements				09/16/2013 12:50
	Standard Methods 2550 B				09/16/2013 12:50
	SW-846 9040B				09/16/2013 12:50
	SW-846 9050A				09/16/2013 12:50
13090807-019C	OW257	09/16/2013 12:50	09/18/2013 8:00		
	SW-846 9036 (Total)				09/18/2013 23:06
	SW-846 9251 (Total)				09/18/2013 23:02
13090807-019D	OW257	09/16/2013 12:50	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 16:31
13090807-020A	TPZ158	09/17/2013 10:10	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:53
13090807-020B	TPZ158	09/17/2013 10:10	09/18/2013 8:00		
	Field Elevation Measurements				09/17/2013 10:10
	Standard Methods 2550 B				09/17/2013 10:10
	SW-846 9040B				09/17/2013 10:10
	SW-846 9050A				09/17/2013 10:10
13090807-020C	TPZ158	09/17/2013 10:10	09/18/2013 8:00		
	SW-846 9036 (Total)				09/18/2013 23:09
	SW-846 9251 (Total)				09/18/2013 23:14
13090807-020D	TPZ158	09/17/2013 10:10	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 16:37
13090807-021A	TPZ159	09/17/2013 13:35	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:54
13090807-021B	TPZ159	09/17/2013 13:35	09/18/2013 8:00		
	Field Elevation Measurements				09/17/2013 13:35
	Standard Methods 2550 B				09/17/2013 13:35
	SW-846 9040B				09/17/2013 13:35

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807 Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9050A				09/17/2013 13:35
3090807-021C	TPZ159	09/17/2013 13:35	09/18/2013 8:00		
	SW-846 9036 (Total)				09/18/2013 23:22
	SW-846 9251 (Total)				09/18/2013 23:17
13090807-021D	TPZ159	09/17/2013 13:35	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 16:43
13090807-022A	TPZ160	09/17/2013 13:15	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:54
13090807-022B	TPZ160	09/17/2013 13:15	09/18/2013 8:00		
	Field Elevation Measurements				09/17/2013 13:15
	Standard Methods 2550 B				09/17/2013 13:15
	SW-846 9040B				09/17/2013 13:15
	SW-846 9050A				09/17/2013 13:15
13090807-022C	TPZ160	09/17/2013 13:15	09/18/2013 8:00		
	SW-846 9036 (Total)				09/20/2013 19:30
	SW-846 9251 (Total)				09/18/2013 23:25
13090807-022D	TPZ160	09/17/2013 13:15	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 17:01
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/23/2013 16:59
13090807-023A	TPZ163	09/17/2013 10:55	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:54
13090807-023B	TPZ163	09/17/2013 10:55	09/18/2013 8:00		
	Field Elevation Measurements				09/17/2013 10:55
	Standard Methods 2550 B				09/17/2013 10:55
	SW-846 9040B				09/17/2013 10:55
	SW-846 9050A				09/17/2013 10:55
13090807-023C	TPZ163	09/17/2013 10:55	09/18/2013 8:00		
	SW-846 9036 (Total)				09/20/2013 19:33
	SW-846 9251 (Total)				09/18/2013 23:49
13090807-023D	TPZ163	09/17/2013 10:55	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 17:07
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/23/2013 17:05
13090807-024A	TPZ164	09/17/2013 14:00	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:55
13090807-024B	TPZ164	09/17/2013 14:00	09/18/2013 8:00		
	Field Elevation Measurements				09/17/2013 14:00

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	Standard Methods 2550 B				09/17/2013 14:00
	SW-846 9040B				09/17/2013 14:00
	SW-846 9050A				09/17/2013 14:00
13090807-024C	TPZ164	09/17/2013 14:00	09/18/2013 8:00		
	SW-846 9036 (Total)				09/19/2013 0:03
	SW-846 9251 (Total)				09/19/2013 0:03
13090807-024D	TPZ164	09/17/2013 14:00	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 17:13
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/23/2013 17:23
3090807-025A	TPZ165	09/17/2013 12:45	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:55
13090807-025B	TPZ165	09/17/2013 12:45	09/18/2013 8:00		
	Field Elevation Measurements				09/17/2013 12:45
	Standard Methods 2550 B				09/17/2013 12:45
	SW-846 9040B				09/17/2013 12:45
	SW-846 9050A				09/17/2013 12:45
3090807-025C	TPZ165	09/17/2013 12:45	09/18/2013 8:00		
	SW-846 9036 (Total)				09/20/2013 19:38
	SW-846 9251 (Total)				09/19/2013 0:19
3090807-025D	TPZ165	09/17/2013 12:45	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 17:19
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/23/2013 17:29
3090807-026A	TPZ166	09/17/2013 12:20	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:56
13090807-026B	TPZ166	09/17/2013 12:20	09/18/2013 8:00		
	Field Elevation Measurements				09/17/2013 12:20
	Standard Methods 2550 B				09/17/2013 12:20
	SW-846 9040B				09/17/2013 12:20
	SW-846 9050A				09/17/2013 12:20
3090807-026C	TPZ166	09/17/2013 12:20	09/18/2013 8:00		
	SW-846 9036 (Total)				09/19/2013 0:49
	SW-846 9251 (Total)				09/19/2013 0:43
3090807-026D	TPZ166	09/17/2013 12:20	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 17:25
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/23/2013 17:35
13090807-027A	TPZ167	09/17/2013 11:55	09/18/2013 8:00		

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	Standard Methods 2540 C (Total)				09/19/2013 11:56
13090807-027B	TPZ167	09/17/2013 11:55	09/18/2013 8:00		
	Field Elevation Measurements				09/17/2013 11:55
	Standard Methods 2550 B				09/17/2013 11:55
	SW-846 9040B				09/17/2013 11:55
	SW-846 9050A				09/17/2013 11:55
3090807-027C	TPZ167	09/17/2013 11:55	09/18/2013 8:00		
	SW-846 9036 (Total)				09/20/2013 19:49
	SW-846 9251 (Total)				09/19/2013 0:57
3090807-027D	TPZ167	09/17/2013 11:55	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 17:44
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/23/2013 17:53
13090807-028A	TPZ168	09/17/2013 11:30	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:56
13090807-028B	TPZ168	09/17/2013 11:30	09/18/2013 8:00		
	Field Elevation Measurements				09/17/2013 11:30
	Standard Methods 2550 B				09/17/2013 11:30
	SW-846 9040B				09/17/2013 11:30
	SW-846 9050A				09/17/2013 11:30
13090807-028C	TPZ168	09/17/2013 11:30	09/18/2013 8:00		
	SW-846 9036 (Total)				09/20/2013 19:52
	SW-846 9251 (Total)				09/19/2013 1:05
3090807-028D	TPZ168	09/17/2013 11:30	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 17:50
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/23/2013 18:00
13090807-029A	DUP 1	09/16/2013 12:50	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:57
13090807-029B	DUP 1	09/16/2013 12:50	09/18/2013 8:00		
	SW-846 9036 (Total)				09/19/2013 1:13
	SW-846 9251 (Total)				09/19/2013 1:08
13090807-029C	DUP 1	09/16/2013 12:50	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 17:56
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/23/2013 18:06
13090807-030A	DUP 2	09/17/2013 10:55	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:57
13090807-030B	DUP 2	09/17/2013 10:55	09/18/2013 8:00		

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807 Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9036 (Total)				09/20/2013 20:00
	SW-846 9251 (Total)				09/23/2013 16:59
13090807-030C	DUP 2	09/17/2013 10:55	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/20/2013 18:14
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 15:53	09/23/2013 18:12
13090807-031A	Field Blank 1	09/16/2013 13:50	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:58
13090807-031B	Field Blank 1	09/16/2013 13:50	09/18/2013 8:00		
	SW-846 9036 (Total)				09/19/2013 1:39
	SW-846 9251 (Total)				09/19/2013 1:39
13090807-031C	Field Blank 1	09/16/2013 13:50	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 18:04	09/19/2013 19:23
13090807-032A	Field Blank 2	09/17/2013 14:40	09/18/2013 8:00		
	Standard Methods 2540 C (Total)				09/19/2013 11:58
13090807-032B	Field Blank 2	09/17/2013 14:40	09/18/2013 8:00		
	SW-846 9036 (Total)				09/19/2013 1:41
	SW-846 9251 (Total)				09/19/2013 1:41
13090807-032C	Field Blank 2	09/17/2013 14:40	09/18/2013 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/18/2013 18:04	09/19/2013 19:26

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

SW-846 9040B											
Batch R182124	SampType:	LCSD		Units					RPD	Limit 1.8	
SampID: LCSD-R18	82124										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
pH, Field			1		7.05	7	0	100.7	7.05	0.00	09/16/2013
pH, Field			1		7.05	7	0	100.7	7.05	0.00	09/17/2013
Batch R182124 SampID: LCS-R182	SampType: 2124	LCS		Units							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
pH, Field			1		7.04	7	0	100.6	99.1	101	09/17/2013
pH, Field			1		7.05	7	0	100.7	99.1	101	09/16/2013
SW-846 9050A											
Batch R182124 SampID: LCSD-R18	SampType: 82124	LCSD		Units µmhos/	cm				RPD	Limit 10	Date
Analyses			RL	Qual	Recult	Snike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Spec. Conductant	ce Field		1	Quai	1420	1409	0	100.8	1411	0.64	09/17/2013
Spec. Conductant			1		1440	1409	0	101.9	1411	1.76	09/16/2013
Batch R182124	SampType:	LCS		Units µmhos/	cm						
SampID: LCS-R182	2124						00140 4141	~ 550		10 1 11 2	Date Analyzed
Analyses			RL	Qual			SPK Ref Val			High Limit	•
Spec. Conductano			1		1410	1409	0	100.1	90	110	09/16/2013
Spec. Conductand	ce, Fleid		1		1410	1409	0	100.2	90	110	09/17/2013
STANDARD MET			AL)								
Batch R182010 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved S	olids		20		< 20						09/19/2013
Total Dissolved S	olids		20		< 20						09/19/2013
Total Dissolved S	olids		20		< 20						09/19/2013
Batch R182010 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved S	olids		20	•		1000	0	91.6	90	110	09/19/2013
Batch R182010 SampID: LCSQC	SampType:	LCSQ	3	Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
	olide		20	•	976	1000	0	97.6	90	110	09/19/2013
Total Dissolved S	Ullus		20		310	1000	U	01.0	30	110	00/10/2010

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

STANDARD METHODS 2540 (Units mg/L							
Batch R182010 SampType: SampID: 13090807-001A MS	IVIS		Office mg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Solids		20		1190	500	676	102.8	85	115	09/19/2013
Batch R182010 SampType:	MSD		Units mg/L					RPD	Limit 15	
SampID: 13090807-001A MSD										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Total Dissolved Solids		20		1200	500	676	104.4	1190	0.67	09/19/2013
Batch R182010 SampType:	MS		Units mg/L							
SampID: 13090807-020A MS										Date
Analyses		RL	Qual	Result		SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Solids		20		910	500	394	103.2	85	115	09/19/2013
Batch R182010 SampType:	MSD		Units mg/L					RPD	Limit 15	
SampID: 13090807-020A MSD										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Total Dissolved Solids		20		898	500	394	100.8	910	1.33	09/19/2013
Batch R182010 SampType:	DUP		Units mg/L					RPD	Limit 15	
SampID: 13090807-011A DUP										Date Analyzed
Analyses		RL	Qual		Spike	SPK Ref Val	%REC		/al %RPD	
Total Dissolved Solids		20		1650				1638	0.49	09/19/2013
Batch R182010 SampType:	DUP		Units mg/L					RPD	Limit 15	
SampID: 13090807-025A DUP										Date
Analyses		RL	Qual		Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Total Dissolved Solids		20		1980				1804	9.20	09/19/2013
Batch R182010 SampType:	DUP		Units mg/L					RPD	Limit 15	
SampID: 13090807-030A DUP										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Total Dissolved Solids		20		1390				1390	0.00	09/19/2013
SW-846 9036 (TOTAL)										
Batch R181951 SampType: SampID: MBLK	MBLK		Units mg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate		10	4 mm.	< 10	Spino				<u> </u>	09/18/201

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13090807

Batch R181951	SampType:	LCS		Units mg/L							
SamplD: LCS	oup., ypo.			5							Date
Analyses			RL	Oual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10	Quai	20	20	0	99.2	90	110	09/18/2013
Batch R181951 SampID: 13090807	SampType: -002CMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10	SE	56	10	42.89	135.2	85	115	09/18/2013
Batch R181951	SampType:	MSD		Units mg/L					RPD	Limit 10	
SampID: 13090807	-002CMSD		DI	01	D14	C:1	SPK Ref Val	%PEC	PPD Pof \	/al %RPD	Date Analyzed
Analyses Sulfate			RL 10	Qual SE	60	10	42.89	169.9	56.41	5.97	09/18/2013
Batch R182015 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10						09/19/2013
Batch R182015	SampType:	LCS		Units mg/L							
SampID: LCS											Date
Analyses			RL	Qual			SPK Ref Val			High Limit	Analyzed
Sulfate			10		19	20	0	96.4	90	110	09/19/2013
Batch R182065	SampType:	MBLK		Units mg/L							
SampID: MBLK											Date
Analyses			RL	Qual		Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10						09/20/2013
Batch R182065 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10	• ""	19	20	0	94.1	90	110	09/20/2013
Batch R182065 SampID: 13090807	SampType: -010CMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			200			200	349.1	106.4	85	115	09/20/2013
	SampType:	MSD		Units mg/L					RPD	Limit 10	
Batch R182065	Samp Type.	WIOD									
Batch R182065 SampID: 13090807		MOD	RL	Qual			SPK Ref Val			/al %RPD	Date Analyzed

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Client Project: Baldwin - Groundwater Monitoring

Work Order: 13090807

Report Date: 02-Oct-13

Batch R182065	SampType:	MS		Units mg/L							
SampID: 13090807-											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			200	S	732	200	471.8	130	85	115	09/20/2013
Batch R182065	SampType:	MSD		Units mg/L					RPD	Limit 10	
SampID: 13090807-	·025CMSD		RL	Oual	Dogult	Cnilso	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Date Analyzed
Analyses Sulfate			200	S	775	200	471.8	151.5	731.9	5.71	09/20/2013
Batch R182102 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10						09/23/2013
Batch R182102 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual			SPK Ref Val			High Limit	Analyzed
Sulfate			10		18	20	0	91.8	90	110	09/23/2013
Batch R182263 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10	J	6						09/26/2013
Batch R182263 SampID: MBLK 130	SampType: 923	MBLK		Units mg/L			00// 0 ///	0/050			Date Analyzed
Analyses Sulfate			RL 10	Qual J	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	•
Sullate			10	J	10						09/26/2013
Batch R182263 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result		SPK Ref Val			High Limit	Analyzed
Sulfate			10		19	20	0	94.6	90	110	09/26/2013
Batch R182396 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual		Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10	J	5						10/01/2013
Batch R182396 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		19	20	0	95.8	90	110	10/01/2013

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

SW-846 9251 (TO											
Batch R181953 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5	J	2						09/18/2013
Batch R181953 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5		19	20	0	96	90	110	09/18/2013
Batch R181953 SampID: 13090807	SampType: 7-002CMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC		High Limit	Analyzed
Chloride			5		40	20	18.73	106.8	85	115	09/18/2013
Batch R181953 SampID: 13090807	SampType: 7-002CMSD	MSD		Units mg/L					RPD	Limit 15	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Chloride			5	S	43	20	18.73	119	40.1	5.88	09/18/2013
Batch R181953 SampID: 13090807	SampType: 7-010CMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result				Low Limit		Analyzed
Chloride			5		34	20	15.03	93	85	115	09/18/2013
Batch R181953 SampID: 13090807	SampType: 7-010CMSD	MSD		Units mg/L					RPD	Limit 15	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Chloride			5		34	20	15.03	96.4	33.63	2.00	09/18/2013
Batch R181953 SampID: 13090807	SampType: 7-025CMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result		SPK Ref Val		Low Limit	High Limit	Analyzed
Chloride			50		268	200	84.38	91.7	85	115	09/19/2013
Batch R181953 SampID: 13090807	SampType: 7-025CMSD	MSD		Units mg/L					RPD	Limit 15	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Chloride			50		274	200	84.38	94.8	267.8	2.29	09/19/2013
Batch R182030 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5	J	2						09/19/2013

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807 Report Date: 02-Oct-13

Client Project: Baldwin - Groundwater Monitoring

SW-846 9251 (TO	TAL)											
Batch R182030 SampID: LCS	SampType:	LCS		Units mg/L								Date
Analyses			RL	Qual	Result	Spike	SPK	Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5		18	20		0	90.6	90	110	09/19/2013
Batch R182109 SampID: MBLK	SampType:	MBLK		Units mg/L								Date
Analyses			RL	Qual	Result	Spike	SPK	Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			10	J	3							09/23/2013
Batch R182109 SampID: LCS	SampType:	LCS		Units mg/L								Date
Analyses			RL	Qual	Result	Spike	SPK	Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			10		20	20		0	98.8	90	110	09/23/2013
Batch R182243 SampID: MBLK	SampType:	MBLK		Units mg/L								Date
Analyses			RL	Qual	Result	Spike	SPK	Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5	J	1							09/26/2013
Batch R182243 SampID: MBLK 130	SampType:	MBLK		Units mg/L								Date
Analyses			RL	Qual	Result	Spike	SPK	Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5	J	3							09/26/2013
Batch R182243 SampID: LCS	SampType:	LCS		Units mg/L								Date
Analyses			RL	Qual	Result	Spike	SPK	Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5		20	20		0	99.8	90	110	09/26/2013
Batch R182394 SampID: MBLK	SampType:	MBLK		Units mg/L								Date
Analyses			RL	Qual	Result	Spike	SPK	Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5	J	2							10/01/2013
Batch R182394 SampID: LCS	SampType:	LCS		Units mg/L								Date
Analyses			RL	Qual			SPK	Ref Val			High Limit	Analyzed
Chloride			5		20	20		0	101.7	90	110	10/01/2013

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

SW-846 3005A, 60	010B, METAL	S BY IC	СР (ТОТ	AL)							
Batch 92049	SampType:	MBLK		Units mg/L							
SampID: MBLK-920	049										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02	•	< 0.02	0.02	0	0	-100	100	09/19/2013
Iron			0.02		< 0.02	0.02	0	0	-100	100	09/20/2013
Iron			0.02		< 0.02	0.02	0	0	-100	100	09/19/2013
Manganese			0.005		< 0.005	0.005	0	0	-100	100	09/19/2013
Manganese			0.005		< 0.005	0.005	0	0	-100	100	09/20/2013
Batch 92049	SampType:	LCS		Units mg/L							
SampID: LCS-9204	9										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02		0.52	0.5	0	104.1	85	115	09/19/2013
Iron			0.02		1.04	1	0	103.7	85	115	09/20/2013
Iron			0.02		1.03	1	0	102.9	85	115	09/19/2013
Manganese			0.005		0.516	0.5	0	103.2	85	115	09/19/2013
Manganese			0.005		0.53	0.5	0	106	85	115	09/20/2013
Batch 92049	SampType:	MS		Units mg/L							
SamplD: 13090807											Date
Analyses			RL	Qual	Docult	Spileo	SPK Ref Val	%RFC	Low Limit	High Limit	Analyzed
Boron			0.02	Quai	0.659	0.5	0.141	103.6	75	125	09/19/2013
Iron			0.02		4.22	1	3.18	104.4	75 75	125	09/19/2013
Manganese			0.005		5.48	0.5	4.97	103.4	75 75	125	09/19/2013
Wanganese			0.000		3.40	0.0	4.07	100	70	120	00/10/2010
Batch 92049	SampType:	MSD		Units mg/L					RPD	Limit 20	
SampID: 13090807	-002DMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Boron			0.02		0.661	0.5	0.141	103.9	0.659	0.27	09/19/2013
Iron			0.02		4.2	1	3.18	102.8	4.22	0.38	09/19/2013
Manganese			0.005		5.45	0.5	4.97	96.2	5.48	0.62	09/19/2013
Batch 92055	SampType:	MBLK		Units mg/L							
SampID: MBLK-920	055										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02	Q 0.002	< 0.02	0.02	0	0	-100	100	09/20/2013
Iron			0.02		< 0.02		0	0	-100	100	09/20/2013
Manganese			0.005		< 0.005		0	0	-100	100	09/20/2013
Batch 92055	SampType:	LCS		Units mg/L							
SampID: LCS-9205											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02	Yuui	0.5	0.5	0	99.9	85	115	09/20/2013
Iron			0.02		1.05	1	0	105.2	85	115	09/20/2013
Manganese			0.005		0.505	0.5	0	101	85	115	09/20/2013
					2.000		-	-	- -	-	

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13090807

Client Project: Baldwin - Groundwater Monitoring

Report Date: 02-Oct-13

SW-846 3005A, 60	010B, METAL	S BY IC	CP (TOI	ΓAL)							
Batch 92055 SampID: 13090807	SampType: -012DMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02	<u> </u>	1.98	0.5	1.42	112.2	75	125	09/23/2013
Iron			0.02		1.24	1	0.179	106	75	125	09/20/2013
Manganese			0.005		0.526	0.5	0.007	103.8	75	125	09/20/2013
Batch 92055	SampType:	MSD		Units mg/L					RPD	Limit 20	
SampID: 13090807	-012DMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Boron			0.02	4 0.002	1.95	0.5	1.42	105	1.98	1.83	09/23/2013
Iron			0.02		1.25	1	0.179	106.8	1.24	0.64	09/20/2013
Manganese			0.005		0.534	0.5	0.007	105.4	0.526	1.47	09/20/2013
Batch 92055 SampID: 13090807	SampType: -026DMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02		0.765	0.5	0.228	107.6	75	125	09/23/2013
Iron			0.02		1.11	1	0.093	101.4	75	125	09/20/2013
Manganese			0.005		0.755	0.5	0.234	104.1	75	125	09/20/2013
Batch 92055	SampType:	MSD		Units mg/L					RPD	Limit 20	
SampID: 13090807	-026DMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Boron			0.02		0.744	0.5	0.228	103.3	0.765	2.85	09/23/2013
Iron			0.02		1.1	1	0.093	100.6	1.11	0.73	09/20/2013
Manganese			0.005		0.746	0.5	0.234	102.3	0.755	1.17	09/20/2013
Batch 92061 SampID: MBLK-920	SampType:	MBLK		Units mg/L							_
·	JO 1		D.1		D 1	a	ODK D-(1)/-1	0/050	1 1 2 9	Library Library	Date Analyzed
Analyses			RL	Qual			SPK Ref Val			High Limit	
Boron			0.02		< 0.02	0.02	0	0	-100	100	09/19/2013
Iron			0.02		< 0.02		0	0	-100	100	09/19/2013
Manganese			0.005		< 0.005	0.005	0	0	-100	100	09/19/2013
Batch 92061	SampType:	LCS		Units mg/L							
SampID: LCS-9206	T .						001/5 11/1				Date
Analyses			RL	Qual			SPK Ref Val		Low Limit	<u> </u>	Analyzed
Boron			0.02		0.523	0.5	0	104.6	85	115	09/19/2013
Iron			0.02		1.04	1	0	103.9	85	115	09/19/2013
Manganese			0.005		0.52	0.5	0	104.1	85	115	09/19/2013

Manganese

Quality Control Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

0.005

Work Order: 13090807 Report Date: 02-Oct-13

125

09/19/2013

Client Project: Baldwin - Groundwater Monitoring

SW-846 3005A, 66	010B, METAL	S BY ICP (ΓΟΤΑL)							
Batch 92061	SampType:	MS	Units r	ng/L						
SampID: 13090807	7-032CMS									Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron		0.	02	0.515	0.5	0	103.1	75	125	09/19/2013
Iron		0.	02	1.03	1	0	102.8	75	125	09/19/2013

Batch 92061	SampType:	MSD		Units mg/L					RPD L	imit 20	
SampID: 1309080	7-032CMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	l %RPD	Analyzed
Boron			0.02		0.521	0.5	0	104.2	0.515	1.12	09/19/2013
Iron			0.02		1.03	1	0	103.3	1.03	0.49	09/19/2013
Manganese			0.005		0.518	0.5	0	103.5	0.514	0.62	09/19/2013

0.514 0.5

102.9

Receiving Check List

http://www.teklabinc.com/

Work Order: 13090807 Client: Dynegy Midwest Generation, LLC Client Project: Baldwin - Groundwater Monitoring Report Date: 02-Oct-13 Carrier: Rick Schmidt Received By: EEP mily Pols Completed by: Reviewed by: On: On: 18-Sep-13 18-Sep-13 Emily E. Pohlman Michael L. Austin 35 Chain of custody Extra pages included Pages to follow: Shipping container/cooler in good condition? Yes **V** No Not Present Temp ℃ 1.6 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice **✓** No 🗔 Chain of custody present? Yes **V** Chain of custody signed when relinquished and received? Yes No L **~** Chain of custody agrees with sample labels? No 🗀 Yes Yes 🗹 Samples in proper container/bottle? No 🗀 **V** No 🗌 Sample containers intact? Yes **V** No Sufficient sample volume for indicated test? Yes **✓** All samples received within holding time? Yes No 🗀 NA 🗸 Field Lab Reported field parameters measured: Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1℃ - 6.0℃, or when samples are received on ice the same day as collected. No VOA vials 🗸 Water - at least one vial per sample has zero headspace? Yes 📙 No 🗀 No 🗌 No TOX containers Water - TOX containers have zero headspace? Yes 🗌 Yes 🗌 No 🗹 Water - pH acceptable upon receipt? NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? Yes No \square Any No responses must be detailed below or on the COC.

Additional nitric acid was needed in the metals container for TPZ159 upon arrival at the laboratory. EEP 9/18/13

pg. (of 4 Work order # 1309 0807 **CHAIN OF CUSTODY**

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client:	Dynegy Midwest Generation, LLC	3eneration, LLC				San	Samples on: 🔊 CE		BLUE ICE	NO ICE		<u>ح</u>	ر المراجعة			
Address:	604 Pierce Blvd.					Pre	Preserved in: 🔊 LAB	AB 🏢 FIELD	9			FOR LAB USE ONLY	USE			
City / State / Zin	/ 7in O'Fallon, IL 62269	6				Lab	Lab Notes:									
Contact:	Brian Voelker		Phone:	(618) 20	206-5800							:				
E-Mail:			Fax :			 -	Client Comments	Add	14/	A 6.7 A	B	12 1Cd	2	38	250 Mate	S. S. S. S. S. S. S. S. S. S. S. S. S. S
Are these samples	Are these samples known to be involved in litigation? If yes, a surcharge will apply	tigation? If yes, a sur	charge will	i	□ Yes □	No A	13410. SRH 9/18/	1/8//6) / / %	v ,		1	`			
Are these samples	Are these samples known to be hazardous?	□ Yes □ No			:		3	1/6:1:								
Are there any required reportin limits in the comment section.	g limits to b	e met on the requested	analysis?.	lf yes, plea	lease provide				:							
Proje	Project Name/Number	is	mple Co	Sample Collector's Name	Name		MATRIX			INDICATE	ATE /	ANALYSIS		REQUESTED	STED	-
Baldwin - Groundwater Monitoring	vater Monitoring	R.c.K	Rick Schmin	4/01/1		G					Field	Field				
Results	Results Requested	Billing Instructions		# and Type of	of Containers	-		Mar	3orc							
Standard	1-2 Day (100% Surcharge)					indw		ngane	nlorid on, Iro	ondu	eld pl		TDS ulfate			
Other	3 Day (50% Surcharge)		ONP	INO:		vate		ese	on,							
Lab Use Only	Sample Identification	Date/Time Sampled				er —					ater	(C)	-			
13070807	MW104D	9-16-13	9.50	3 1		×			×	×	×	^ ×	×			
- KMF	MW104S	9-16-13 6	9.45	3 1		×			×	×	×	^_ ×	×		_	
	MW150	۱.,	11:15	1		×			×	×	×	×	×			
	MW151	<u></u>	١	3 1		×			×	×	×	×	×			2
7815	MW152	9-16-13	╁	3 1		×			×	×	×	×	×			
900	MW153	9-17-13 9	-	3 1		×			×	×	×	×	×			
400.7	MW154	9-17-13 9	9:00	3 1		×			×	×	×	×	×			
) J. J.	MW155	8 51-17-6	١.	1		×			×	×	×	×	×			
	MW252	9-16-13 10	56:01	1		×			×	×	×	-			_	
_	MW253	9-17-13 9	9.35	3 1		×			×	×	×	×	×			
	Relinquished By			Date/Time	9		ď	Received By			\dashv	ŀ		Date/Time	me	
Am		6	-18	-13 08	8:00		J. 375		ı		_	3	3	مٰک	8.00	į
							0				-	-	-			ķ
The individual	The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms	nt on behalf of th	e client,	acknowle	dges that	t he/she h	as read and ur	nderstands	the ter	JIS SL	ă	BottleOrder:	ü	16402	\$. 3 54	

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client.

pg. 2 of 4 Work order # 13090807 **CHAIN OF CUSTODY**

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client.

3-4 3-4

16402

BottleOrder:

pg. 3 of \mathcal{A} Work order # (3090807)**CHAIN OF CUSTODY**

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client	Dynegy Midwest Generation, LLC	eneration, LL	S	Samples on:	n: 🖀 ICE	BLUE ICE	NO ICE					
Address:	604 Pierce Blvd.			Preserved in: 🔤 LAB	in: 📰 LAB 🜇	FIELD		Ö	FOR LAB USE		ONLY	
City / State / Zip	/ Zip O'Fallon, IL 62269			Lab Notes:	••							
Contact:	Brian Voelker		Phone: (618) 206-5800	- A only one		250 ml WII MASSOURED	SOME		GTTP 9/18/13	1/8	2	
E-Mail:			_ Fax:	- Client Comments	<u> </u>	Å					•	
Are these samples	Are these samples known to be involved in litigation? If yes, a surcharge will apply	jation? If yes	, a surcharge will apply 📗 Yes 📙 No	T o								
Are these sample: Are there any requiremits in the comm	Are these samples known to be hazardous? \(\text{\tin}\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\tex	☐ Yes ☐ et on the requ	No uested analysis?. If yes, please provide									
		2			N. C.F.		TA OLGIN		ANAI VEIC		DECLIECTED	
Pro	Project Name/Number		Sample Collector's Name	Ξ	MAIKIX	-			NALT		EGOESIED	
Baldwin - Groundwater Monitoring	vater Monitoring	X	Rick Schmidt	G				Field	Field			
Result	Results Requested	Billing Ins	Billing Instructions # and Type of Containers			Boro	ld C					
Standard	rcharge)		T	ındv		on, Ir		eld p		TDS ulfate		
Other	3 Day (50% Surcharge)		HNO	vate		on,	uctivi					
Lab Use Only	Sample Identification	Date/Tin		er				ater	(C)			
Sur.	TPZ158	9-17-13	13 11/10 31	×		×	×	×	×	×		
S E	TPZ159 ★		_	×		×	×	×	×	×		
1112	TPZ160		13:15 31	×		×	×	×	×	×		
2007	TPZ163		10:55 31	×		×	×	×	×	×		
3 7. 6	TPZ164		1,4,00 31	×		×	×	×	×	×		
3 5	TPZ165		12,45 31	×		×	×	×	×	×		
	TPZ166	-	12:20 31	×		×	×	×	×	×		
450	TPZ167		11:55 31	×		×	×	×	×	×		
SCL.	TPZ168	4	11.36 31	×			×	×	× ×	-		
200	DUP 1	9-16-13	3 2 2 1	×		×			×			
	Relinquished By		Date/Time		Received By	i By		1	١	1	Date/Time	
Ch			9-18-13 08:00	43	M.				9115	2	800	
				0					<u>_</u>			
										·		
The individual	signing this agreement	t on behalf	The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms	e/she has read	d and understa	nds the te	rms	ď	BottleOrder:		16402	٠,

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and conditions of this agreement, and that he/she has the authority to sign on behalf of the client.

CHAIN OF CUSTODY

pg. 4 of 4 Work order # 13090807

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client:	Dynegy Midwest Generation, LLC	neration, LLC					Samples on:	ICE ICE	BLUE ICE		NO ICE			ပ			
Address	604 Pierce Blvd.			i			Preserved in: 🔳 LAB	I: 🔳 LAB	# FIELD	0		S.	FOR LAB USE ONLY	JSE (NLY		
City / State / Zip	/ Zip O'Fallon, IL 62269						Lab Notes:										
Contact:	Brian Voelker		_ Phone:	(618)	3) 206-5800												
E-Mail:			- Fax:				Client Comments	nents									
Are these sample: Are these sample: Are there any requimits in the comm	Are these samples known to be involved in litigation? If yes, a surcharge will apply Are these samples known to be hazardous? Are there any required reporting limits to be met on the requested analysis?. If yes, p limits in the comment section. Yes No	jation? If yes,	es, a surcharge w \(\) No equested analysis'	ili apply ?. If yes,	☐ Yes ☐ please provide	□ Pi											
Proj	Project Name/Number		Sample (collect	Sample Collector's Name	Ф	MA	MATRIX		l	INDICATE		ANALYSIS		REQUESTED	STED	
Baldwin - Groundwater Monitoring	vater Monitoring	000	Rick Supmid	l'm'	7		G					F!-1	Field				
Result	Results Requested	Billing Instructions	tructions	# and Ty	be	of Containers	irou										
Standard	ırcharge) ırcharge)			HN			ındwa		nganese	hloride on, Iron	Conduct	eld pH	ulfate nperatu	TDS			-
Lab Use Only	Sample Identification	Date/Tim	Date/Time Sampled				ter					1/2422	re (C)				
7730	DUP 2	9-17-13	35.01 8	2 1			×		×	×			×	×			
	DUP 3			2 1			×		×	×			×	×			
	DUP 4			2 1	-		×		×	×			×	×			
	DUP 5			2 1			×		×_	×			×	×			
IRC	Field Blank 1	9-16-13	13 13:50	2 1			×		×	×			×	×			-
2	Field Blank 2	9-17-	-1	22 1			×		×	×			×	×			
	Field Blank 3			2 1			×		×	×			×	×			
	Field Blank 4			2 1			×		×	×			×	×			
	Field Blank 5			2 1			×		×	×			×	×			
	Relinguished By			Date/∏	Time	1		Recei	Received By			$\frac{1}{1}$	ļ		Date/ I Ime	<u>e</u>	
No.		:	9-18-13		8.00		923						81/6	13	ડું. જે:	3	
													:				
The individual	The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms	t on behalf	of the client	ackno	wledges t	hat he/s	he has read a	and under	stands tl	ne terr	ျွ		BottleOrder:		16402	200	

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client.

WorkOrder: 13111129

December 06, 2013

Brian Voelker Dynegy Midwest Generation, LLC 604 Pierce Blvd. O'Fallon, IL 62269

TEL: (618) 206-5800

FAX:

RE: Baldwin - Groundwater Monitoring

Dear Brian Voelker:

TEKLAB, INC received 30 samples on 11/21/2013 3:15:00 PM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin Project Manager

(618)344-1004 ex 16

MAustin@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring

Report Date: 06-Dec-13

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Sample Summary	35
Dates Report	36
Quality Control Results	46
Receiving Check List	52
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring

Report Date: 06-Dec-13

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
 - MB Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- X Value exceeds Maximum Contaminant Level

Case Narrative

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13

Cooler Receipt Temp: 3.0 °C

An employee of Teklab, Inc. collected the sample(s).

Monitoring Wells MW154, MW155, and MW162 not sampled, Wells Dry.

Locations and Accreditations

	Collinsville	Springfield	Kansas City	Collinsville Air
Address	5445 Horseshoe Lake Road	3920 Pintail Dr	8421 Nieman Road	5445 Horseshoe Lake Road
	Collinsville, IL 62234-7425	Springfield, IL 62711-9415	Lenexa, KS 66214	Collinsville, IL 62234-7425
Phone	(618) 344-1004	(217) 698-1004	(913) 541-1998	(618) 344-1004
Fax	(618) 344-1005	(217) 698-1005	(913) 541-1998	(618) 344-1005
Email	jhriley@teklabinc.com	KKlostermann@teklabinc.com	dthompson@teklabinc.com	EHurley@teklabinc.com

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2014	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2014	Collinsville
Louisiana	LDEQ	166493	NELAP	6/30/2014	Collinsville
Louisiana	LDEQ	166578	NELAP	6/30/2014	Springfield
Texas	TCEQ	T104704515-12-1	NELAP	7/31/2014	Collinsville
Arkansas	ADEQ	88-0966		3/14/2014	Collinsville
Illinois	IDPH	17584		5/31/2015	Collinsville
Kentucky	UST	0073		4/5/2014	Collinsville
Missouri	MDNR	00930		5/31/2015	Collinsville
Oklahoma	ODEQ	9978		8/31/2014	Collinsville

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13

Lab ID: 13111129-001 Client Sample ID: MW104D

Analyses	Certification	RL	Qual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	REMENTS						
Depth to water from measuring	point	0	14.68	ft	1	11/20/2013 1:00	R184648
STANDARD METHODS 255	0 B						
Temperature		0	13.6	${\mathfrak C}$	1	11/20/2013 1:00	R184648
SW-846 9040B							
pH, Field		1	6.82		1	11/20/2013 1:00	R184648
SW-846 9050A							
Spec. Conductance, Field		1	1250	µmhos/cm	1	11/20/2013 1:00	R184648
STANDARD METHODS 254	0 C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	630	mg/L	1	11/25/2013 14:39	R184530
SW-846 9036 (DISSOLVED)							
Sulfate	NELAP	50	194	mg/L	5	11/26/2013 23:42	R184591
SW-846 9251 (DISSOLVED)							
Chloride	NELAP	5	16	mg/L	1	11/26/2013 23:36	R184599
SW-846 3005A, 6010B, MET	ALS BY ICP (DISSOL	VED)					
Boron	NELAP	0.02	0.025	mg/L	1	11/22/2013 22:15	94025
Iron	NELAP	0.02	0.073	mg/L	1	11/22/2013 22:15	94025
Manganese	NELAP	0.005	0.294	mg/L	1	11/22/2013 22:15	94025

Client Project: Baldwin - Groundwater Monitoring

Laboratory Results

http://www.teklabinc.com/

Report Date: 06-Dec-13

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Lab ID: 13111129-002 Client Sample ID: MW104S

Analyses	Certification	RL ·	Qual Result	Units	DF	Date Analyzed Batch
FIELD ELEVATION MEASU	JREMENTS					
Depth to water from measurin	g point	0	14.68	ft	1	11/20/2013 10:10 R184648
STANDARD METHODS 25	50 B					
Temperature		0	15.1	${\mathfrak C}$	1	11/20/2013 10:10 R184648
SW-846 9040B						
pH, Field		1	6.71		1	11/20/2013 10:10 R184648
SW-846 9050A						
Spec. Conductance, Field		1	1320	µmhos/cm	1	11/20/2013 10:10 R184648
STANDARD METHODS 254	40 C (DISSOLVED)					
Total Dissolved Solids	NELAP	20	770	mg/L	1	11/25/2013 14:43 R184530
SW-846 9036 (DISSOLVED))					
Sulfate	NELAP	50	134	mg/L	5	11/27/2013 0:12 R184591
SW-846 9251 (DISSOLVED))					
Chloride	NELAP	5	19	mg/L	1	11/27/2013 0:01 R184599
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL	/ED)				
Boron	NELAP	0.02	0.044	mg/L	1	11/22/2013 22:26 94025
Iron	NELAP	0.02	1.44	mg/L	1	11/22/2013 22:26 94025
Manganese	NELAP	0.005	2.2	mg/L	1	11/22/2013 22:26 94025

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring
Lab ID: 13111129-003
Client Sample ID: MW150

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS							
Depth to water from measuring	ng point	0		19.68	ft	1	11/20/2013 11:50	R184648
STANDARD METHODS 25	50 B							
Temperature		0		13.3	${\mathcal C}$	1	11/20/2013 11:50	R184648
SW-846 9040B								
pH, Field		1		7.07		1	11/20/2013 11:50	R184648
SW-846 9050A								
Spec. Conductance, Field		1		1530	µmhos/cm	1	11/20/2013 11:50	R184648
STANDARD METHODS 25	40 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		1090	mg/L	1	11/25/2013 14:43	R184530
SW-846 9036 (DISSOLVED))							
Sulfate	NELAP	200		502	mg/L	20	11/27/2013 0:28	R184591
SW-846 9251 (DISSOLVED))							
Chloride	NELAP	10		51	mg/L	2	11/27/2013 0:22	R184599
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02		0.656	mg/L	1	11/22/2013 22:30	94025
Iron	NELAP	0.02		0.078	mg/L	1	11/22/2013 22:30	94025
Manganese	NELAP	0.005		0.035	mg/L	1	11/22/2013 22:30	94025

Client Project: Baldwin - Groundwater Monitoring

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Report Date: 06-Dec-13

Lab ID: 13111129-004 Client Sample ID: MW151

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	REMENTS							
Depth to water from measuring	point	0		2.93	ft	1	11/20/2013 11:30	R184648
STANDARD METHODS 2550	В							
Temperature		0		14.2	$\mathcal C$	1	11/20/2013 11:30	R184648
SW-846 9040B								
pH, Field		1		7.13		1	11/20/2013 11:30	R184648
SW-846 9050A								
Spec. Conductance, Field		1		970	µmhos/cm	1	11/20/2013 11:30	R184648
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		542	mg/L	1	11/25/2013 14:45	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	20		78	mg/L	2	11/27/2013 0:36	R184591
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5		36	mg/L	1	11/27/2013 0:30	R184599
SW-846 3005A, 6010B, MET	ALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02		0.249	mg/L	1	11/22/2013 22:33	94025
Iron	NELAP	0.02	J	0.01	mg/L	1	11/22/2013 22:33	94025
Manganese	NELAP	0.005	J	0.004	mg/L	1	11/22/2013 22:33	94025

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13

Lab ID: 13111129-005 Client Sample **ID:** MW152

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	IREMENTS							
Depth to water from measuring	g point	0		6.67	ft	1	11/20/2013 11:05	R184648
STANDARD METHODS 255	50 B							
Temperature		0		13.7	${\mathbb C}$	1	11/20/2013 11:05	R184648
SW-846 9040B								
pH, Field		1		7.22		1	11/20/2013 11:05	R184648
SW-846 9050A								
Spec. Conductance, Field		1		1950	µmhos/cm	1	11/20/2013 11:05	R184648
STANDARD METHODS 254	10 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		1720	mg/L	1	11/25/2013 14:47	R184530
SW-846 9036 (DISSOLVED))							
Sulfate	NELAP	400		857	mg/L	40	11/27/2013 1:00	R184591
SW-846 9251 (DISSOLVED))							
Chloride	NELAP	10		55	mg/L	2	11/27/2013 0:55	R184599
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOLV	ED)						
Boron	NELAP	0.02		9.92	mg/L	1	11/22/2013 22:37	94025
Iron	NELAP	0.02		0.076	mg/L	1	11/22/2013 22:37	94025
Manganese	NELAP	0.005	J	0.005	mg/L	1	11/22/2013 22:37	94025

Client Project: Baldwin - Groundwater Monitoring

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13111129
Report Date: 06-Dec-13

Lab ID: 13111129-006 Client Sample **ID:** MW153

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	REMENTS							
Depth to water from measuring	point	0		15.05	ft	1	11/21/2013 8:20	R184648
STANDARD METHODS 2550) B							
Temperature		0		14.1	${\mathfrak C}$	1	11/21/2013 8:20	R184648
SW-846 9040B								
pH, Field		1		6.58		1	11/21/2013 8:20	R184648
SW-846 9050A								
Spec. Conductance, Field		1		730	µmhos/cm	1	11/21/2013 8:20	R184648
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		384	mg/L	1	11/25/2013 14:48	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	20		98	mg/L	2	11/27/2013 1:08	R184591
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5		28	mg/L	1	11/27/2013 1:03	R184599
SW-846 3005A, 6010B, MET.	ALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02		< 0.02	mg/L	1	11/25/2013 18:31	94025
Iron	NELAP	0.02	J	0.009	mg/L	1	11/22/2013 22:41	94025
Manganese	NELAP	0.005		0.034	mg/L	1	11/22/2013 22:41	94025

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13

Lab ID: 13111129-007 Client Sample ID: MW252

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to water from measuring p	point	0		2.14	ft	1	11/20/2013 11:30	R184648
STANDARD METHODS 2550	В							
Temperature		0		13.8	$\mathcal C$	1	11/20/2013 11:30	R184648
SW-846 9040B								
pH, Field		1		7.07		1	11/20/2013 11:30	R184648
SW-846 9050A								
Spec. Conductance, Field		1		1670	µmhos/cm	1	11/20/2013 11:30	R184648
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		1250	mg/L	1	11/25/2013 15:08	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	200		463	mg/L	20	11/27/2013 1:16	R184591
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5		41	mg/L	1	11/27/2013 1:10	R184599
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02		0.237	mg/L	1	11/22/2013 22:44	94025
Iron	NELAP	0.02		0.078	mg/L	1	11/22/2013 22:44	94025
Manganese	NELAP	0.005		0.11	mg/L	1	11/22/2013 22:44	94025

Matrix: GROUNDWATER

Client Project: Baldwin - Groundwater Monitoring

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13111129
Report Date: 06-Dec-13

Lab ID: 13111129-008 Client Sample ID: MW253

Collection Date: 11/21/2013 8:35

Analyses	Certification	RL	Qual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS						
Depth to water from measuring	g point	0	12.99	ft	1	11/21/2013 8:35	R184648
STANDARD METHODS 255	50 B						
Temperature		0	13.9	C	1	11/21/2013 8:35	R184648
SW-846 9040B							
pH, Field		1	8.6		1	11/21/2013 8:35	R184648
SW-846 9050A							
Spec. Conductance, Field		1	735	µmhos/cm	1	11/21/2013 8:35	R184648
STANDARD METHODS 254	40 C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	602	mg/L	1	11/25/2013 15:08	R184530
SW-846 9036 (DISSOLVED)						
Sulfate	NELAP	100	405	mg/L	10	11/27/2013 1:24	R184591
SW-846 9251 (DISSOLVED)						
Chloride	NELAP	5	18	mg/L	1	11/27/2013 1:19	R184599
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL\	/ED)					
Boron	NELAP	0.02	0.092	mg/L	1	11/22/2013 22:48	94025
Iron	NELAP	0.02	< 0.02	mg/L	1	11/22/2013 22:48	94025
Manganese	NELAP	0.005	< 0.005	mg/L	1	11/22/2013 22:48	94025

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13

Lab ID: 13111129-009 Client Sample **ID:** MW350

Analyses	Certification	RL	Qual I	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to water from measuring p	point	0		22.52	ft	1	11/20/2013 12:00	R184648
STANDARD METHODS 2550	В							
Temperature		0		13.5	${\mathbb C}$	1	11/20/2013 12:00	R184648
SW-846 9040B								
pH, Field		1		11.8		1	11/20/2013 12:00	R184648
SW-846 9050A								
Spec. Conductance, Field		1		4140	µmhos/cm	1	11/20/2013 12:00	R184648
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		1370	mg/L	1	11/25/2013 15:10	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	10		11	mg/L	1	11/27/2013 1:26	R184591
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5		34	mg/L	1	11/27/2013 1:26	R184599
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02		0.034	mg/L	1	11/22/2013 22:59	94025
Iron	NELAP	0.02		< 0.02	mg/L	1	11/22/2013 22:59	94025
Manganese	NELAP	0.005	•	< 0.005	mg/L	1	11/22/2013 22:59	94025

Client Project: Baldwin - Groundwater Monitoring

Laboratory Results

http://www.teklabinc.com/

Report Date: 06-Dec-13

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	REMENTS							
Depth to water from measuring	point	0		2.49	ft	1	11/20/2013 11:15	R184648
STANDARD METHODS 255	0 B							
Temperature		0		13.3	${\mathbb C}$	1	11/20/2013 11:15	R184648
SW-846 9040B								
pH, Field		1		7.34		1	11/20/2013 11:15	R184648
SW-846 9050A								
Spec. Conductance, Field		1		1740	µmhos/cm	1	11/20/2013 11:15	R184648
STANDARD METHODS 254	0 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		996	mg/L	1	11/25/2013 15:10	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	10		11	mg/L	1	11/27/2013 1:57	R184591
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	100		583	mg/L	20	11/27/2013 2:02	R184599
SW-846 3005A, 6010B, MET	TALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02		1.47	mg/L	1	11/22/2013 23:03	94025
Iron	NELAP	0.02		< 0.02	mg/L	1	11/22/2013 23:03	94025
Manganese	NELAP	0.005	J	0.003	mg/L	1	11/22/2013 23:03	94025

Client Project: Baldwin - Groundwater Monitoring

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Report Date: 06-Dec-13

Lab ID: 13111129-011 Client Sample **ID:** MW355

Analyses	Certification	RL (Qual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS						
Depth to water from measurin	g point	0	24.19	ft	1	11/21/2013 9:20	R184648
STANDARD METHODS 255	50 B						
Temperature		0	13.1	${\mathbb C}$	1	11/21/2013 9:20	R184648
SW-846 9040B							
pH, Field		1	7.24		1	11/21/2013 9:20	R184648
SW-846 9050A							
Spec. Conductance, Field		1	682	µmhos/cm	1	11/21/2013 9:20	R184648
STANDARD METHODS 254	40 C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	450	mg/L	1	11/25/2013 15:11	R184530
SW-846 9036 (DISSOLVED))						
Sulfate	NELAP	20	61	mg/L	2	11/27/2013 2:10	R184591
SW-846 9251 (DISSOLVED))						
Chloride	NELAP	5	11	mg/L	1	11/27/2013 2:05	R184599
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL)	/ED)					
Boron	NELAP	0.02	0.034	mg/L	1	11/22/2013 23:06	94025
Iron	NELAP	0.02	0.62	mg/L	1	11/22/2013 23:06	94025
Manganese	NELAP	0.005	0.064	mg/L	1	11/22/2013 23:06	94025

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Report Date: 06-Dec-13

Lab ID: 13111129-012 Client Sample ID: OW156

Matrix: GROUNDWATER Collection Date: 11/21/2013 10:25

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	REMENTS							
Depth to water from measuring	point	0		7.51	ft	1	11/21/2013 10:25	R184648
STANDARD METHODS 2550	В							
Temperature		0		15.2	$\mathcal C$	1	11/21/2013 10:25	R184648
SW-846 9040B								
pH, Field		1		6.61		1	11/21/2013 10:25	R184648
SW-846 9050A								
Spec. Conductance, Field		1		684	µmhos/cm	1	11/21/2013 10:25	R184648
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		466	mg/L	1	11/25/2013 15:11	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	50		93	mg/L	5	11/27/2013 2:19	R184591
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	10		60	mg/L	2	11/27/2013 2:13	R184599
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02	J	0.018	mg/L	1	11/22/2013 23:10	94025
Iron	NELAP	0.02		0.068	mg/L	1	11/22/2013 23:10	94025
Manganese	NELAP	0.005		0.052	mg/L	1	11/22/2013 23:10	94025

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13

Lab ID: 13111129-013 Client Sample ID: OW157

Matrix: GROUNDWATER Collection Date: 11/21/2013 11:10

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	REMENTS							
Depth to water from measuring	point	0		5.64	ft	1	11/21/2013 11:10	R184648
STANDARD METHODS 2550	В							
Temperature		0		15.1	$\mathcal C$	1	11/21/2013 11:10	R184648
SW-846 9040B								
pH, Field		1		6.37		1	11/21/2013 11:10	R184648
SW-846 9050A								
Spec. Conductance, Field		1		2940	µmhos/cm	1	11/21/2013 11:10	R184648
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		3160	mg/L	1	11/25/2013 15:11	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	500		1870	mg/L	50	11/27/2013 2:40	R184591
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	25		121	mg/L	5	11/27/2013 2:21	R184599
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	/ED)						
Boron	NELAP	2		45.2	mg/L	100	11/25/2013 18:35	94025
Iron	NELAP	0.02		0.059	mg/L	1	11/22/2013 23:14	94025
Manganese	NELAP	0.005		0.145	mg/L	1	11/22/2013 23:14	94025

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Report Date: 06-Dec-13

Lab ID: 13111129-014 Client Sample ID: MW161

Matrix: GROUNDWATER Collection Date: 11/21/2013 12:40

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to water from measuring p	point	0		29.13	ft	1	11/21/2013 12:40	R184648
STANDARD METHODS 2550	В							
Temperature		0		13.2	$\mathcal C$	1	11/21/2013 12:40	R184648
SW-846 9040B								
pH, Field		1		7.08		1	11/21/2013 12:40	R184648
SW-846 9050A								
Spec. Conductance, Field		1		625	µmhos/cm	1	11/21/2013 12:40	R184648
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		756	mg/L	1	11/25/2013 15:12	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	10		44	mg/L	1	11/27/2013 2:43	R184591
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5		6	mg/L	1	11/27/2013 2:43	R184599
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02	J	0.008	mg/L	1	11/25/2013 18:38	94025
Iron	NELAP	0.02		0.097	mg/L	1	11/22/2013 23:17	94025
Manganese	NELAP	0.005		1.28	mg/L	1	11/22/2013 23:17	94025

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13

Lab ID: 13111129-015 Client Sample ID: MW262

Matrix: GROUNDWATER Collection Date: 11/21/2013 11:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	REMENTS							
Depth to water from measuring	point	0		37.25	ft	1	11/21/2013 11:30	R184648
STANDARD METHODS 2550) B							
Temperature		0		15.4	${\mathfrak C}$	1	11/21/2013 11:30	R184648
SW-846 9040B								
pH, Field		1		7.15		1	11/21/2013 11:30	R184648
SW-846 9050A								
Spec. Conductance, Field		1		369	µmhos/cm	1	11/21/2013 11:30	R184648
STANDARD METHODS 2540 C (DISSOLVED)								
Total Dissolved Solids	NELAP	20		228	mg/L	1	11/25/2013 15:12	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	20	S	40	mg/L	2	11/27/2013 3:02	R184591
MS and/or MSD did not recover u	within control limits due to	matrix interfer	ence.					
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5	J	3	mg/L	1	11/27/2013 2:51	R184599
SW-846 3005A, 6010B, MET	ALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02	J	0.007	mg/L	1	11/25/2013 18:42	94025
Iron	NELAP	0.02		0.126	mg/L	1	11/22/2013 23:21	94025
Manganese	NELAP	0.005		0.01	mg/L	1	11/22/2013 23:21	94025

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Report Date: 06-Dec-13

Lab ID: 13111129-016 Client Sample ID: OW256

Matrix: GROUNDWATER Collection Date: 11/21/2013 10:50

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	REMENTS							
Depth to water from measuring	point	0		9.77	ft	1	11/21/2013 10:50	R184648
STANDARD METHODS 2550	0 B							
Temperature		0		15.7	${\mathfrak C}$	1	11/21/2013 10:50	R184648
SW-846 9040B								
pH, Field		1		6.63		1	11/21/2013 10:50	R184648
SW-846 9050A								
Spec. Conductance, Field		1		723	µmhos/cm	1	11/21/2013 10:50	R184648
STANDARD METHODS 2540	0 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		488	mg/L	1	11/25/2013 15:12	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	20		88	mg/L	2	11/27/2013 3:12	R184591
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	10		65	mg/L	2	11/27/2013 3:12	R184599
SW-846 3005A, 6010B, MET	ALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02		0.166	mg/L	1	11/22/2013 23:25	94025
Iron	NELAP	0.02		0.024	mg/L	1	11/22/2013 23:25	94025
Manganese	NELAP	0.005		0.131	mg/L	1	11/22/2013 23:25	94025

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Report Date: 06-Dec-13

Lab ID: 13111129-017 Client Sample ID: OW257

Matrix: GROUNDWATER Collection Date: 11/21/2013 11:25

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to water from measuring p	point	0		5.18	ft	1	11/21/2013 11:25	R184648
STANDARD METHODS 2550	В							
Temperature		0		14.6	$\mathcal C$	1	11/21/2013 11:25	R184648
SW-846 9040B								
pH, Field		1		7.07		1	11/21/2013 11:25	R184648
SW-846 9050A								
Spec. Conductance, Field		1		1180	µmhos/cm	1	11/21/2013 11:25	R184648
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		958	mg/L	1	11/25/2013 15:13	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	100		312	mg/L	10	11/27/2013 3:39	R184591
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5		21	mg/L	1	11/27/2013 3:34	R184599
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02		3.28	mg/L	1	11/22/2013 23:28	94025
Iron	NELAP	0.02		0.021	mg/L	1	11/22/2013 23:28	94025
Manganese	NELAP	0.005		0.686	mg/L	1	11/22/2013 23:28	94025

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13111129
Report Date: 06-Dec-13

Lab ID: 13111129-018 Client Sample ID: TPZ158

Matrix: GROUNDWATER Collection Date: 11/20/2013 15:05

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to water from measuring p	point	0		14.35	ft	1	11/20/2013 15:05	R184648
STANDARD METHODS 2550	В							
Temperature		0		14.9	$\mathcal C$	1	11/20/2013 15:05	R184648
SW-846 9040B								
pH, Field		1		7.27		1	11/20/2013 15:05	R184648
SW-846 9050A								
Spec. Conductance, Field		1		984	µmhos/cm	1	11/20/2013 15:05	R184648
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		976	mg/L	1	11/25/2013 15:15	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	10		39	mg/L	1	11/27/2013 3:42	R184591
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	10		81	mg/L	2	11/27/2013 3:47	R184599
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02	J	0.012	mg/L	1	11/25/2013 18:46	94025
Iron	NELAP	0.02		1.43	mg/L	1	11/22/2013 23:32	94025
Manganese	NELAP	0.005		0.352	mg/L	1	11/22/2013 23:32	94025

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13

Lab ID: 13111129-019 Client Sample ID: TPZ159

Matrix: GROUNDWATER Collection Date: 11/21/2013 10:05

Analyses	Certification	RL (Qual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	IREMENTS						
Depth to water from measuring	g point	0	18.36	ft	1	11/21/2013 10:05	R184648
STANDARD METHODS 255	50 B						
Temperature		0	14.5	${\mathfrak C}$	1	11/21/2013 10:05	R184648
SW-846 9040B							
pH, Field		1	6.47		1	11/21/2013 10:05	R184648
SW-846 9050A							
Spec. Conductance, Field		1	642	µmhos/cm	1	11/21/2013 10:05	R184648
STANDARD METHODS 254	IO C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	448	mg/L	1	11/25/2013 15:16	R184530
SW-846 9036 (DISSOLVED))						
Sulfate	NELAP	50	96	mg/L	5	11/27/2013 3:56	R184591
SW-846 9251 (DISSOLVED))						
Chloride	NELAP	5	35	mg/L	1	11/27/2013 3:50	R184599
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL	VED)					
Boron	NELAP	0.02	0.116	mg/L	1	11/22/2013 23:43	94025
Iron	NELAP	0.02	0.064	mg/L	1	11/22/2013 23:43	94025
Manganese	NELAP	0.005	0.687	mg/L	1	11/22/2013 23:43	94025

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Report Date: 06-Dec-13

Lab ID: 13111129-020 Client Sample ID: TPZ160

Matrix: GROUNDWATER Collection Date: 11/21/2013 13:15

Analyses	Certification	RL Q	ual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEAS	UREMENTS						
Depth to water from measuring	ng point	0	6.85	ft	1	11/21/2013 13:15	R184648
STANDARD METHODS 25	50 B						
Temperature		0	15.6	${\mathcal C}$	1	11/21/2013 13:15	R184648
SW-846 9040B							
pH, Field		1	7.3		1	11/21/2013 13:15	R184648
SW-846 9050A							
Spec. Conductance, Field		1	659	µmhos/cm	1	11/21/2013 13:15	R184648
STANDARD METHODS 25	40 C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	454	mg/L	1	11/25/2013 15:16	R184530
SW-846 9036 (DISSOLVED	0)						
Sulfate	NELAP	20	60	mg/L	2	11/27/2013 4:04	R184591
SW-846 9251 (DISSOLVED	0)						
Chloride	NELAP	5	42	mg/L	1	11/27/2013 3:58	R184599
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL)	/ED)					
Boron	NELAP	0.02	0.241	mg/L	1	11/23/2013 1:44	94027
Iron	NELAP	0.02	0.05	mg/L	1	11/23/2013 1:44	94027
Manganese	NELAP	0.005	0.126	mg/L	1	11/23/2013 1:44	94027

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13

Lab ID: 13111129-021 Client Sample ID: TPZ163

Matrix: GROUNDWATER Collection Date: 11/20/2013 10:40

			_					
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASI	JREMENTS							
Depth to water from measuring	ng point	0		11.24	ft	1	11/20/2013 10:40	R184648
STANDARD METHODS 25	50 B							
Temperature		0		13.3	${\mathcal C}$	1	11/20/2013 10:40	R184648
SW-846 9040B								
pH, Field		1		8.81		1	11/20/2013 10:40	R184648
SW-846 9050A								
Spec. Conductance, Field		1		1350	µmhos/cm	1	11/20/2013 10:40	R184648
STANDARD METHODS 25	40 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		1130	mg/L	1	11/25/2013 15:16	R184530
SW-846 9036 (DISSOLVED))							
Sulfate	NELAP	200		626	mg/L	20	11/27/2013 19:53	R184625
SW-846 9251 (DISSOLVED))							
Chloride	NELAP	5		19	mg/L	1	11/27/2013 4:06	R184599
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL)	/ED)						
Boron	NELAP	2		37.2	mg/L	100	11/25/2013 18:49	94027
Iron	NELAP	0.02	J	0.009	mg/L	1	11/23/2013 2:03	94027
Manganese	NELAP	0.005	J	0.003	mg/L	1	11/23/2013 2:03	94027

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13

Lab ID: 13111129-022 Client Sample ID: TPZ164

Matrix: GROUNDWATER Collection Date: 11/20/2013 14:35

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to water from measuring	point	0		4.52	ft	1	11/20/2013 14:35	R184648
STANDARD METHODS 2550	В							
Temperature		0		15.5	$\mathcal C$	1	11/20/2013 14:35	R184648
SW-846 9040B								
pH, Field		1		7.46		1	11/20/2013 14:35	R184648
SW-846 9050A								
Spec. Conductance, Field		1		952	µmhos/cm	1	11/20/2013 14:35	R184648
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		592	mg/L	1	11/25/2013 15:18	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	100		218	mg/L	10	11/27/2013 19:56	R184625
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	10		81	mg/L	2	11/27/2013 4:28	R184599
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	/ED)						
Boron	NELAP	0.02		2.64	mg/L	1	11/23/2013 2:06	94027
Iron	NELAP	0.02		6.86	mg/L	1	11/23/2013 2:06	94027
Manganese	NELAP	0.005		0.565	mg/L	1	11/23/2013 2:06	94027

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13111129
Report Date: 06-Dec-13

Lab ID: 13111129-023 Client Sample ID: TPZ165

Matrix: GROUNDWATER Collection Date: 11/20/2013 12:25

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	REMENTS							
Depth to water from measuring	point	0		4.83	ft	1	11/20/2013 12:25	R184648
STANDARD METHODS 255	0 B							
Temperature		0		15.2	$\mathcal C$	1	11/20/2013 12:25	R184648
SW-846 9040B								
pH, Field		1		7.18		1	11/20/2013 12:25	R184648
SW-846 9050A								
Spec. Conductance, Field		1		1730	µmhos/cm	1	11/20/2013 12:25	R184648
STANDARD METHODS 254	0 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		1420	mg/L	1	11/25/2013 15:18	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	100		342	mg/L	10	11/27/2013 19:59	R184625
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	10		71	mg/L	2	11/27/2013 4:36	R184599
SW-846 3005A, 6010B, MET	TALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02		0.246	mg/L	1	11/25/2013 18:53	94027
Iron	NELAP	0.02	J	0.015	mg/L	1	11/23/2013 2:10	94027
Manganese	NELAP	0.005		1.09	mg/L	1	11/23/2013 2:10	94027

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13111129

Report Date: 06-Dec-13

Lab ID: 13111129-024 Client Sample ID: TPZ166

Matrix: GROUNDWATER Collection Date: 11/20/2013 13:25

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	REMENTS							
Depth to water from measuring	point	0		7.85	ft	1	11/20/2013 13:25	R184648
STANDARD METHODS 2550) B							
Temperature		0		14.7	${\mathbb C}$	1	11/20/2013 13:25	R184648
SW-846 9040B								
pH, Field		1		7.7		1	11/20/2013 13:25	R184648
SW-846 9050A								
Spec. Conductance, Field		1		951	µmhos/cm	1	11/20/2013 13:25	R184648
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		304	mg/L	1	11/25/2013 15:18	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	20		56	mg/L	2	12/02/2013 17:11	R184674
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5		12	mg/L	1	11/27/2013 20:04	R184631
SW-846 3005A, 6010B, MET	ALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02		0.101	mg/L	1	11/25/2013 18:57	94027
Iron	NELAP	0.02		< 0.02	mg/L	1	11/23/2013 2:14	94027
Manganese	NELAP	0.005		0.024	mg/L	1	11/23/2013 2:14	94027

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Report Date: 06-Dec-13

Lab ID: 13111129-025 Client Sample ID: TPZ167

Matrix: GROUNDWATER Collection Date: 11/20/2013 12:55

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASI	UREMENTS							
Depth to water from measuring	ng point	0		7.36	ft	1	11/20/2013 12:55	R184648
STANDARD METHODS 25	50 B							
Temperature		0		16	${\mathfrak C}$	1	11/20/2013 12:55	R184648
SW-846 9040B								
pH, Field		1		8.15		1	11/20/2013 12:55	R184648
SW-846 9050A								
Spec. Conductance, Field		1		2920	µmhos/cm	1	11/20/2013 12:55	R184648
STANDARD METHODS 25	40 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		3010	mg/L	1	11/25/2013 15:18	R184530
SW-846 9036 (DISSOLVED	0)							
Sulfate	NELAP	500		1850	mg/L	50	11/27/2013 20:12	R184625
SW-846 9251 (DISSOLVED	0)							
Chloride	NELAP	25		100	mg/L	5	11/27/2013 20:07	R184631
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL)	/ED)						
Boron	NELAP	2		53	mg/L	100	11/25/2013 19:01	94027
Iron	NELAP	0.02		< 0.02	mg/L	1	11/23/2013 2:17	94027
Manganese	NELAP	0.005	J	0.004	mg/L	1	11/23/2013 2:17	94027

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Report Date: 06-Dec-13

Lab ID: 13111129-026 Client Sample ID: TPZ168

Matrix: GROUNDWATER Collection Date: 11/20/2013 13:55

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS							
Depth to water from measuring	g point	0		13.88	ft	1	11/20/2013 13:55	R184648
STANDARD METHODS 255	50 B							
Temperature		0		14.4	$\mathcal C$	1	11/20/2013 13:55	R184648
SW-846 9040B								
pH, Field		1		9.17		1	11/20/2013 13:55	R184648
SW-846 9050A								
Spec. Conductance, Field		1		5140	µmhos/cm	1	11/20/2013 13:55	R184648
STANDARD METHODS 254	40 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		3680	mg/L	1	11/25/2013 15:19	R184530
SW-846 9036 (DISSOLVED)							
Sulfate	NELAP	2000		2760	mg/L	200	12/02/2013 17:13	R184674
SW-846 9251 (DISSOLVED)							
Chloride	NELAP	25		109	mg/L	5	11/27/2013 20:15	R184631
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL	VED)						
Boron	NELAP	2		87.2	mg/L	100	11/25/2013 19:04	94027
Iron	NELAP	0.02	J	0.009	mg/L	1	11/23/2013 2:21	94027
Manganese	NELAP	0.005		< 0.005	mg/L	1	11/23/2013 2:21	94027

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Report Date: 06-Dec-13

Lab ID: 13111129-027 Client Sample ID: DUP 1

Matrix: GROUNDWATER Collection Date: 11/20/2013 10:00

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		678	mg/L	1	11/25/2013 15:19	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	50		200	mg/L	5	12/02/2013 17:19	R184674
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5		16	mg/L	1	11/27/2013 20:36	R184631
SW-846 3005A, 6010B, META	LS BY ICP (DISSOL)	/ED)						
Boron	NELAP	0.02	J	0.018	mg/L	1	11/25/2013 19:15	94027
Iron	NELAP	0.02		0.043	mg/L	1	11/23/2013 2:25	94027
Manganese	NELAP	0.005		0.316	mg/L	1	11/23/2013 2:25	94027

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13

Lab ID: 13111129-028 Client Sample ID: DUP 2

Matrix: GROUNDWATER Collection Date: 11/21/2013 11:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		234	mg/L	1	11/25/2013 15:19	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	10		40	mg/L	1	11/27/2013 20:44	R184625
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5	J	3	mg/L	1	11/27/2013 20:44	R184631
SW-846 3005A, 6010B, META	LS BY ICP (DISSOL)	VED)						
Boron	NELAP	0.02	J	0.007	mg/L	1	11/25/2013 19:19	94027
Iron	NELAP	0.02		0.095	mg/L	1	11/23/2013 2:28	94027
Manganese	NELAP	0.005		0.008	mg/L	1	11/23/2013 2:28	94027

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13

Lab ID: 13111129-029 Client Sample ID: Field Blank 1

Matrix: GROUNDWATER Collection Date: 11/20/2013 15:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20	J	18	mg/L	1	11/25/2013 15:20	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	10	J	6	mg/L	1	11/27/2013 20:56	R184625
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5	J	2	mg/L	1	11/27/2013 20:56	R184631
SW-846 3005A, 6010B, META	LS BY ICP (DISSOL'	VED)						
Boron	NELAP	0.02		< 0.02	mg/L	1	11/25/2013 19:23	94027
Iron	NELAP	0.02		< 0.02	mg/L	1	11/23/2013 2:39	94027
Manganese	NELAP	0.005		< 0.005	mg/L	1	11/23/2013 2:39	94027

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13

Lab ID: 13111129-030 Client Sample ID: Field Blank 2

Matrix: GROUNDWATER Collection Date: 11/21/2013 13:50

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20	J	16	mg/L	1	11/25/2013 15:20	R184530
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	10	J	5	mg/L	1	11/27/2013 21:00	R184625
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5	J	1	mg/L	1	11/27/2013 21:00	R184631
SW-846 3005A, 6010B, META	LS BY ICP (DISSOL)	VED)						
Boron	NELAP	0.02		< 0.02	mg/L	1	11/25/2013 19:26	94027
Iron	NELAP	0.02	J	0.008	mg/L	1	11/23/2013 2:43	94027
Manganese	NELAP	0.005		< 0.005	mg/L	1	11/23/2013 2:43	94027

Sample Summary

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Lab Sample ID	Client Sample ID	Matrix	Fractions	Collection Date
13111129-001	MW104D	Groundwater	4	11/20/2013 10:00
13111129-002	MW104S	Groundwater	4	11/20/2013 10:10
13111129-003	MW150	Groundwater	4	11/20/2013 11:50
13111129-004	MW151	Groundwater	4	11/20/2013 11:30
13111129-005	MW152	Groundwater	4	11/20/2013 11:05
13111129-006	MW153	Groundwater	4	11/21/2013 8:20
13111129-007	MW252	Groundwater	4	11/20/2013 11:30
13111129-008	MW253	Groundwater	4	11/21/2013 8:35
13111129-009	MW350	Groundwater	4	11/20/2013 12:00
13111129-010	MW352	Groundwater	4	11/20/2013 11:15
13111129-011	MW355	Groundwater	4	11/21/2013 9:20
13111129-012	OW156	Groundwater	4	11/21/2013 10:25
13111129-013	OW157	Groundwater	4	11/21/2013 11:10
13111129-014	MW161	Groundwater	4	11/21/2013 12:40
13111129-015	MW262	Groundwater	4	11/21/2013 11:30
13111129-016	OW256	Groundwater	4	11/21/2013 10:50
13111129-017	OW257	Groundwater	4	11/21/2013 11:25
13111129-018	TPZ158	Groundwater	4	11/20/2013 15:05
13111129-019	TPZ159	Groundwater	4	11/21/2013 10:05
13111129-020	TPZ160	Groundwater	4	11/21/2013 13:15
13111129-021	TPZ163	Groundwater	4	11/20/2013 10:40
13111129-022	TPZ164	Groundwater	4	11/20/2013 14:35
13111129-023	TPZ165	Groundwater	4	11/20/2013 12:25
13111129-024	TPZ166	Groundwater	4	11/20/2013 13:25
13111129-025	TPZ167	Groundwater	4	11/20/2013 12:55
13111129-026	TPZ168	Groundwater	4	11/20/2013 13:55
13111129-027	DUP 1	Groundwater	3	11/20/2013 10:00
13111129-028	DUP 2	Groundwater	3	11/21/2013 11:30
13111129-029	Field Blank 1	Groundwater	3	11/20/2013 15:30
13111129-030	Field Blank 2	Groundwater	3	11/21/2013 13:50

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
13111129-001A	MW104D	11/20/2013 10:00	11/21/2013 15:15		
	Field Elevation Measurements				11/20/2013 1:00
	Standard Methods 2550 B				11/20/2013 1:00
	SW-846 9040B				11/20/2013 1:00
	SW-846 9050A				11/20/2013 1:00
13111129-001B	MW104D	11/20/2013 10:00	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 14:39
13111129-001C	MW104D	11/20/2013 10:00	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/26/2013 23:42
	SW-846 9251 (Dissolved)				11/26/2013 23:36
13111129-001D	MW104D	11/20/2013 10:00	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 22:15
13111129-002A	MW104S	11/20/2013 10:10	11/21/2013 15:15		
	Field Elevation Measurements				11/20/2013 10:10
	Standard Methods 2550 B				11/20/2013 10:10
	SW-846 9040B				11/20/2013 10:10
	SW-846 9050A				11/20/2013 10:10
13111129-002B	MW104S	11/20/2013 10:10	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 14:43
13111129-002C	MW104S	11/20/2013 10:10	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 0:12
	SW-846 9251 (Dissolved)				11/27/2013 0:01
13111129-002D	MW104S	11/20/2013 10:10	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 22:26
13111129-003A	MW150	11/20/2013 11:50	11/21/2013 15:15		
	Field Elevation Measurements				11/20/2013 11:50
	Standard Methods 2550 B				11/20/2013 11:50
	SW-846 9040B				11/20/2013 11:50
	SW-846 9050A				11/20/2013 11:50
13111129-003B	MW150	11/20/2013 11:50	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 14:43
13111129-003C	MW150	11/20/2013 11:50	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 0:28
	SW-846 9251 (Dissolved)				11/27/2013 0:22
13111129-003D	MW150	11/20/2013 11:50	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 22:30

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
13111129-004A	MW151	11/20/2013 11:30	11/21/2013 15:15		
	Field Elevation Measurements				11/20/2013 11:30
	Standard Methods 2550 B				11/20/2013 11:30
	SW-846 9040B				11/20/2013 11:30
	SW-846 9050A				11/20/2013 11:30
13111129-004B	MW151	11/20/2013 11:30	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 14:45
3111129-004C	MW151	11/20/2013 11:30	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 0:36
	SW-846 9251 (Dissolved)				11/27/2013 0:30
13111129-004D	MW151	11/20/2013 11:30	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 22:33
13111129-005A	MW152	11/20/2013 11:05	11/21/2013 15:15		
	Field Elevation Measurements				11/20/2013 11:05
	Standard Methods 2550 B				11/20/2013 11:05
	SW-846 9040B				11/20/2013 11:05
	SW-846 9050A				11/20/2013 11:05
13111129-005B	MW152	11/20/2013 11:05	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 14:47
3111129-005C	MW152	11/20/2013 11:05	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 1:00
	SW-846 9251 (Dissolved)				11/27/2013 0:55
3111129-005D	MW152	11/20/2013 11:05	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 22:37
13111129-006A	MW153	11/21/2013 8:20	11/21/2013 15:15	11/22/2013 10.30	
	Field Elevation Measurements				11/21/2013 8:20
	Standard Methods 2550 B				11/21/2013 8:20
	SW-846 9040B				11/21/2013 8:20
	SW-846 9050A				11/21/2013 8:20
13111129-006B	MW153	11/21/2013 8:20	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 14:48
13111129-006C	MW153	11/21/2013 8:20	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 1:08
	SW-846 9251 (Dissolved)				11/27/2013 1:08
13111129-006D	MW153	11/21/2013 8:20	11/21/2013 15:15		11,21,2013 1.03
		1,21,2010 0.20	11,21,2010 10.10	11/02/0012 10 50	11/22/2012 22:41
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 22:41

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/25/2013 18:31
13111129-007A	MW252	11/20/2013 11:30	11/21/2013 15:15		
	Field Elevation Measurements				11/20/2013 11:30
	Standard Methods 2550 B				11/20/2013 11:30
	SW-846 9040B				11/20/2013 11:30
	SW-846 9050A				11/20/2013 11:30
13111129-007B	MW252	11/20/2013 11:30	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:08
13111129-007C	MW252	11/20/2013 11:30	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 1:16
	SW-846 9251 (Dissolved)				11/27/2013 1:10
13111129-007D	MW252	11/20/2013 11:30	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 22:44
13111129-008A	MW253	11/21/2013 8:35	11/21/2013 15:15	11/22/2013 10:30	
	Field Elevation Measurements				11/21/2013 8:35
	Standard Methods 2550 B				11/21/2013 8:35
	SW-846 9040B				11/21/2013 8:35
	SW-846 9050A				11/21/2013 8:35
13111129-008B	MW253	11/21/2013 8:35	11/21/2013 15:15		11/21/2013 0.33
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:08
13111129-008C	MW253	11/21/2013 8:35	11/21/2013 15:15		11/23/2013 13:06
13111127-0000		11/21/2013 6.33	11/21/2013 13.13		11/05/0010 1 01
	SW-846 9036 (Dissolved)				11/27/2013 1:24
12111120 000D	SW-846 9251 (Dissolved)	11/01/0012 0 25	11/01/0010 15 15		11/27/2013 1:19
13111129-008D	MW253	11/21/2013 8:35	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 22:48
13111129-009A	MW350	11/20/2013 12:00	11/21/2013 15:15		
	Field Elevation Measurements				11/20/2013 12:00
	Standard Methods 2550 B				11/20/2013 12:00
	SW-846 9040B				11/20/2013 12:00
	SW-846 9050A				11/20/2013 12:00
13111129-009B	MW350	11/20/2013 12:00	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:10
13111129-009C	MW350	11/20/2013 12:00	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 1:26
	SW-846 9251 (Dissolved)				11/27/2013 1:26
13111129-009D	MW350	11/20/2013 12:00	11/21/2013 15:15		

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Sample ID	Client Sample ID	Collection Date	Received Date		
Sumple 12	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 22:59
13111129-010A	MW352	11/20/2013 11:15	11/21/2013 15:15		
	Field Elevation Measurements				11/20/2013 11:15
	Standard Methods 2550 B				11/20/2013 11:15
	SW-846 9040B				11/20/2013 11:15
	SW-846 9050A				11/20/2013 11:15
13111129-010B	MW352	11/20/2013 11:15	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:10
13111129-010C	MW352	11/20/2013 11:15	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 1:57
	SW-846 9251 (Dissolved)				11/27/2013 2:02
13111129-010D	MW352	11/20/2013 11:15	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 23:03
13111129-011A	MW355	11/21/2013 9:20	11/21/2013 15:15		
	Field Elevation Measurements				11/21/2013 9:20
	Standard Methods 2550 B				11/21/2013 9:20
	SW-846 9040B				11/21/2013 9:20
	SW-846 9050A				11/21/2013 9:20
13111129-011B	MW355	11/21/2013 9:20	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:11
13111129-011C	MW355	11/21/2013 9:20	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 2:10
	SW-846 9251 (Dissolved)				11/27/2013 2:05
13111129-011D	MW355	11/21/2013 9:20	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 23:06
13111129-012A	OW156	11/21/2013 10:25	11/21/2013 15:15		
	Field Elevation Measurements				11/21/2013 10:25
	Standard Methods 2550 B				11/21/2013 10:25
	SW-846 9040B				11/21/2013 10:25
	SW-846 9050A				11/21/2013 10:25
13111129-012B	OW156	11/21/2013 10:25	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:11
13111129-012C	OW156	11/21/2013 10:25	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 2:19
	SW-846 9251 (Dissolved)				11/27/2013 2:13
13111129-012D	OW156	11/21/2013 10:25	11/21/2013 15:15		

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Sample ID	Client Sample ID	Collection Date	Received Date		
Sample 1D	Test Name	Conceion Dute	neceiveu Dute	Prep Date/Time	Analysis Date/Time
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 23:10
13111129-013A	OW157	11/21/2013 11:10	11/21/2013 15:15	11, 22, 2018 10.80	
	Field Elevation Measurements				11/21/2013 11:10
	Standard Methods 2550 B				11/21/2013 11:10
	SW-846 9040B				11/21/2013 11:10
	SW-846 9050A				11/21/2013 11:10
3111129-013B	OW157	11/21/2013 11:10	11/21/2013 15:15		11/21/2013 11.10
011112) 0102	Standard Methods 2540 C (Dissolved)	11/21/2010 11110	11/21/2010 10110		11/25/2013 15:11
3111129-013C	OW157	11/21/2013 11:10	11/21/2013 15:15		11/25/2013 15:11
3111129-013C		11/21/2013 11.10	11/21/2013 13.13		
	SW-846 9036 (Dissolved)				11/27/2013 2:40
	SW-846 9251 (Dissolved)				11/27/2013 2:21
3111129-013D	OW157	11/21/2013 11:10	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 23:14
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/25/2013 18:35
3111129-014A	MW161	11/21/2013 12:40	11/21/2013 15:15		
	Field Elevation Measurements				11/21/2013 12:40
	Standard Methods 2550 B				11/21/2013 12:40
	SW-846 9040B				11/21/2013 12:40
	SW-846 9050A				11/21/2013 12:40
3111129-014B	MW161	11/21/2013 12:40	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:12
3111129-014C	MW161	11/21/2013 12:40	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 2:43
	SW-846 9251 (Dissolved)				11/27/2013 2:43
3111129-014D	MW161	11/21/2013 12:40	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 23:17
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/25/2013 18:38
3111129-015A	MW262	11/21/2013 11:30	11/21/2013 15:15		
	Field Elevation Measurements				11/21/2013 11:30
	Standard Methods 2550 B				11/21/2013 11:30
	SW-846 9040B				11/21/2013 11:30
	SW-846 9050A				11/21/2013 11:30
3111129-015B	MW262	11/21/2013 11:30	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:12
3111129-015C	MW262	11/21/2013 11:30	11/21/2013 15:15		11/23/2013 13.12
.511112) 0150		11,21,2013 11.30	11/21/2013 13.13		11/07/2012 2 22
	SW-846 9036 (Dissolved)				11/27/2013 3:02

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9251 (Dissolved)				11/27/2013 2:51
3111129-015D	MW262	11/21/2013 11:30	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 23:21
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/25/2013 18:42
13111129-016A	OW256	11/21/2013 10:50	11/21/2013 15:15		
	Field Elevation Measurements				11/21/2013 10:50
	Standard Methods 2550 B				11/21/2013 10:50
	SW-846 9040B				11/21/2013 10:50
	SW-846 9050A				11/21/2013 10:50
3111129-016B	OW256	11/21/2013 10:50	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:12
3111129-016C	OW256	11/21/2013 10:50	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 3:12
	SW-846 9251 (Dissolved)				11/27/2013 3:12
3111129-016D	OW256	11/21/2013 10:50	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 23:25
13111129-017A	OW257	11/21/2013 11:25	11/21/2013 15:15		
	Field Elevation Measurements				11/21/2013 11:25
	Standard Methods 2550 B				11/21/2013 11:25
	SW-846 9040B				11/21/2013 11:25
	SW-846 9050A				11/21/2013 11:25
3111129-017B	OW257	11/21/2013 11:25	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:13
3111129-017C	OW257	11/21/2013 11:25	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 3:39
	SW-846 9251 (Dissolved)				11/27/2013 3:34
3111129-017D	OW257	11/21/2013 11:25	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 23:28
13111129-018A	TPZ158	11/20/2013 15:05	11/21/2013 15:15		
	Field Elevation Measurements				11/20/2013 15:05
	Standard Methods 2550 B				11/20/2013 15:05
	SW-846 9040B				11/20/2013 15:05
	SW-846 9050A				11/20/2013 15:05
3111129-018B	TPZ158	11/20/2013 15:05	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:15
13111129-018C	TPZ158	11/20/2013 15:05	11/21/2013 15:15		

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9036 (Dissolved)				11/27/2013 3:42
	SW-846 9251 (Dissolved)				11/27/2013 3:47
13111129-018D	TPZ158	11/20/2013 15:05	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 23:32
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/25/2013 18:46
13111129-019A	TPZ159	11/21/2013 10:05	11/21/2013 15:15		
	Field Elevation Measurements				11/21/2013 10:05
	Standard Methods 2550 B				11/21/2013 10:05
	SW-846 9040B				11/21/2013 10:05
	SW-846 9050A				11/21/2013 10:05
3111129-019B	TPZ159	11/21/2013 10:05	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:16
3111129-019C	TPZ159	11/21/2013 10:05	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 3:56
	SW-846 9251 (Dissolved)				11/27/2013 3:50
13111129-019D	TPZ159	11/21/2013 10:05	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 10:50	11/22/2013 23:43
13111129-020A	TPZ160	11/21/2013 13:15	11/21/2013 15:15		
	Field Elevation Measurements				11/21/2013 13:15
	Standard Methods 2550 B				11/21/2013 13:15
	SW-846 9040B				11/21/2013 13:15
	SW-846 9050A				11/21/2013 13:15
3111129-020B	TPZ160	11/21/2013 13:15	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:16
3111129-020C	TPZ160	11/21/2013 13:15	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 4:04
	SW-846 9251 (Dissolved)				11/27/2013 3:58
3111129-020D	TPZ160	11/21/2013 13:15	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/23/2013 1:44
3111129-021A	TPZ163	11/20/2013 10:40	11/21/2013 15:15		
	Field Elevation Measurements				11/20/2013 10:40
	Standard Methods 2550 B				11/20/2013 10:40
	SW-846 9040B				11/20/2013 10:40
	SW-846 9050A				11/20/2013 10:40
3111129-021B	TPZ163	11/20/2013 10:40	11/21/2013 15:15		
					11/25/2013 15:16

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Sample ID	Client Sample ID	Collection Date	Received Date			
	Test Name			Prep Date/Time	Analysis Date/Time	
13111129-021C	TPZ163	11/20/2013 10:40	11/21/2013 15:15			
	SW-846 9036 (Dissolved)				11/27/2013 19:53	
	SW-846 9251 (Dissolved)				11/27/2013 4:06	
13111129-021D	TPZ163	11/20/2013 10:40	11/21/2013 15:15			
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/23/2013 2:03	
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/25/2013 18:49	
13111129-022A	TPZ164	11/20/2013 14:35	11/21/2013 15:15			
	Field Elevation Measurements				11/20/2013 14:35	
	Standard Methods 2550 B				11/20/2013 14:35	
	SW-846 9040B				11/20/2013 14:35	
	SW-846 9050A				11/20/2013 14:35	
13111129-022B	TPZ164	11/20/2013 14:35	11/21/2013 15:15			
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:18	
13111129-022C	TPZ164	11/20/2013 14:35	11/21/2013 15:15			
	SW-846 9036 (Dissolved)				11/27/2013 19:56	
	SW-846 9251 (Dissolved)				11/27/2013 4:28	
13111129-022D	TPZ164	11/20/2013 14:35	11/21/2013 15:15			
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/23/2013 2:06	
13111129-023A	TPZ165	11/20/2013 12:25	11/21/2013 15:15	11, 22, 2010 11.2)		
	Field Elevation Measurements				11/20/2013 12:25	
	Standard Methods 2550 B				11/20/2013 12:25	
	SW-846 9040B				11/20/2013 12:25	
	SW-846 9050A				11/20/2013 12:25	
13111129-023B	TPZ165	11/20/2013 12:25	11/21/2013 15:15			
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:18	
13111129-023C	TPZ165	11/20/2013 12:25	11/21/2013 15:15		11,23,2013 13.10	
, ,_,	SW-846 9036 (Dissolved)	,			11/27/2013 19:59	
	SW-846 9251 (Dissolved)				11/27/2013 19:59	
13111129-023D	TPZ165	11/20/2013 12:25	11/21/2013 15:15		11/2//2013 4.30	
		-1,20,2010 12.20	17,21,2010 10.10	11/22/2012 11 22	11/23/2013 2:10	
	SW-846 3005 A, 6010 B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/23/2013 2:10 11/25/2013 18:53	
13111129-024A	SW-846 3005A, 6010B, Metals by ICP (Dissolved) TPZ166	11/20/2013 13:25	11/21/2013 15:15	11/22/2013 11:29	11/25/2013 18:53	
13111129-U24A		11/20/2015 15:25	11/21/2015 15:15		11/00/0015	
	Field Elevation Measurements				11/20/2013 13:25	
	Standard Methods 2550 B				11/20/2013 13:25	
	SW-846 9040B				11/20/2013 13:25	
	SW-846 9050A				11/20/2013 13:25	

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Sample ID	Client Sample ID	Collection Date	Received Date			
	Test Name			Prep Date/Time	Analysis Date/Time	
13111129-024B	TPZ166	11/20/2013 13:25	11/21/2013 15:15			
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:18	
13111129-024C	TPZ166	11/20/2013 13:25	11/21/2013 15:15			
	SW-846 9036 (Dissolved)				12/02/2013 17:11	
	SW-846 9251 (Dissolved)				11/27/2013 20:04	
13111129-024D	TPZ166	11/20/2013 13:25	11/21/2013 15:15			
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/23/2013 2:14	
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/25/2013 18:57	
13111129-025A	TPZ167	11/20/2013 12:55	11/21/2013 15:15			
	Field Elevation Measurements				11/20/2013 12:55	
	Standard Methods 2550 B				11/20/2013 12:55	
	SW-846 9040B				11/20/2013 12:55	
	SW-846 9050A				11/20/2013 12:55	
13111129-025B	TPZ167	11/20/2013 12:55	11/21/2013 15:15			
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:18	
13111129-025C	TPZ167	11/20/2013 12:55	11/21/2013 15:15			
	SW-846 9036 (Dissolved)				11/27/2013 20:12	
	SW-846 9251 (Dissolved)				11/27/2013 20:07	
13111129-025D	TPZ167	11/20/2013 12:55	11/21/2013 15:15			
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/23/2013 2:17	
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/25/2013 19:01	
13111129-026A	TPZ168	11/20/2013 13:55	11/21/2013 15:15			
	Field Elevation Measurements				11/20/2013 13:55	
	Standard Methods 2550 B				11/20/2013 13:55	
	SW-846 9040B				11/20/2013 13:55	
	SW-846 9050A				11/20/2013 13:55	
13111129-026B	TPZ168	11/20/2013 13:55	11/21/2013 15:15			
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:19	
13111129-026C	TPZ168	11/20/2013 13:55	11/21/2013 15:15			
	SW-846 9036 (Dissolved)				12/02/2013 17:13	
	SW-846 9251 (Dissolved)				11/27/2013 20:15	
13111129-026D	TPZ168	11/20/2013 13:55	11/21/2013 15:15			
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/23/2013 2:21	
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/25/2013 19:04	
13111129-027A	DUP 1	11/20/2013 10:00	11/21/2013 15:15			
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:19	

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
13111129-027B	DUP 1	11/20/2013 10:00	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				12/02/2013 17:19
	SW-846 9251 (Dissolved)				11/27/2013 20:36
13111129-027C	DUP 1	11/20/2013 10:00	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/23/2013 2:25
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/25/2013 19:15
13111129-028A	DUP 2	11/21/2013 11:30	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:19
13111129-028B	DUP 2	11/21/2013 11:30	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 20:44
	SW-846 9251 (Dissolved)				11/27/2013 20:44
13111129-028C	DUP 2	11/21/2013 11:30	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/23/2013 2:28
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/25/2013 19:19
13111129-029A	Field Blank 1	11/20/2013 15:30	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:20
13111129-029B	Field Blank 1	11/20/2013 15:30	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 20:56
	SW-846 9251 (Dissolved)				11/27/2013 20:56
13111129-029C	Field Blank 1	11/20/2013 15:30	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/23/2013 2:39
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/25/2013 19:23
13111129-030A	Field Blank 2	11/21/2013 13:50	11/21/2013 15:15		
	Standard Methods 2540 C (Dissolved)				11/25/2013 15:20
13111129-030B	Field Blank 2	11/21/2013 13:50	11/21/2013 15:15		
	SW-846 9036 (Dissolved)				11/27/2013 21:00
	SW-846 9251 (Dissolved)				11/27/2013 21:00
3111129-030C	Field Blank 2	11/21/2013 13:50	11/21/2013 15:15		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/23/2013 2:43
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			11/22/2013 11:29	11/25/2013 19:26

Quality Control Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring

Report Date: 06-Dec-13

SW-846 9040B									
Batch R184648 SampType:	LCSD	Units					RPD	Limit 1.8	
SampID: LCSD-R184648									Date
Analyses	RL	Qual	Result Sp	pike S	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
pH, Field	,		7.05	7	0	100.7	7.03	0.28	11/20/2013
pH, Field	•	I	7.04	7	0	100.6	7.03	0.14	11/21/2013
Batch R184648 SampType:	LCS	Units							
SampID: LCS-R184648									Date
Analyses	RL	Qual	Result Sp	pike S	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
pH, Field	•		6.99	7	0	99.9	99.1	101	11/21/2013
pH, Field	,	I	7.03	7	0	100.4	99.1	101	11/20/2013
SW-846 9050A									
Batch R184648 SampType:	LCSD	Units µmhos/	cm				RPD	Limit 10	
SampID: LCSD-R184648									Date
Analyses	RL	Qual	Result Sp	pike S	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Spec. Conductance, Field	,		1430 14	409	0	101.2	1411	1.06	11/21/2013
Spec. Conductance, Field	,	I	1420 14	409	0	100.6	1411	0.42	11/20/2013
Batch R184648 SampType:	LCS	Units µmhos/	cm						
SampID: LCS-R184648									Date
Analyses	RL	Qual	Result Sp	pike S	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Spec. Conductance, Field	,	l	1410 14	409	0	100.1	90	110	11/20/2013
Spec. Conductance, Field	•	1	1410 14	409	0	100.1	90	110	11/21/2013
STANDARD METHODS 2540 (C (DISSOLVE	D)							
Batch R184530 SampType: SampID: MBLK	MBLK	Units mg/L							Date
Analyses	RL	Qual	Result Sp	nike S	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Solids	20						LOW LITTIE		
	∠()	< 20	pine			LOW LITTIE	9 =	11/25/2013
Total Dissolved Solids	20			pine			LOW LITTIC	g <u>-</u>	
Total Dissolved Solids Total Dissolved Solids)	< 20	pine			LOW LITTIC		11/25/2013
	20))	< 20 < 20	pinc			LOW LITTIN		11/25/2013 11/25/2013 11/25/2013 11/25/2013
Total Dissolved Solids Total Dissolved Solids Batch R184530 SampType:	20 20 20))	< 20 < 20 < 20	price			LOW LITTIN		11/25/2013 11/25/2013
Total Dissolved Solids Total Dissolved Solids	20 20 20))	< 20 < 20 < 20 < 20				LOW LITTIN		11/25/2013 11/25/2013 11/25/2013 Date
Total Dissolved Solids Total Dissolved Solids Batch R184530 SampType:	20 20 20))	< 20 < 20 < 20 < 20		SPK Ref Val		Low Limit	0	11/25/2013 11/25/2013 11/25/2013
Total Dissolved Solids Total Dissolved Solids Batch R184530 SampType: SampID: LCS	20 20 20	Units mg/L	< 20 < 20 < 20 < 20	pike S	SPK Ref Val			0	11/25/2013 11/25/2013 11/25/2013 Date Analyzed
Total Dissolved Solids Total Dissolved Solids Batch R184530 SampType: SampID: LCS Analyses Total Dissolved Solids Batch R184530 SampType:	20 20 20 LCS RL	Units mg/L	< 20 < 20 < 20 < 20 < 20	pike S	SPK Ref Val	%REC	Low Limit	High Limit	11/25/2013 11/25/2013 11/25/2013 Date
Total Dissolved Solids Total Dissolved Solids Batch R184530 SampType: SampID: LCS Analyses Total Dissolved Solids Batch R184530 SampType:	20 20 20 LCS RL	Units mg/L Qual	< 20 < 20 < 20 < 20 < 20	pike S	SPK Ref Val	%REC	Low Limit	High Limit	11/25/2013 11/25/2013 11/25/2013 Date Analyzed 11/25/2013
Total Dissolved Solids Total Dissolved Solids Batch R184530 SampType: SampID: LCS Analyses Total Dissolved Solids Batch R184530 SampType:	20 20 20 LCS RL	Units mg/L Qual	< 20 < 20 < 20 < 20 < 20	pike S	SPK Ref Val	%REC 93.6	Low Limit	High Limit	11/25/201: 11/25/201: 11/25/201: Date Analyzed 11/25/201:
Total Dissolved Solids Total Dissolved Solids Batch R184530 SampType: SampID: LCS Analyses Total Dissolved Solids Batch R184530 SampType: SampID: LCSQC	20 20 20 LCS RL 20 LCSQC	Units mg/L Qual Units mg/L Qual	<20 <20 <20 <20 <20 Result Sp 936 10	pike S	SPK Ref Val 0 SPK Ref Val	%REC 93.6	Low Limit 90	High Limit	11/25/2013 11/25/2013 11/25/2013 Date Analyzed
Total Dissolved Solids Total Dissolved Solids Batch R184530 SampType: SampID: LCS Analyses Total Dissolved Solids Batch R184530 SampType: SampID: LCSQC Analyses	20 20 20 LCS RL 20 LCSQC	Units mg/L Qual Units mg/L Qual	<20 <20 <20 <20 <20 Result Sp 936 10 Result Sp 960 10	pike S 000	SPK Ref Val 0 SPK Ref Val 0	%REC 93.6 %REC	Low Limit 90 Low Limit	High Limit 110	11/25/2013 11/25/2013 11/25/2013 Date Analyzed Date Analyzed

Quality Control Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

STANDARD METHODS 2540	C (DISS	OLVED)								
Batch R184530 SampType:	MS		Units mg/L							
SampID: 13111129-001B MS										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Solids		20		1160	500	630	106.4	85	115	11/25/2013
Batch R184530 SampType:	Men		Units mg/L					DDF) Limit 15	
Batch R184530 SampType: SampID: 13111129-001B MSD	IVISD		Offits Hig/L					KFL	Cirille 13	5.
•		DI	0 1	D 14	G . 11 .	SPK Ref Val	% DEC	PDD Pof V	Val %RPD	Date Analyzed
Analyses Total Dissolved Solids		RL 20	Qual	1170	500	630	108	1162	0.69	11/25/2013
Total Dissolved Solids		20		1170	500	030	100	1102	0.09	11/25/2015
Batch R184530 SampType:	DUP		Units mg/L					RPD) Limit 15	
SampID: 13111129-004B DUP										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Total Dissolved Solids		20		534	•			542	1.49	11/25/2013
Batch R184530 SampType:	DUP		Units mg/L					RPD) Limit 15	
SampID: 13111129-005B DUP										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Total Dissolved Solids		20		1740				1722	1.04	11/25/2013
SW-846 9036 (DISSOLVED)										
Batch R184591 SampType:	MBLK	,	Units mg/L							
SampID: MB-R184591			_							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate		10	J	7	Бриге				•	11/26/2013
Batch R184591 SampType:	LCS		Units mg/L							
SampID: LCS-R184591										Date
Analyses		RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate		10		19	20	0	96.3	90	110	11/26/2013
Batch R184591 SampType:	ме		Units mg/L							
SampID: 13111129-002CMS	IVIO		Onito Hig/L							Data
		DI	0 1	D 1	G '1	CDK Dof Vol	0/ DEC	Low Limit	High Limit	Date Analyzed
Analyses		RL 50	Qual		Spike 50	SPK Ref Val		85	115	11/27/2013
Sulfate		50		180	50	133.7	91.8	65	115	11/21/2013
Batch R184591 SampType:	MSD		Units mg/L					RPD	Limit 10	
										Date
SampID: 13111129-002CMSD										Date
SampID: 13111129-002CMSD Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed

Quality Control Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

SW-846 9036 (DISS	SOLVED)										
Batch R184591	SampType:	MS		Units mg/L							
SampID: 13111129-0	015CMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			20	S	56	20	40.34	76.2	85	115	11/27/2013
Batch R184591	SampType:	MSD		Units mg/L					RPD	Limit 10	
SampID: 13111129-0	015CMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Sulfate			20		59	20	40.34	92.2	55.58	5.60	11/27/2013
Batch R184625	SampType:	MBLK		Units mg/L							
SampID: MB-R18462	25										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10	J	6						11/27/2013
Batch R184625	SampType:	LCS		Units mg/L							
SampID: LCS-R1846	625										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		20	20	0	99	90	110	11/27/2013
Batch R184674	SampType:	MBLK		Units mg/L							
SampID: MB-R1846	74										Date
Analyses			RL	Qual		Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10						12/02/2013
Batch R184674	SampType:	LCS		Units mg/L							
SampID: LCS-R1846	674										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		19	20	0	96.7	90	110	12/02/2013
SW-846 9251 (DISS	SOLVED)										
Batch R184599	SampType:	MBLK		Units mg/L							
SampID: MBLK											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5	J	2						11/26/2013
Batch R184599	SampType:	LCS		Units mg/L							
SampID: LCS											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed

Quality Control Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129

Report Date: 06-Dec-13

SW-846 9251 (DIS	SSOLVED)										
Batch R184599	SampType:	MS		Units mg/L							
SampID: 13111129	-002CMS										Date
Analyses			RL	Qual			SPK Ref Val		Low Limit	3	Analyzed
Chloride			;	5	40	20	18.77	103.7	85	115	11/27/2013
Batch R184599	SampType:	MSD		Units mg/L	•				RPD	Limit 15	
SampID: 13111129	-002CMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Chloride			:	5	40	20	18.77	107.7	39.51	2.00	11/27/2013
Batch R184599 SampID: 13111129	SampType: 0-015CMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride				5	22	20	3.25	94.8	85	115	11/27/2013
Batch R184599	SampType:	MSD		Units mg/L					RPD) Limit 15	
SamplD: 13111129				_							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Chloride				5	22	20	3.25	94.7	22.22	0.14	11/27/2013
Batch R184631 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride				5 J	2	7 P				-	11/27/2013
Batch R184631 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Oual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride				5	20	20	0	97.6	90	110	11/27/2013
Batch R184684 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride				5 J	2	Бриге					12/02/2013
Batch R184684 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride				5	20	20	0	98.9	90	110	12/02/2013

Batch 94027

Boron

Iron

SampID: LCS-94027

Analyses

Manganese

SampType: LCS

Units mg/L

Qual

RL

0.02

0.02

0.005

Quality Control Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 13111129 Report Date: 06-Dec-13

Client Project: Baldwin - Groundwater Monitoring

SW-846 3005A, 6010E	B, METAL	S BY IC	CP (DIS	SOLVED)							
	mpType:	MBLK		Units mg/L							
SampID: MBLK-94025											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02		< 0.02	0.02	0	0	-100	100	11/22/2013
Iron			0.02		< 0.02	0.02	0	0	-100	100	11/22/2013
Manganese			0.005		< 0.005	0.005	0	0	-100	100	11/22/2013
	mpType:	LCS		Units mg/L							
SampID: LCS-94025											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02		0.47	0.5	0	94	85	115	11/22/2013
Iron			0.02		0.931	1	0	93.1	85	115	11/22/2013
Manganese			0.005		0.477	0.5	0	95.5	85	115	11/22/2013
Batch 94025 Sa	ampType:	MS		Units mg/L							
SampID: 13111129-001	DMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02		0.484	0.5	0.025	91.8	75	125	11/22/2013
Iron			0.02		0.977	1	0.073	90.4	75	125	11/22/2013
Manganese			0.005		0.753	0.5	0.294	91.8	75	125	11/22/2013
Batch 94025 Sa	ттрТуре:	MSD		Units mg/L					RPD	Limit 20	
SampID: 13111129-001	DMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Boron			0.02		0.486	0.5	0.025	92.3	0.484	0.54	11/22/2013
Iron			0.02		0.981	1	0.073	90.8	0.977	0.43	11/22/2013
Manganese			0.005		0.755	0.5	0.294	92.2	0.753	0.25	11/22/2013
	ттрТуре:	MBLK		Units mg/L							
SampID: MBLK-94027											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02		< 0.02	0.02	0	0	-100	100	11/23/2013
Iron			0.02	J	0.007	0.02	0	35.5	-100	100	11/23/2013
Manganese			0.005		< 0.005	0.005	0	0	-100	100	11/23/2013

Result Spike SPK Ref Val %REC

0.5

1

0.5

0.458

0.91

0.471

0

0

0

91.6

91

94.1

Low Limit High Limit

115

115

115

85

85

85

Date Analyzed

11/23/2013

11/23/2013

11/23/2013

Manganese

Quality Control Results

http://www.teklabinc.com/

1.70

11/23/2013

Client: Dynegy Midwest Generation, LLC

0.005

Work Order: 13111129

Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13

SW-846 3005A, 6	6010B, METAL	S BY I	CP (DIS	SOLVED)							
Batch 94027 SampID: 1311112	SampType: 9-020DMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02		0.7	0.5	0.241	91.9	75	125	11/23/2013
Iron			0.02		0.961	1	0.05	91	75	125	11/23/2013
Manganese			0.005		0.596	0.5	0.126	94	75	125	11/23/2013
Batch 94027	SampType:	MSD		Units mg/L					RPD	Limit 20	
SampID: 1311112	9-020DMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Boron			0.02		0.715	0.5	0.241	94.8	0.7	2.08	11/23/2013
Iron			0.02		0.988	1	0.05	93.7	0.961	2.76	11/23/2013

0.606 0.5

0.126

96.1

0.596

Receiving Check List

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 13111129 Client Project: Baldwin - Groundwater Monitoring Report Date: 06-Dec-13 Carrier: Rick Schmidt Received By: EEP mily Pols Completed by: Reviewed by: On: On: 21-Nov-13 21-Nov-13 Emily E. Pohlman Michael L. Austin 35 Chain of custody Extra pages included Pages to follow: Shipping container/cooler in good condition? Yes **V** No Not Present Temp ℃ 3.0 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice **✓** No 🗔 Chain of custody present? Yes **V** Chain of custody signed when relinquished and received? Yes No L Yes 🗹 Chain of custody agrees with sample labels? No 🗀 Yes 🗹 Samples in proper container/bottle? No 🗀 **V** No 🗌 Sample containers intact? Yes Sufficient sample volume for indicated test? Yes **V** No **✓** All samples received within holding time? Yes No 🗀 NA \square Field < Lab Reported field parameters measured: Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1℃ - 6.0℃, or when samples are received on ice the same day as collected. No VOA vials 🗸 Water - at least one vial per sample has zero headspace? Yes 🗌 No 🗀 No TOX containers Water - TOX containers have zero headspace? Yes No 🗌 Yes 🗹 No 🗌 Water - pH acceptable upon receipt? NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? Yes No \square

CHAIN OF CUSTODY

pg. | of Y Work order # 13|||129 TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Phone: (618) 206-5800 Fax: Sa surcharge will apply Yes No ordinated analysis? If yes, please provide Sample Collector's Name Rick Schmidt Sampled	Served in: LAB Notes: No Sample Collece MATRIX	Field Conductivity Dissolved Sulfate Dissolved Chloride Dissolved (B Fe Mn)	TDS Field Temperature Field pH Field Depth to Will Field Conductiv Dissolved Sulfa	REQUESTED SOL
92 Sp.	ants 20//eq	Field Conductivity Dissolved Sulfate Dissolved Chloride Dissolved (B Fe Mn)	Field Temperature Field pH Field Depth to W	
S S S S S S S S S S S S S S S S S S S	1 5 14	Dissolved Chloride	Field Temperature Field pH Field Depth to W	
92 <u>83</u>	1 5 IC	Dissolved Chloride	Field Temperature Field pH Field Depth to W	
S S S	l cc	Dissolved Chloride	Field Temperature Field pH Field Depth to W	
lers	I CC	Dissolved Chloride	Field Temperature Field pH Field Depth to W	
Jers	I or I	Dissolved Chloride	Field Temperature Field pH Field Depth to W	
# Collector's Name # and Type of Containers #	Groundwater ×	Dissolved Chloride	Field Temperature Field pH Field Depth to W	
# and Type # and Type # # 12	Groundwater	Dissolved Sulfate Dissolved Chloride	Field pH Field Depth to Wa	TDS
# OND & & & & & & & & & & & & & & & & & & &	roundwater	solved Sulfate	Field pH Depth to Wa	TDS
UNP mmm	ındwater 🚽	ved Sulfate	eld pH pth to Wa	rds
ime Sampled AN AN AN AN AN AN AN A	vater	Sulfate	H o Wa	
ime Sampled 0 0 0 3 10 10 3 11 50 3 3 11 50 3 3 11 50 3 3 3 3 3 3 3 3 3	er ×	te de	· 6	
10:00 3 10:10 3 11:50 3	×		ater	
10:10 3		× × ×		×
11:50 3	×	× × ×	× × ×	×
	×	× × ×	× × ×	×
	×	×	×	×
	×	× × ×	× × ×	×
'	×	× × ×	× × ×	×
41/12 8:50 3 1	×	× × ×	× × ×	×
U/13 9:10 31	×	× × ×	× × ×	×
20/13 11.30 3 1	×	× × × ×	×	×
	×	× × ×	×	×
Date/Time	Received B	3y		Date/Time
11-21-13 15-13	4900	·	10/11	13 195
	, 0		-	
As a second of the second of t	e has read and understand	Is the terms	BottleOrder	17315 65.00
\langle \text{IVe} \forall & 11:30 & 3 & 1 \\ \langle \text{IVe} \forall & 11:05 & 3 & 1 \\ \langle \text{IVe} \forall & 8:20 & 3 & 1 \\ \langle \text{IVe} \forall & 8:50 & 3 & 1 \\ \langle \text{IVe} \forall & 8:50 & 3 & 1 \\ \langle \text{IVe} \forall & 8:30 & 3 & 1 \\ \langle \text{IVe} \forall & 8:35 & 3 & 3 \\ \langle \text{IVe} \forall & 8:35 & 3 & 3 \\ \langle \text{IVe} \forall & 8:35 & 3 & 3 \\ \langle \text{IVe} \forall & 8:35 & 3 & 3 \\ \langle \text{IVe} \forall & 8:35 & 3 & 3 \\ \langle \text{IVe} \forall & 8:35 & 3 & 3 \\ \langle \text{IVe}	nat he/she	X X X X X X X X X X X X X X X X X X X	te la la la la la la la la la la la la la	A control of the ferms and understands the terms aread and understands the terms are as a manufacture of the control of the co

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client.

pg. 2 of \(\frac{1}{4}\) Work order # (3)(11,29) **CHAIN OF CUSTODY**

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client: Address: Citv / State / Zip	Dynegy Midwest Generation, LLC 604 Pierce Blvd.	Seneration, LI	J-			Samples on: Preserved in: Lab Notes:	ICE LAB	BLUE ICE	SE	NO ICE		AB US	FOR LAB USE ONLY	> ;		
Contact:	Brian Voelker		_ Phone:	(618) 206-5800	8											
E-Mail:			_ Fах:			Client Comments	nments									
Are these sample: Are these sample:	Are these samples known to be involved in litigation? If yes, a surcharge will apply Are these samples known to be hazardous? $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	igation? If ye∉ ☐ Yes	s, a surcharge w No	ill apply ☐ Yes	% 											
Are there any required reporting limits in the comment section.		met on the req	luested analysis	?. If yes, please pr		* 10 So	somple c	collected	þ							
Proj	Project Name/Number		Sample Collecto	Collector's Name			MATRIX	5		INDICATE		ANALYSIS		REQUESTED	و ا	
Baldwin - Groundwater Monitoring	vater Monitoring		Rick Schmidt	AF.		G		Diss			Field	Field				
Results	Results Requested	Billing In	Billing Instructions	# and Type of Co	of Containers	roun		olved				Temp	T			
	3 Day (50% Surcharge)			HNO		dwate		(B Fe	l Chlor	nductiv d Sulfa	h to W	erature	os			
Lab Use Only	Sample Identification	Date/Ti	Date/Time Sampled			er		Mn)			ater	e (C)				
אור	MW350	1420/13	12.50	3 1		×		×	×	×	×	×	×			
CER	MW352	11/20/13	11:15	3 1		×		×	×	×	×	×	×			
F F	MW355	11/21/13	9.20	3 1		×		×	×	×	×	×	×	_		
CIC	OW156	11/21/13	SA 25.01	3 1		×		×	×	×	×	×	×			
510	OW157	1/2//3		3 1		×		×	×	×	×	×	×			
707	MW161	11/21/13	12.40	3 1		×		×	×	×	×	×	×			
*	★ MW162	11/2/13	11.40	3 1		×		×	×	×	×	×	×			
30%	MW262	11/2/13	11.30	3 1		×		×	×	×	×	×	×			
dar	OW256	11/2///3	10:50	3 1		×		×	×	×	×	×	×			
	OW257	142413	11:25	3 1		×		×	×	×	×	×	×			
	Relinquished By			Date/Time			Received By	ed By			Ц	į	Date	Date/Time		
R			11-21-13	3 15-15		9.8 M	7					71/	2	15 TO		
						0						_				
											<u> </u>					
											_					

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client.

17315

BottleOrder:

CHAIN OF CUSTODY

pg. ろ of y Work order # [3[1]] 29

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

၁	FOR LAB USE ONLY					ANALYSIS REQUESTED		Field	eratur		× × ×	× × × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × × ×	× × ×	×	Date/Time	3121 311511		
🖫 BLUE ICE 🔝 NO ICE	I FIELD					INDICATE	Dis Dis	solved	d Sulfa Chlor (B Fe	ate ide	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	d By			
Samples on: 🖾 ICE	Preserved in: 🗀 LAB	Lab Notes:		Client Comments		MATRIX	G	roun	dwate	er	×	×	×	×	×	×	×	×	×	×	Received By	C. (1)	, O	
			Phone: (618) 206-5800	Fax:	ircharge will apply Yes No d analysis?. If yes, please provide	Sample Collector's Name	Rick Schmidt	tions # and Type of Containers	HNO	,	15:05 31	10.05 31	13:15 31	10:40 31	14.35 31	12,25 31	13.25 31	12:55 3 1	13:55 31	10:00 2 1	Date/Time	11-21-13 15:15		
Dynegy Midwest Generation, LLC	Blvd.	. 62269			ed in litigation? If yes, a sudous?		Ric	Billing In	arge)		21 E/19711		~											
Client: Dynegy Mid	Address: 604 Pierce Blvd.	City / State / Zip O'Fallon, IL	Contact: Brian Voelker	E-Mail:	Are these samples known to be involved in litigation? If yes, a surcharge will apply Are these samples known to be hazardous? \(\Bigcirc\) Yes \(\Bigcirc\) No Are there any required reporting limits to be met on the requested analysis?. If yes, limits in the comment section. \(\Bigcirc\) Yes \(\Bigcirc\) No	Project Name/Number	Baldwin - Groundwater Monitoring	Results Requested Standard 1-2 Day (100% Surcharge)	1	Lab Use Only Sample Identification	TPZ158	7) Old TPZ159	1920 TPZ160	-03/ TPZ163	172164	-02) TPZ165	1PZ166	TPZ167	JOHN TPZ168	DUP 1	Relinquished By	hand		

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client.

17315

BottleOrder:

CHAIN OF CUSTODY

pg. Ψ of Ψ Work order # [3][[]23

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client:	Dynegy Midwest Generation, LLC	Generation, LL	O.				Samples on:	s on: 🗀 ICE	^ 1	S C E	NO ICE			°	ပ ျ			
Address:	604 Pierce Blvd.						Presen	Preserved in: 🗈 LAB	FIELD	۵		띰	N LA	B USE	FOR LAB USE ONLY			
City / State / Zip	/ Zip O'Fallon, IL 62269	60					Lab Notes:	tes:										
Contact:	Brian Voelker		Phone:	•	(618) 206-5800	300	· · ·											
E-Mail:			Fax:	I			- Client (Client Comments										l
Are these sample:	Are these samples known to be involved in litigation? If yes, a surcharge will apply	itigation? If yes	s, a surcharge w	ill apply	□ Yes	oN 🗆 sa	La											
Are there any requiring the second imits in the comm	Are these samples known to be nazaroous? \(\text{\tinx}\text{\tinx}\xint{\text{\tinx}\xinit{\texi}\text{\text{\text{\text{\text{\text{\text{\texit{\text{\text{\text{\texit{\text{\texi}\text{\text{\text{\texit{\text{\texi}\texit{\text{\text{\text{	met on the request No	」№ uested analysis	?. If yes	s, please provide	orovide												
Proj	Project Name/Number		Sample Collector's Name	Sollec	tor's Na	ıme		MATRIX			ă	INDICATE		ANALYSIS	REQUESTED	ESTEC		
Baldwin - Groundwater Monitoring	vater Monitoring	1.50	Rick Sch	Schrid	7		G		Diss		Di		Field	Field				
Ins	Results Requested	Billing Ins	Billing Instructions	# and Type	7	Containers	1 T		OIVE		ssol			Ter				
Standard Other	1-2 Day (100% Surcharge)						ındwa		ed (B F	red Chl	ved Su	Conduc	eld pH	mperat	TDS			
Lab Use Only	Sample Identification	-	Date/Time Sampled	O3 NP			ater		e IVIII)		lfate			ure (C			_	
Sur	DUP 2	11/21/13	11.30 trisa	2 1			×		×	×	×				×		-	_
	DUP 3			2 1			×		×	×	×				×	_		
	DUP 4			2 1			×		×	×	×				×			
	DUP 5			2 1			×		×	×	×				×			
200	Field Blank 1	1/20/13	15.30	2 1			×		×	×	×				×			-
60	Field Blank 2	11/2/13	13.50	2 1			×		×	×	×				×			
)	Field Blank 3			2 1			×		×	×	×				×			
	Field Blank 4			2 1			×		×	×	×			ļ^`	×			
	Field Blank 5			2 1			×		×	×	×				×			
	Relinquished By			Date/T	/Time			Rece	Received By						Date/Time	me		
R	\ \ \	į	11.21-1	3	1545		5.5	1						(C)	113		515	\
							1							_	_			
The individual	The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms	nt on behalf	of the client,	ackn	wledge	s that he	/she has r	ead and unde	rstands th	ie tern	Sr	 	nottle Pottle	i. (7	17315		×	

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client.

February 27, 2014

Brian Voelker Dynegy Midwest Generation, LLC 604 Pierce Blvd. O'Fallon, IL 62269

TEL: (618) 206-5800

FAX:

RE: Baldwin - Groundwater Monitoring

Dear Brian Voelker:

TEKLAB, INC received 33 samples on 2/20/2014 8:00:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin Project Manager

(618)344-1004 ex 16

MAustin@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring

Report Date: 27-Feb-14

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Sample Summary	37
Dates Report	38
Quality Control Results	49
Receiving Check List	56
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring Report Date: 27-Feb-14

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
 - MB Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- X Value exceeds Maximum Contaminant Level

Cooler Receipt Temp: 3.6 °C

Case Narrative

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring

Report Date: 27-Feb-14

An employee of Teklab, Inc. collected the sample(s).

Monitoring Well MW162 not sampled, Wells Dry.

Locations and Accreditations

	Collinsville	Springfield	Kansas City	Collinsville Air
Address	5445 Horseshoe Lake Road	3920 Pintail Dr	8421 Nieman Road	5445 Horseshoe Lake Road
	Collinsville, IL 62234-7425	Springfield, IL 62711-9415	Lenexa, KS 66214	Collinsville, IL 62234-7425
Phone	(618) 344-1004	(217) 698-1004	(913) 541-1998	(618) 344-1004
Fax	(618) 344-1005	(217) 698-1005	(913) 541-1998	(618) 344-1005
Email	jhriley@teklabinc.com	KKlostermann@teklabinc.com	dthompson@teklabinc.com	EHurley@teklabinc.com

State	Dept	Cert #	NELAP	Exp Date	Lab	
Illinois	IEPA	100226	NELAP	1/31/2015	Collinsville	
Kansas	KDHE	E-10374	NELAP	4/30/2014	Collinsville	
Louisiana	LDEQ	166493	NELAP	6/30/2014	Collinsville	
Louisiana	LDEQ	166578	NELAP	6/30/2014	Springfield	
Texas	TCEQ	T104704515-12-1	NELAP	7/31/2014	Collinsville	
Arkansas	ADEQ	88-0966		3/14/2014	Collinsville	
Illinois	IDPH	17584		5/31/2015	Collinsville	
Kentucky	UST	0073		1/31/2015	Collinsville	
Missouri	MDNR	00930		5/31/2015	Collinsville	
Oklahoma	ODEQ	9978		8/31/2014	Collinsville	

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560 Report Date: 27-Feb-14

Lab ID: 14020560-001 Client Sample ID: MW104D

Matrix: GROUNDWATER Collection Date: 02/18/2014 9:33

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	IREMENTS							
Depth to water from measuring	g point	0		9.2	ft	1	02/18/2014 9:33	R187610
STANDARD METHODS 255	50 B							
Temperature		0		12.2	°C	1	02/18/2014 9:33	R187610
SW-846 9040B								
pH, Field		1		6.75		1	02/18/2014 9:33	R187610
SW-846 9050A								
Spec. Conductance, Field		1		991	µmhos/cm	1	02/18/2014 9:33	R187610
STANDARD METHODS 254	10 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		652	mg/L	1	02/20/2014 13:23	R187421
SW-846 9036 (DISSOLVED))							
Sulfate	NELAP	50		175	mg/L	5	02/21/2014 11:11	R187442
SW-846 9251 (DISSOLVED))							
Chloride	NELAP	5		18	mg/L	1	02/21/2014 11:05	R187451
SW-846 3005A, 6010B, MET	TALS BY ICP (DISSOL)	/ED)						
Boron	NELAP	0.02	J	0.015	mg/L	1	02/21/2014 14:38	96224
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 14:38	96224
Manganese	NELAP	0.005		0.041	mg/L	1	02/21/2014 14:38	96224

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring Report Date: 27-Feb-14

Lab ID: 14020560-002 Client Sample ID: MW104S

Matrix: GROUNDWATER Collection Date: 02/18/2014 9:45

Analyses	Certification	RL	Qual Result	Units	DF	Date Analyzed Batch	1
FIELD ELEVATION MEASU	REMENTS						
Depth to water from measuring	gpoint	0	9.19	ft	1	02/18/2014 9:45 R1876	610
STANDARD METHODS 255	0 B						
Temperature		0	12.8	°C	1	02/18/2014 9:45 R1876	610
SW-846 9040B							
pH, Field		1	6.73		1	02/18/2014 9:45 R1876	610
SW-846 9050A							
Spec. Conductance, Field		1	809	µmhos/cm	1	02/18/2014 9:45 R1876	610
STANDARD METHODS 254	0 C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	792	mg/L	1	02/20/2014 13:24 R1874	421
SW-846 9036 (DISSOLVED)							
Sulfate	NELAP	50	138	mg/L	5	02/21/2014 11:19 R1874	442
SW-846 9251 (DISSOLVED)							
Chloride	NELAP	5	18	mg/L	1	02/21/2014 11:14 R1874	451
SW-846 3005A, 6010B, MET	TALS BY ICP (DISSOL	VED)					
Boron	NELAP	0.02	0.059	mg/L	1	02/21/2014 14:56 96224	ł
Iron	NELAP	0.02	< 0.02	mg/L	1	02/21/2014 14:56 96224	ţ
Manganese	NELAP	0.005	0.59	mg/L	1	02/21/2014 14:56 96224	ł

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring Report Date: 27-Feb-14

Lab ID: 14020560-003 Client Sample **ID:** MW150

Matrix: GROUNDWATER Collection Date: 02/19/2014 10:10

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to water from measuring p	point	0		18.49	ft	1	02/19/2014 10:10	R187610
STANDARD METHODS 2550	В							
Temperature		0		12.7	°C	1	02/19/2014 10:10	R187610
SW-846 9040B								
pH, Field		1		6.99		1	02/19/2014 10:10	R187610
SW-846 9050A								
Spec. Conductance, Field		1		1330	µmhos/cm	1	02/19/2014 10:10	R187610
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		1200	mg/L	1	02/20/2014 13:24	R187421
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	200		521	mg/L	20	02/21/2014 11:41	R187442
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	10		51	mg/L	2	02/21/2014 11:22	R187451
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	/ED)						
Boron	NELAP	0.02		808.0	mg/L	1	02/21/2014 15:02	96224
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 15:02	96224
Manganese	NELAP	0.005		< 0.005	mg/L	1	02/21/2014 15:02	96224

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring Report Date: 27-Feb-14

Matrix: GROUNDWATER Collection Date: 02/19/2014 9:40

Analyses	Certification	RL Qua	al Result	Units	DF	Date Analyzed 1	Batch
FIELD ELEVATION MEASU	JREMENTS						
Depth to water from measuring	g point	0	2.2	ft	1	02/19/2014 9:40	R187610
STANDARD METHODS 255	50 B						
Temperature		0	8.5	°C	1	02/19/2014 9:40	R187610
SW-846 9040B							
pH, Field		1	7.12		1	02/19/2014 9:40	R187610
SW-846 9050A							
Spec. Conductance, Field		1	852	µmhos/cm	1	02/19/2014 9:40	R187610
STANDARD METHODS 254	10 C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	538	mg/L	1	02/20/2014 13:24	R187421
SW-846 9036 (DISSOLVED))						
Sulfate	NELAP	20	74	mg/L	2	02/21/2014 11:49	R187442
SW-846 9251 (DISSOLVED))						
Chloride	NELAP	5	35	mg/L	1	02/21/2014 11:43	R187451
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL)	/ED)					
Boron	NELAP	0.02	0.239	mg/L	1	02/21/2014 15:20	96224
Iron	NELAP	0.02	< 0.02	mg/L	1	02/21/2014 15:20	96224
Manganese	NELAP	0.005	< 0.005	mg/L	1	02/21/2014 15:20	96224

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring Report Date: 27-Feb-14

Lab ID: 14020560-005 Client Sample **ID:** MW152

Matrix: GROUNDWATER Collection Date: 02/19/2014 9:05

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to water from measuring	point	0		5.13	ft	1	02/19/2014 9:05	R187610
STANDARD METHODS 2550	В							
Temperature		0		9.5	°C	1	02/19/2014 9:05	R187610
SW-846 9040B								
pH, Field		1		6.36		1	02/19/2014 9:05	R187610
SW-846 9050A								
Spec. Conductance, Field		1		1880	µmhos/cm	1	02/19/2014 9:05	R187610
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		1770	mg/L	1	02/20/2014 13:24	R187421
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	500		898	mg/L	50	02/21/2014 11:57	R187442
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	10		56	mg/L	2	02/21/2014 11:51	R187451
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02		12.7	mg/L	1	02/21/2014 15:26	96224
Iron	NELAP	0.02		0.054	mg/L	1	02/21/2014 15:26	96224
Manganese	NELAP	0.005	J	0.003	mg/L	1	02/21/2014 15:26	96224

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Report Date: 27-Feb-14

Lab ID: 14020560-006 Client Sample ID: MW153

Matrix: GROUNDWATER Collection Date: 02/19/2014 11:35

Analyses	Certification	RL	Qual Resu	t Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS						
Depth to water from measurin	g point	0	11.4	1 ft	1	02/19/2014 11:35	R187610
STANDARD METHODS 255	50 B						
Temperature		0	13	. 7 °C	1	02/19/2014 11:35	R187610
SW-846 9040B							
pH, Field		1	7.	6	1	02/19/2014 11:35	R187610
SW-846 9050A							
Spec. Conductance, Field		1	50	i1 μmhos/cm	1	02/19/2014 11:35	R187610
STANDARD METHODS 254	40 C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	40	12 mg/L	1	02/20/2014 13:25	R187421
SW-846 9036 (DISSOLVED)						
Sulfate	NELAP	50	;	1 mg/L	5	02/21/2014 12:05	R187442
SW-846 9251 (DISSOLVED)						
Chloride	NELAP	5		22 mg/L	1	02/21/2014 12:00	R187451
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL	VED)					
Boron	NELAP	0.02	< 0.0	12 mg/L	1	02/24/2014 17:57	96224
Iron	NELAP	0.02	< 0.0	12 mg/L	1	02/21/2014 15:32	96224
Manganese	NELAP	0.005	< 0.00	95 mg/L	1	02/21/2014 15:32	96224

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560 Report Date: 27-Feb-14

Lab ID: 14020560-007 Client Sample ID: MW154

Matrix: GROUNDWATER Collection Date: 02/19/2014 12:05

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	REMENTS							
Depth to water from measuring	point	0		6.38	ft	1	02/19/2014 12:05	R187610
STANDARD METHODS 255	0 B							
Temperature		0		11.3	°C	1	02/19/2014 12:05	R187610
SW-846 9040B								
pH, Field		1		7.4		1	02/19/2014 12:05	R187610
SW-846 9050A								
Spec. Conductance, Field		1		713	µmhos/cm	1	02/19/2014 12:05	R187610
STANDARD METHODS 254	0 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		454	mg/L	1	02/20/2014 13:25	R187421
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	10		48	mg/L	1	02/21/2014 12:08	R187442
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5		8	mg/L	1	02/21/2014 12:08	R187451
SW-846 3005A, 6010B, MET	ALS BY ICP (DISSOL	/ED)						
Boron	NELAP	0.02		0.021	mg/L	1	02/21/2014 15:38	96224
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 15:38	96224
Manganese	NELAP	0.005		< 0.005	mg/L	1	02/21/2014 15:38	96224

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Report Date: 27-Feb-14

Lab ID: 14020560-008 Client Sample ID: MW155

Matrix: GROUNDWATER Collection Date: 02/19/2014 12:35

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASI	UREMENTS							
Depth to water from measuring	ng point	0		21.16	ft	1	02/19/2014 12:35	R187610
STANDARD METHODS 25	50 B							
Temperature		0		13.7	°C	1	02/19/2014 12:35	R187610
SW-846 9040B								
pH, Field		1		7.02		1	02/19/2014 12:35	R187610
SW-846 9050A								
Spec. Conductance, Field		1		3890	µmhos/cm	1	02/19/2014 12:35	R187610
STANDARD METHODS 25	40 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		1080	mg/L	1	02/20/2014 13:26	R187421
SW-846 9036 (DISSOLVED	0)							
Sulfate	NELAP	20		54	mg/L	2	02/21/2014 12:35	R187442
SW-846 9251 (DISSOLVED))							
Chloride	NELAP	5		8	mg/L	1	02/21/2014 12:16	R187451
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02	J	0.009	mg/L	1	02/21/2014 15:44	96224
Iron	NELAP	0.02		0.482	mg/L	1	02/21/2014 15:44	96224
Manganese	NELAP	0.005		0.359	mg/L	1	02/21/2014 15:44	96224

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring Report Date: 27-Feb-14

Lab ID: 14020560-009 Client Sample ID: MW252

Matrix: GROUNDWATER Collection Date: 02/19/2014 9:15

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASURE	MENTS							
Depth to water from measuring po	oint	0		0.25	ft	1	02/19/2014 9:15	R187610
STANDARD METHODS 2550	В							
Temperature		0		10.9	°C	1	02/19/2014 9:15	R187610
SW-846 9040B								
pH, Field		1		8.05		1	02/19/2014 9:15	R187610
SW-846 9050A								
Spec. Conductance, Field		1		1320	µmhos/cm	1	02/19/2014 9:15	R187610
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		1310	mg/L	1	02/20/2014 13:26	R187421
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	200		480	mg/L	20	02/21/2014 12:43	R187442
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	10		41	mg/L	2	02/21/2014 12:37	R187451
SW-846 3005A, 6010B, META	LS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02		0.236	mg/L	1	02/21/2014 15:51	96224
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 15:51	96224
Manganese	NELAP	0.005		0.012	mg/L	1	02/21/2014 15:51	96224

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Report Date: 27-Feb-14

Matrix: GROUNDWATER Collection Date: 02/19/2014 11:20

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASI	UREMENTS							
Depth to water from measuring	ng point	0		11.26	ft	1	02/19/2014 11:20	R187610
STANDARD METHODS 25	50 B							
Temperature		0		14.4	°C	1	02/19/2014 11:20	R187610
SW-846 9040B								
pH, Field		1		7.85		1	02/19/2014 11:20	R187610
SW-846 9050A								
Spec. Conductance, Field		1		833	µmhos/cm	1	02/19/2014 11:20	R187610
STANDARD METHODS 25	40 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		564	mg/L	1	02/20/2014 13:26	R187421
SW-846 9036 (DISSOLVED	0)							
Sulfate	NELAP	200		368	mg/L	20	02/21/2014 12:51	R187442
SW-846 9251 (DISSOLVED	0)							
Chloride	NELAP	5		16	mg/L	1	02/21/2014 12:45	R187451
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02		0.068	mg/L	1	02/21/2014 15:57	96224
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 15:57	96224
Manganese	NELAP	0.005		< 0.005	mg/L	1	02/21/2014 15:57	96224

Matrix: GROUNDWATER

Client Project: Baldwin - Groundwater Monitoring

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Report Date: 27-Feb-14

Collection Date: 02/19/2014 10:20

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch
FIELD ELEVATION MEASU	JREMENTS						
Depth to water from measuring	ng point	0		22.31	ft	1	02/19/2014 10:20 R18761
STANDARD METHODS 25	50 B						
Temperature		0		13.3	°C	1	02/19/2014 10:20 R18761
SW-846 9040B							
pH, Field		1		8.08		1	02/19/2014 10:20 R18761
SW-846 9050A							
Spec. Conductance, Field		1		4170	µmhos/cm	1	02/19/2014 10:20 R18761
STANDARD METHODS 25	40 C (DISSOLVED)						
Total Dissolved Solids	NELAP	20		1420	mg/L	1	02/20/2014 13:27 R18742
SW-846 9036 (DISSOLVED))						
Sulfate	NELAP	10	J	7	mg/L	1	02/21/2014 12:54 R18744
SW-846 9251 (DISSOLVED))						
Chloride	NELAP	10		33	mg/L	2	02/24/2014 15:50 R18751
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL	VED)					
Boron	NELAP	0.02		0.03	mg/L	1	02/21/2014 16:15 96224
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 16:15 96224
Manganese	NELAP	0.005		< 0.005	mg/L	1	02/21/2014 16:15 96224

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring

Report Da

Report Date: 27-Feb-14

Lab ID: 14020560-012

Client Sample ID: MW352

Matrix: GROUNDWATER Collection Date: 02/19/2014 9:25

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	REMENTS							
Depth to water from measuring	point	0		0.85	ft	1	02/19/2014 9:25	R187610
STANDARD METHODS 2550	В							
Temperature		0		11.5	°C	1	02/19/2014 9:25	R187610
SW-846 9040B								
pH, Field		1		6.51		1	02/19/2014 9:25	R187610
SW-846 9050A								
Spec. Conductance, Field		1		1530	µmhos/cm	1	02/19/2014 9:25	R187610
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		768	mg/L	1	02/20/2014 13:28	R187421
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	10		18	mg/L	1	02/21/2014 13:29	R187442
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	100		390	mg/L	20	02/21/2014 13:34	R187451
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL'	VED)						
Boron	NELAP	0.02		0.826	mg/L	1	02/21/2014 16:33	96224
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 16:33	96224
Manganese	NELAP	0.005	J	0.002	mg/L	1	02/21/2014 16:33	96224

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring Report Date: 27-Feb-14

Lab ID: 14020560-013 Client Sample ID: MW355

Matrix: GROUNDWATER Collection Date: 02/19/2014 13:00

Analyses	Certification	RL Qı	ual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS						
Depth to water from measuring	point	0	23.7	ft	1	02/19/2014 13:00	R187610
STANDARD METHODS 2550	В						
Temperature		0	13.5	°C	1	02/19/2014 13:00	R187610
SW-846 9040B							
pH, Field		1	7.05		1	02/19/2014 13:00	R187610
SW-846 9050A							
Spec. Conductance, Field		1	691	µmhos/cm	1	02/19/2014 13:00	R187610
STANDARD METHODS 2540	C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	458	mg/L	1	02/20/2014 13:28	R187421
SW-846 9036 (DISSOLVED)							
Sulfate	NELAP	20	65	mg/L	2	02/21/2014 13:42	R187442
SW-846 9251 (DISSOLVED)							
Chloride	NELAP	5	11	mg/L	1	02/21/2014 13:37	R187451
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	VED)					
Boron	NELAP	0.02	0.024	mg/L	1	02/21/2014 16:39	96224
Iron	NELAP	0.02	0.034	mg/L	1	02/21/2014 16:39	96224
Manganese	NELAP	0.005	0.051	mg/L	1	02/21/2014 16:39	96224

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560 Report Date: 27-Feb-14

Client Project: Baldwin - Groundwater Monitoring

Client Sample ID: OW156

Lab ID: 14020560-014

Matrix: GROUNDWATER

Collection Date: 02/18/2014 13:45

Analyses	Certification	RL	Qual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS						
Depth to water from measuring p	point	0	4.19	ft	1	02/18/2014 13:45	R187610
STANDARD METHODS 2550	В						
Temperature		0	13.3	°C	1	02/18/2014 13:45	R187610
SW-846 9040B							
pH, Field		1	6.82		1	02/18/2014 13:45	R187610
SW-846 9050A							
Spec. Conductance, Field		1	662	µmhos/cm	1	02/18/2014 13:45	R187610
STANDARD METHODS 2540	C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	470	mg/L	1	02/20/2014 13:29	R187421
SW-846 9036 (DISSOLVED)							
Sulfate	NELAP	50	88	mg/L	5	02/21/2014 14:09	R187442
SW-846 9251 (DISSOLVED)							
Chloride	NELAP	25	55	mg/L	5	02/21/2014 14:09	R187451
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	VED)					
Boron	NELAP	0.02	0.032	mg/L	1	02/21/2014 16:45	96224
Iron	NELAP	0.02	< 0.02	mg/L	1	02/21/2014 16:45	96224
Manganese	NELAP	0.005	< 0.005	mg/L	1	02/21/2014 16:45	96224

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Report Date: 27-Feb-14

Lab ID: 14020560-015 Client Sample ID: OW157

Matrix: GROUNDWATER Collection Date: 02/18/2014 11:55

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to water from measuring p	oint	0		3.83	ft	1	02/18/2014 11:55	R187610
STANDARD METHODS 2550	В							
Temperature		0		13	°C	1	02/18/2014 11:55	R187610
SW-846 9040B								
pH, Field		1		6.63		1	02/18/2014 11:55	R187610
SW-846 9050A								
Spec. Conductance, Field		1		3150	µmhos/cm	1	02/18/2014 11:55	R187610
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		3180	mg/L	1	02/20/2014 13:53	R187421
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	500		2050	mg/L	50	02/21/2014 14:25	R187442
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	25		124	mg/L	5	02/21/2014 14:19	R187451
SW-846 3005A, 6010B, META	LS BY ICP (DISSOL	VED)						
Boron	NELAP	0.2		45.3	mg/L	10	02/24/2014 18:15	96224
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 16:51	96224
Manganese	NELAP	0.005		0.134	mg/L	1	02/21/2014 16:51	96224

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560 Report Date: 27-Feb-14

Matrix: GROUNDWATER Collection Date: 02/18/2014 14:45

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASI	UREMENTS							
Depth to water from measuring	ng point	0		21.05	ft	1	02/18/2014 14:45	R187610
STANDARD METHODS 25	50 B							
Temperature		0		14.2	°C	1	02/18/2014 14:45	R187610
SW-846 9040B								
pH, Field		1		6.95		1	02/18/2014 14:45	R187610
SW-846 9050A								
Spec. Conductance, Field		1		603	µmhos/cm	1	02/18/2014 14:45	R187610
STANDARD METHODS 25	40 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		430	mg/L	1	02/20/2014 13:55	R187421
SW-846 9036 (DISSOLVED	0)							
Sulfate	NELAP	20		44	mg/L	2	02/21/2014 14:33	R187442
SW-846 9251 (DISSOLVED	0)							
Chloride	NELAP	5		5	mg/L	1	02/21/2014 14:28	R187451
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02	J	0.012	mg/L	1	02/24/2014 18:03	96224
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 16:57	96224
Manganese	NELAP	0.005		0.834	mg/L	1	02/21/2014 16:57	96224

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560 Report Date: 27-Feb-14

Client Project: Baldwin - Groundwater Monitoring

Client Sample ID: MW262

Lab ID: 14020560-018

Matrix: GROUNDWATER

Collection Date: 02/19/2014 10:50

					<u> </u>	- /		
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS							
Depth to water from measurin	g point	0		37.61	ft	1	02/19/2014 10:50	R187610
STANDARD METHODS 25	50 B							
Temperature		0		14.7	°C	1	02/19/2014 10:50	R187610
SW-846 9040B								
pH, Field		1		7.48		1	02/19/2014 10:50	R187610
SW-846 9050A								
Spec. Conductance, Field		1		301	µmhos/cm	1	02/19/2014 10:50	R187610
STANDARD METHODS 254	40 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		188	mg/L	1	02/20/2014 13:56	R187421
SW-846 9036 (DISSOLVED))							
Sulfate	NELAP	20		24	mg/L	2	02/21/2014 15:01	R187442
SW-846 9251 (DISSOLVED))							
Chloride	NELAP	5	J	3	mg/L	1	02/21/2014 14:36	R187451
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02	J	0.016	mg/L	1	02/24/2014 18:09	96224
Iron	NELAP	0.02		0.026	mg/L	1	02/21/2014 17:03	96224
Manganese	NELAP	0.005		0.024	mg/L	1	02/21/2014 17:03	96224

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring

Report Date: 27-Feb-14

Client Sample ID: OW256

Matrix: GROUNDWATER

Lab ID: 14020560-019

Collection Date: 02/18/2014 13:35

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch		
FIELD ELEVATION MEASUR	FIELD ELEVATION MEASUREMENTS									
Depth to water from measuring p	point	0		6.2	ft	1	02/18/2014 13:35	R187610		
STANDARD METHODS 2550	В									
Temperature		0		10.7	°C	1	02/18/2014 13:35	R187610		
SW-846 9040B										
pH, Field		1		6.77		1	02/18/2014 13:35	R187610		
SW-846 9050A										
Spec. Conductance, Field		1		723	µmhos/cm	1	02/18/2014 13:35	R187610		
STANDARD METHODS 2540	C (DISSOLVED)									
Total Dissolved Solids	NELAP	20		508	mg/L	1	02/20/2014 13:56	R187421		
SW-846 9036 (DISSOLVED)										
Sulfate	NELAP	20		90	mg/L	2	02/21/2014 15:11	R187442		
SW-846 9251 (DISSOLVED)										
Chloride	NELAP	10		57	mg/L	2	02/21/2014 15:11	R187451		
SW-846 3005A, 6010B, META	LS BY ICP (DISSOL	VED)								
Boron	NELAP	0.02		0.154	mg/L	1	02/21/2014 17:09	96224		
Iron	NELAP	0.02	J	0.011	mg/L	1	02/21/2014 17:09	96224		
Manganese	NELAP	0.005	J	0.002	mg/L	1	02/21/2014 17:09	96224		

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560 Report Date: 27-Feb-14

Client Project: Baldwin - Groundwater Monitoring
Lab ID: 14020560-020

Client Sample ID: OW257

Matrix: GROUNDWATER

Collection Date: 02/18/2014 11:40

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEAS	UREMENTS							
Depth to water from measuring	ng point	0		3.96	ft	1	02/18/2014 11:40	R187610
STANDARD METHODS 25	50 B							
Temperature		0		13.1	°C	1	02/18/2014 11:40	R187610
SW-846 9040B								
pH, Field		1		7.12		1	02/18/2014 11:40	R187610
SW-846 9050A								
Spec. Conductance, Field		1		1120	µmhos/cm	1	02/18/2014 11:40	R187610
STANDARD METHODS 25	40 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		900	mg/L	1	02/20/2014 13:56	R187421
SW-846 9036 (DISSOLVED	0)							
Sulfate	NELAP	100		310	mg/L	10	02/21/2014 15:25	R187442
SW-846 9251 (DISSOLVED	0)							
Chloride	NELAP	5		18	mg/L	1	02/21/2014 15:19	R187451
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02		2.88	mg/L	1	02/21/2014 17:15	96224
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 17:15	96224
Manganese	NELAP	0.005		0.013	mg/L	1	02/21/2014 17:15	96224

Matrix: GROUNDWATER

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring

Report Date: 27-Feb-14

Lab ID: 14020560-021 Client Sample ID: TPZ158

Collection Date: 02/18/2014 9:05

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	REMENTS							
Depth to water from measuring	point	0		18.24	ft	1	02/18/2014 9:05	R187610
STANDARD METHODS 2550	В							
Temperature		0		10.2	°C	1	02/18/2014 9:05	R187610
SW-846 9040B								
pH, Field		1		6.73		1	02/18/2014 9:05	R187610
SW-846 9050A								
Spec. Conductance, Field		1		584	µmhos/cm	1	02/18/2014 9:05	R187610
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		380	mg/L	1	02/20/2014 13:57	R187421
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	10		44	mg/L	1	02/21/2014 15:27	R187442
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	10		65	mg/L	2	02/24/2014 16:01	R187511
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL'	VED)						
Boron	NELAP	0.02	J	0.006	mg/L	1	02/25/2014 11:22	96224
Iron	NELAP	0.02	J	0.008	mg/L	1	02/21/2014 17:21	96224
Manganese	NELAP	0.005	J	0.004	mg/L	1	02/21/2014 17:21	96224

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Report Date: 27-Feb-14

Lab ID: 14020560-022 Client Sample ID: TPZ159

Matrix: GROUNDWATER Collection Date: 02/18/2014 13:15

Analyses	Certification	RL (Qual Result	Units	DF	Date Analyzed Batch	
FIELD ELEVATION MEASU	JREMENTS						
Depth to water from measuring	g point	0	18.12	ft	1	02/18/2014 13:15 R1876	10
STANDARD METHODS 255	50 B						
Temperature		0	15.1	°C	1	02/18/2014 13:15 R1876	10
SW-846 9040B							
pH, Field		1	6.55		1	02/18/2014 13:15 R1876	10
SW-846 9050A							
Spec. Conductance, Field		1	593	µmhos/cm	1	02/18/2014 13:15 R1876	10
STANDARD METHODS 254	40 C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	480	mg/L	1	02/20/2014 13:57 R18742	21
SW-846 9036 (DISSOLVED)						
Sulfate	NELAP	50	98	mg/L	5	02/21/2014 15:54 R18744	42
SW-846 9251 (DISSOLVED)						
Chloride	NELAP	5	35	mg/L	1	02/21/2014 15:35 R1874	51
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL	VED)					
Boron	NELAP	0.02	0.121	mg/L	1	02/24/2014 18:27 96227	
Iron	NELAP	0.02	< 0.02	mg/L	1	02/21/2014 17:52 96227	
Manganese	NELAP	0.005	0.512	mg/L	1	02/21/2014 17:52 96227	

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Report Date: 27-Feb-14

Lab ID: 14020560-023 Client Sample **ID:** TPZ160

Matrix: GROUNDWATER Collection Date: 02/18/2014 14:20

Analyses	Certification	RL (Qual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASI	UREMENTS						
Depth to water from measuring	ng point	0	4.16	ft	1	02/18/2014 14:20	R187610
STANDARD METHODS 25	50 B						
Temperature		0	13.4	°C	1	02/18/2014 14:20	R187610
SW-846 9040B							
pH, Field		1	7.02		1	02/18/2014 14:20	R187610
SW-846 9050A							
Spec. Conductance, Field		1	682	µmhos/cm	1	02/18/2014 14:20	R187610
STANDARD METHODS 25	40 C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	510	mg/L	1	02/20/2014 13:58	R187421
SW-846 9036 (DISSOLVED	0)						
Sulfate	NELAP	20	63	mg/L	2	02/21/2014 16:02	R187442
SW-846 9251 (DISSOLVED	0)						
Chloride	NELAP	5	44	mg/L	1	02/21/2014 15:57	R187451
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL	VED)					
Boron	NELAP	0.02	0.219	mg/L	1	02/24/2014 18:45	96227
Iron	NELAP	0.02	0.399	mg/L	1	02/21/2014 17:58	96227
Manganese	NELAP	0.005	0.167	mg/L	1	02/21/2014 17:58	96227

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring Report Date: 27-Feb-14

Matrix: GROUNDWATER Collection Date: 02/18/2014 10:10

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	FIELD ELEVATION MEASUREMENTS							
Depth to water from measuring p	point	0		7.35	ft	1	02/18/2014 10:10	R187610
STANDARD METHODS 2550 B								
Temperature		0		13.4	°C	1	02/18/2014 10:10	R187610
SW-846 9040B								
pH, Field		1		7.59		1	02/18/2014 10:10	R187610
SW-846 9050A								
Spec. Conductance, Field		1		1070	µmhos/cm	1	02/18/2014 10:10	R187610
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		1160	mg/L	1	02/20/2014 13:58	R187421
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	200		610	mg/L	20	02/21/2014 16:11	R187442
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5		15	mg/L	1	02/21/2014 16:05	R187451
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	VED)						
Boron	NELAP	0.2		37.8	mg/L	10	02/24/2014 19:58	96227
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 18:04	96227
Manganese	NELAP	0.005	J	0.003	mg/L	1	02/21/2014 18:04	96227

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring

Report Date: 27-Feb-14

Lab ID: 14020560-025 Client Sample ID: TPZ164

Matrix: GROUNDWATER Collection Date: 02/18/2014 12:35

Analyses	Certification	RL Q	Qual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	REMENTS						
Depth to water from measuring	point	0	4.39	ft	1	02/18/2014 12:35	R187610
STANDARD METHODS 2550 B							
Temperature		0	14	°C	1	02/18/2014 12:35	R187610
SW-846 9040B							
pH, Field		1	7.32		1	02/18/2014 12:35	R187610
SW-846 9050A							
Spec. Conductance, Field		1	1430	µmhos/cm	1	02/18/2014 12:35	R187610
STANDARD METHODS 2540	C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	504	mg/L	1	02/20/2014 13:58	R187421
SW-846 9036 (DISSOLVED)							
Sulfate	NELAP	50	173	mg/L	5	02/21/2014 16:13	R187442
SW-846 9251 (DISSOLVED)							
Chloride	NELAP	25	67	mg/L	5	02/21/2014 16:13	R187451
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	VED)					
Boron	NELAP	0.02	1.76	mg/L	1	02/24/2014 18:51	96227
Iron	NELAP	0.02	5.52	mg/L	1	02/21/2014 18:10	96227
Manganese	NELAP	0.005	0.582	mg/L	1	02/21/2014 18:10	96227

Matrix: GROUNDWATER

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring

Report Date: 27-Feb-14

Collection Date: 02/18/2014 15:05

Analyses	Certification	RL	Qual Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASU	JREMENTS						
Depth to water from measuring	ng point	0	4.52	ft	1	02/18/2014 15:05	R187610
STANDARD METHODS 25	50 B						
Temperature		0	14	°C	1	02/18/2014 15:05	R187610
SW-846 9040B							
pH, Field		1	6.45		1	02/18/2014 15:05	R187610
SW-846 9050A							
Spec. Conductance, Field		1	3170	µmhos/cm	1	02/18/2014 15:05	R187610
STANDARD METHODS 25	40 C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	2290	mg/L	1	02/20/2014 13:59	R187421
SW-846 9036 (DISSOLVED))						
Sulfate	NELAP	500	1070	mg/L	50	02/24/2014 16:47	R187510
SW-846 9251 (DISSOLVED	D)						
Chloride	NELAP	10	91	mg/L	2	02/21/2014 16:21	R187451
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL	VED)					
Boron	NELAP	0.02	1.35	mg/L	1	02/24/2014 19:09	96227
Iron	NELAP	0.02	3.89	mg/L	1	02/21/2014 18:28	96227
Manganese	NELAP	0.005	12.7	mg/L	1	02/21/2014 18:28	96227

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring Report Date: 27-Feb-14

Lab ID: 14020560-027 Client Sample ID: TPZ166

Matrix: GROUNDWATER Collection Date: 02/18/2014 11:15

Analyses	Certification	RL Qu	al Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	REMENTS						
Depth to water from measuring	point	0	6.37	ft	1	02/18/2014 11:15	R187610
STANDARD METHODS 2550 B							
Temperature		0	13.5	°C	1	02/18/2014 11:15	R187610
SW-846 9040B							
pH, Field		1	7.24		1	02/18/2014 11:15	R187610
SW-846 9050A							
Spec. Conductance, Field		1	423	µmhos/cm	1	02/18/2014 11:15	R187610
STANDARD METHODS 2540	C (DISSOLVED)						
Total Dissolved Solids	NELAP	20	306	mg/L	1	02/20/2014 14:00	R187421
SW-846 9036 (DISSOLVED)							
Sulfate	NELAP	10	38	mg/L	1	02/21/2014 16:29	R187442
SW-846 9251 (DISSOLVED)							
Chloride	NELAP	5	12	mg/L	1	02/21/2014 16:29	R187451
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL	VED)					
Boron	NELAP	0.02	0.066	mg/L	1	02/24/2014 19:15	96227
Iron	NELAP	0.02	< 0.02	mg/L	1	02/21/2014 18:34	96227
Manganese	NELAP	0.005	0.282	mg/L	1	02/21/2014 18:34	96227

Matrix: GROUNDWATER

Laboratory Results

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring

Report Date: 27-Feb-14

Lab ID: 14020560-028 Client Sample ID: TPZ167

Collection Date: 02/18/2014 10:35

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEAS	UREMENTS							
Depth to water from measuring	ng point	0		5.11	ft	1	02/18/2014 10:35	R187610
STANDARD METHODS 25	50 B							
Temperature		0		14.3	°C	1	02/18/2014 10:35	R187610
SW-846 9040B								
pH, Field		1		7.7		1	02/18/2014 10:35	R187610
SW-846 9050A								
Spec. Conductance, Field		1		3540	µmhos/cm	1	02/18/2014 10:35	R187610
STANDARD METHODS 25	40 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		3040	mg/L	1	02/20/2014 14:00	R187421
SW-846 9036 (DISSOLVED	0)							
Sulfate	NELAP	500		1840	mg/L	50	02/21/2014 16:57	R187442
SW-846 9251 (DISSOLVED	0)							
Chloride	NELAP	25		100	mg/L	5	02/21/2014 16:51	R187451
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOLV	/ED)						
Boron	NELAP	0.2		54.5	mg/L	10	02/24/2014 20:04	96227
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 18:40	96227
Manganese	NELAP	0.005	J	0.002	mg/L	1	02/21/2014 18:40	96227

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring Report Date: 27-Feb-14

Lab ID: 14020560-029 Client Sample ID: TPZ168

Matrix: GROUNDWATER Collection Date: 02/18/2014 10:50

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEAS	UREMENTS							
Depth to water from measuring	ng point	0		7.88	ft	1	02/18/2014 10:50	R187610
STANDARD METHODS 25	50 B							
Temperature		0		15.3	°C	1	02/18/2014 10:50	R187610
SW-846 9040B								
pH, Field		1		8.08		1	02/18/2014 10:50	R187610
SW-846 9050A								
Spec. Conductance, Field		1		6020	µmhos/cm	1	02/18/2014 10:50	R187610
STANDARD METHODS 25	40 C (DISSOLVED)							
Total Dissolved Solids	NELAP	100		5120	mg/L	5	02/24/2014 11:44	R187527
SW-846 9036 (DISSOLVED	0)							
Sulfate	NELAP	1000		2820	mg/L	100	02/21/2014 17:05	R187442
SW-846 9251 (DISSOLVED	0)							
Chloride	NELAP	25		103	mg/L	5	02/21/2014 16:59	R187451
SW-846 3005A, 6010B, ME	TALS BY ICP (DISSOL)	/ED)						
Boron	NELAP	0.2		78.8	mg/L	10	02/24/2014 20:10	96227
Iron	NELAP	0.02		0.061	mg/L	1	02/21/2014 18:58	96227
Manganese	NELAP	0.005	J	0.003	mg/L	1	02/21/2014 18:58	96227

Client Project: Baldwin - Groundwater Monitoring

Laboratory Results

http://www.teklabinc.com/

Report Date: 27-Feb-14

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Lab ID: 14020560-030 Client Sample ID: DUP 1

Matrix: GROUNDWATER Collection Date: 02/18/2014 9:33

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 254	0 C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		666	mg/L	1	02/20/2014 14:01	R187421
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	100		190	mg/L	10	02/21/2014 17:13	R187442
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5		19	mg/L	1	02/21/2014 17:07	R187451
SW-846 3005A, 6010B, MET	TALS BY ICP (DISSOL)	VED)						
Boron	NELAP	0.02	J	0.018	mg/L	1	02/24/2014 19:22	96227
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 19:04	96227
Manganese	NELAP	0.005		0.042	mg/L	1	02/21/2014 19:04	96227

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring Report Date: 27-Feb-14

Lab ID: 14020560-031 Client Sample ID: DUP 2

Matrix: GROUNDWATER Collection Date: 02/19/2014 9:05

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		1820	mg/L	1	02/20/2014 14:03	R187421
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	500		901	mg/L	50	02/24/2014 17:14	R187510
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	10		56	mg/L	2	02/24/2014 16:50	R187511
SW-846 3005A, 6010B, META	LS BY ICP (DISSOL	/ED)						
Boron	NELAP	0.02		12.5	mg/L	1	02/24/2014 19:28	96227
Iron	NELAP	0.02	J	0.015	mg/L	1	02/21/2014 19:10	96227
Manganese	NELAP	0.005	J	0.004	mg/L	1	02/21/2014 19:10	96227

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring Report Date: 27-Feb-14

Lab ID: 14020560-033 Client Sample ID: Field Blank 1

Matrix: AQUEOUS Collection Date: 02/18/2014 8:45

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Ba	atch
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20		< 20	mg/L	1	02/20/2014 14:03 R1	187421
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	10		< 10	mg/L	1	02/21/2014 17:25 R1	187442
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5	J	2	mg/L	1	02/21/2014 17:25 R1	187451
SW-846 3005A, 6010B, META	ALS BY ICP (DISSOL\	/ED)						
Boron	NELAP	0.02		< 0.02	mg/L	1	02/25/2014 11:16 96	6227
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 19:17 96	5227
Manganese	NELAP	0.005		< 0.005	mg/L	1	02/21/2014 19:17 96	6227

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring Report Date: 27-Feb-14

Lab ID: 14020560-034 Client Sample ID: Field Blank 2

Matrix: AQUEOUS Collection Date: 02/19/2014 8:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 2540	C (DISSOLVED)							
Total Dissolved Solids	NELAP	20	J	12	mg/L	1	02/20/2014 14:03	R187421
SW-846 9036 (DISSOLVED)								
Sulfate	NELAP	10		< 10	mg/L	1	02/21/2014 17:44	R187442
SW-846 9251 (DISSOLVED)								
Chloride	NELAP	5	J	2	mg/L	1	02/21/2014 17:44	R187451
SW-846 3005A, 6010B, META	LS BY ICP (DISSOL	VED)						
Boron	NELAP	0.02	J	0.017	mg/L	1	02/24/2014 19:40	96227
Iron	NELAP	0.02		< 0.02	mg/L	1	02/21/2014 19:23	96227
Manganese	NELAP	0.005		< 0.005	mg/L	1	02/21/2014 19:23	96227

14020560-034

Field Blank 2

Sample Summary

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring

Report Date: 27-Feb-14

Lab Sample ID **Client Sample ID Fractions Collection Date** Matrix Groundwater 4 14020560-001 MW104D 02/18/2014 9:33 14020560-002 MW104S Groundwater 4 02/18/2014 9:45 14020560-003 MW150 Groundwater 4 02/19/2014 10:10 14020560-004 MW151 Groundwater 4 02/19/2014 9:40 Groundwater 02/19/2014 9:05 14020560-005 MW152 4 14020560-006 MW153 Groundwater 4 02/19/2014 11:35 14020560-007 MW154 Groundwater 4 02/19/2014 12:05 14020560-008 MW155 Groundwater 4 02/19/2014 12:35 14020560-009 MW252 Groundwater 4 02/19/2014 9:15 14020560-010 MW253 Groundwater 4 02/19/2014 11:20 14020560-011 MW350 Groundwater 4 02/19/2014 10:20 14020560-012 MW352 Groundwater 4 02/19/2014 9:25 14020560-013 MW355 Groundwater 4 02/19/2014 13:00 14020560-014 OW156 Groundwater 4 02/18/2014 13:45 14020560-015 OW157 Groundwater 4 02/18/2014 11:55 14020560-016 MW161 Groundwater 4 02/18/2014 14:45 14020560-017 MW162 Groundwater 4 02/19/2014 10:35 14020560-018 MW262 Groundwater 4 02/19/2014 10:50 14020560-019 OW256 Groundwater 4 02/18/2014 13:35 14020560-020 OW257 Groundwater 4 02/18/2014 11:40 14020560-021 **TPZ158** Groundwater 4 02/18/2014 9:05 14020560-022 **TPZ159** Groundwater 4 02/18/2014 13:15 14020560-023 **TPZ160** Groundwater 4 02/18/2014 14:20 14020560-024 **TPZ163** Groundwater 4 02/18/2014 10:10 14020560-025 **TPZ164** Groundwater 4 02/18/2014 12:35 14020560-026 **TPZ165** Groundwater 4 02/18/2014 15:05 14020560-027 **TPZ166** Groundwater 4 02/18/2014 11:15 14020560-028 **TPZ167** Groundwater 4 02/18/2014 10:35 14020560-029 **TPZ168** Groundwater 4 02/18/2014 10:50 14020560-030 DUP 1 Groundwater 3 02/18/2014 9:33 Groundwater 14020560-031 DUP 2 3 02/19/2014 9:05 3 14020560-033 Field Blank 1 Aqueous 02/18/2014 8:45

Aqueous

3

02/19/2014 8:30

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560 Client Project: Baldwin - Groundwater Monitoring

Report Date: 27-Feb-14

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
14020560-001A	MW104D	02/18/2014 9:33	02/20/2014 8:00		
	Field Elevation Measurements				02/18/2014 9:33
	Standard Methods 2550 B				02/18/2014 9:33
	SW-846 9040B				02/18/2014 9:33
	SW-846 9050A				02/18/2014 9:33
14020560-001B	MW104D	02/18/2014 9:33	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:23
4020560-001C	MW104D	02/18/2014 9:33	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 11:11
	SW-846 9251 (Dissolved)				02/21/2014 11:05
14020560-001D	MW104D	02/18/2014 9:33	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 14:38
14020560-002A	MW104S	02/18/2014 9:45	02/20/2014 8:00		
	Field Elevation Measurements				02/18/2014 9:45
	Standard Methods 2550 B				02/18/2014 9:45
	SW-846 9040B				02/18/2014 9:45
	SW-846 9050A				02/18/2014 9:45
14020560-002B	MW104S	02/18/2014 9:45	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:24
4020560-002C	MW104S	02/18/2014 9:45	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 11:19
	SW-846 9251 (Dissolved)				02/21/2014 11:14
4020560-002D	MW104S	02/18/2014 9:45	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 14:56
14020560-003A	MW150	02/19/2014 10:10	02/20/2014 8:00	02/20/201112.02	
	Field Elevation Measurements				02/19/2014 10:10
	Standard Methods 2550 B				02/19/2014 10:10
	SW-846 9040B				02/19/2014 10:10
	SW-846 9050A				02/19/2014 10:10
4020560-003B	MW150	02/19/2014 10:10	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:24
14020560-003C	MW150	02/19/2014 10:10	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 11:41
	SW-846 9251 (Dissolved)				02/21/2014 11:22
14020560-003D	MW150	02/19/2014 10:10	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 15:02

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
14020560-004A	MW151	02/19/2014 9:40	02/20/2014 8:00		
	Field Elevation Measurements				02/19/2014 9:40
	Standard Methods 2550 B				02/19/2014 9:40
	SW-846 9040B				02/19/2014 9:40
	SW-846 9050A				02/19/2014 9:40
14020560-004B	MW151	02/19/2014 9:40	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:24
14020560-004C	MW151	02/19/2014 9:40	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 11:49
	SW-846 9251 (Dissolved)				02/21/2014 11:43
14020560-004D	MW151	02/19/2014 9:40	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 15:20
14020560-005A	MW152	02/19/2014 9:05	02/20/2014 8:00		
	Field Elevation Measurements				02/19/2014 9:05
	Standard Methods 2550 B				02/19/2014 9:05
	SW-846 9040B				02/19/2014 9:05
	SW-846 9050A				02/19/2014 9:05
14020560-005B	MW152	02/19/2014 9:05	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:24
14020560-005C	MW152	02/19/2014 9:05	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 11:57
	SW-846 9251 (Dissolved)				02/21/2014 11:51
14020560-005D	MW152	02/19/2014 9:05	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 15:26
14020560-006A	MW153	02/19/2014 11:35	02/20/2014 8:00		
	Field Elevation Measurements				02/19/2014 11:35
	Standard Methods 2550 B				02/19/2014 11:35
	SW-846 9040B				02/19/2014 11:35
	SW-846 9050A				02/19/2014 11:35
14020560-006B	MW153	02/19/2014 11:35	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:25
14020560-006C	MW153	02/19/2014 11:35	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 12:05
	SW-846 9251 (Dissolved)				02/21/2014 12:00
14020560-006D	MW153	02/19/2014 11:35	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 15:32

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/24/2014 17:57
14020560-007A	MW154	02/19/2014 12:05	02/20/2014 8:00		
	Field Elevation Measurements				02/19/2014 12:05
	Standard Methods 2550 B				02/19/2014 12:05
	SW-846 9040B				02/19/2014 12:05
	SW-846 9050A				02/19/2014 12:05
14020560-007B	MW154	02/19/2014 12:05	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:25
14020560-007C	MW154	02/19/2014 12:05	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 12:08
	SW-846 9251 (Dissolved)				02/21/2014 12:08
14020560-007D	MW154	02/19/2014 12:05	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 15:38
14020560-008A	MW155	02/19/2014 12:35	02/20/2014 8:00		
	Field Elevation Measurements				02/19/2014 12:35
	Standard Methods 2550 B				02/19/2014 12:35
	SW-846 9040B				02/19/2014 12:35
	SW-846 9050A				02/19/2014 12:35
14020560-008B	MW155	02/19/2014 12:35	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:26
14020560-008C	MW155	02/19/2014 12:35	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 12:35
	SW-846 9251 (Dissolved)				02/21/2014 12:16
14020560-008D	MW155	02/19/2014 12:35	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 15:44
14020560-009A	MW252	02/19/2014 9:15	02/20/2014 8:00		
	Field Elevation Measurements				02/19/2014 9:15
	Standard Methods 2550 B				02/19/2014 9:15
	SW-846 9040B				02/19/2014 9:15
	SW-846 9050A				02/19/2014 9:15
14020560-009B	MW252	02/19/2014 9:15	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:26
14020560-009C	MW252	02/19/2014 9:15	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 12:43
	SW-846 9251 (Dissolved)				02/21/2014 12:37
14020560-009D	MW252	02/19/2014 9:15	02/20/2014 8:00		

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 15:51
14020560-010A	MW253	02/19/2014 11:20	02/20/2014 8:00		
	Field Elevation Measurements				02/19/2014 11:20
	Standard Methods 2550 B				02/19/2014 11:20
	SW-846 9040B				02/19/2014 11:20
	SW-846 9050A				02/19/2014 11:20
14020560-010B	MW253	02/19/2014 11:20	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:26
14020560-010C	MW253	02/19/2014 11:20	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 12:51
	SW-846 9251 (Dissolved)				02/21/2014 12:45
14020560-010D	MW253	02/19/2014 11:20	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 15:57
14020560-011A	MW350	02/19/2014 10:20	02/20/2014 8:00		
	Field Elevation Measurements				02/19/2014 10:20
	Standard Methods 2550 B				02/19/2014 10:20
	SW-846 9040B				02/19/2014 10:20
	SW-846 9050A				02/19/2014 10:20
14020560-011B	MW350	02/19/2014 10:20	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:27
14020560-011C	MW350	02/19/2014 10:20	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 12:54
	SW-846 9251 (Dissolved)				02/24/2014 15:50
14020560-011D	MW350	02/19/2014 10:20	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 16:15
14020560-012A	MW352	02/19/2014 9:25	02/20/2014 8:00		
	Field Elevation Measurements				02/19/2014 9:25
	Standard Methods 2550 B				02/19/2014 9:25
	SW-846 9040B				02/19/2014 9:25
	SW-846 9050A				02/19/2014 9:25
14020560-012B	MW352	02/19/2014 9:25	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:28
14020560-012C	MW352	02/19/2014 9:25	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 13:29
	SW-846 9251 (Dissolved)				02/21/2014 13:34
14020560-012D	MW352	02/19/2014 9:25	02/20/2014 8:00		

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560 Client Project: Baldwin - Groundwater Monitoring

Report Date: 27-Feb-14

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 16:33
14020560-013A	MW355	02/19/2014 13:00	02/20/2014 8:00		
	Field Elevation Measurements				02/19/2014 13:00
	Standard Methods 2550 B				02/19/2014 13:00
	SW-846 9040B				02/19/2014 13:00
	SW-846 9050A				02/19/2014 13:00
14020560-013B	MW355	02/19/2014 13:00	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:28
4020560-013C	MW355	02/19/2014 13:00	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 13:42
	SW-846 9251 (Dissolved)				02/21/2014 13:37
14020560-013D	MW355	02/19/2014 13:00	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 16:39
14020560-014A	OW156	02/18/2014 13:45	02/20/2014 8:00		
	Field Elevation Measurements				02/18/2014 13:45
	Standard Methods 2550 B				02/18/2014 13:45
	SW-846 9040B				02/18/2014 13:45
	SW-846 9050A				02/18/2014 13:45
14020560-014B	OW156	02/18/2014 13:45	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:29
4020560-014C	OW156	02/18/2014 13:45	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 14:09
	SW-846 9251 (Dissolved)				02/21/2014 14:09
4020560-014D	OW156	02/18/2014 13:45	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 16:45
14020560-015A	OW157	02/18/2014 11:55	02/20/2014 8:00		
	Field Elevation Measurements				02/18/2014 11:55
	Standard Methods 2550 B				02/18/2014 11:55
	SW-846 9040B				02/18/2014 11:55
	SW-846 9050A				02/18/2014 11:55
4020560-015B	OW157	02/18/2014 11:55	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:53
14020560-015C	OW157	02/18/2014 11:55	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 14:25
	SW-846 9251 (Dissolved)				02/21/2014 14:19
14020560-015D	OW157	02/18/2014 11:55	02/20/2014 8:00		

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 16:51
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/24/2014 18:15
4020560-016A	MW161	02/18/2014 14:45	02/20/2014 8:00		
	Field Elevation Measurements				02/18/2014 14:45
	Standard Methods 2550 B				02/18/2014 14:45
	SW-846 9040B				02/18/2014 14:45
	SW-846 9050A				02/18/2014 14:45
4020560-016B	MW161	02/18/2014 14:45	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:55
4020560-016C	MW161	02/18/2014 14:45	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 14:33
	SW-846 9251 (Dissolved)				02/21/2014 14:28
4020560-016D	MW161	02/18/2014 14:45	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 16:57
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/24/2014 18:03
4020560-018A	MW262	02/19/2014 10:50	02/20/2014 8:00		
	Field Elevation Measurements				02/19/2014 10:50
	Standard Methods 2550 B				02/19/2014 10:50
	SW-846 9040B				02/19/2014 10:50
	SW-846 9050A				02/19/2014 10:50
4020560-018B	MW262	02/19/2014 10:50	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:56
4020560-018C	MW262	02/19/2014 10:50	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 15:01
	SW-846 9251 (Dissolved)				02/21/2014 14:36
4020560-018D	MW262	02/19/2014 10:50	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 17:03
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/24/2014 18:09
4020560-019A	OW256	02/18/2014 13:35	02/20/2014 8:00		
	Field Elevation Measurements				02/18/2014 13:35
	Standard Methods 2550 B				02/18/2014 13:35
	SW-846 9040B				02/18/2014 13:35
	SW-846 9050A				02/18/2014 13:35
4020560-019B	OW256	02/18/2014 13:35	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:56
14020560-019C	OW256	02/18/2014 13:35	02/20/2014 8:00		

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9036 (Dissolved)				02/21/2014 15:11
	SW-846 9251 (Dissolved)				02/21/2014 15:11
14020560-019D	OW256	02/18/2014 13:35	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 17:09
14020560-020A	OW257	02/18/2014 11:40	02/20/2014 8:00		
	Field Elevation Measurements				02/18/2014 11:40
	Standard Methods 2550 B				02/18/2014 11:40
	SW-846 9040B				02/18/2014 11:40
	SW-846 9050A				02/18/2014 11:40
4020560-020B	OW257	02/18/2014 11:40	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:56
14020560-020C	OW257	02/18/2014 11:40	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 15:25
	SW-846 9251 (Dissolved)				02/21/2014 15:19
14020560-020D	OW257	02/18/2014 11:40	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 17:15
14020560-021A	TPZ158	02/18/2014 9:05	02/20/2014 8:00		
	Field Elevation Measurements				02/18/2014 9:05
	Standard Methods 2550 B				02/18/2014 9:05
	SW-846 9040B				02/18/2014 9:05
	SW-846 9050A				02/18/2014 9:05
14020560-021B	TPZ158	02/18/2014 9:05	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:57
14020560-021C	TPZ158	02/18/2014 9:05	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 15:27
	SW-846 9251 (Dissolved)				02/24/2014 16:01
14020560-021D	TPZ158	02/18/2014 9:05	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/21/2014 17:21
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 12:52	02/25/2014 11:22
14020560-022A	TPZ159	02/18/2014 13:15	02/20/2014 8:00	52/20/2014 12.32	-2,20,202111.22
	Field Elevation Measurements				02/18/2014 13:15
	Standard Methods 2550 B				02/18/2014 13:15
	SW-846 9040B				
					02/18/2014 13:15
14020560-022B	SW-846 9050A TPZ159	02/18/2014 13:15	02/20/2014 8:00		02/18/2014 13:15
17020300-0221		02/10/2014 13.13	02/20/2014 0:00		00/00/004
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:57

Client Project: Baldwin - Groundwater Monitoring

Dates Report

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560 Report Date: 27-Feb-14

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
14020560-022C	TPZ159	02/18/2014 13:15	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 15:54
	SW-846 9251 (Dissolved)				02/21/2014 15:35
14020560-022D	TPZ159	02/18/2014 13:15	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/21/2014 17:52
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/24/2014 18:27
14020560-023A	TPZ160	02/18/2014 14:20	02/20/2014 8:00		
	Field Elevation Measurements				02/18/2014 14:20
	Standard Methods 2550 B				02/18/2014 14:20
	SW-846 9040B				02/18/2014 14:20
	SW-846 9050A				02/18/2014 14:20
14020560-023B	TPZ160	02/18/2014 14:20	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:58
14020560-023C	TPZ160	02/18/2014 14:20	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 16:02
	SW-846 9251 (Dissolved)				02/21/2014 15:57
14020560-023D	TPZ160	02/18/2014 14:20	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/21/2014 17:58
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/24/2014 18:45
14020560-024A	TPZ163	02/18/2014 10:10	02/20/2014 8:00		
	Field Elevation Measurements				02/18/2014 10:10
	Standard Methods 2550 B				02/18/2014 10:10
	SW-846 9040B				02/18/2014 10:10
	SW-846 9050A				02/18/2014 10:10
14020560-024B	TPZ163	02/18/2014 10:10	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:58
14020560-024C	TPZ163	02/18/2014 10:10	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 16:11
	SW-846 9251 (Dissolved)				02/21/2014 16:05
14020560-024D	TPZ163	02/18/2014 10:10	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/21/2014 18:04
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/24/2014 19:58
14020560-025A	TPZ164	02/18/2014 12:35	02/20/2014 8:00		
	Field Elevation Measurements				02/18/2014 12:35
	Standard Methods 2550 B				02/18/2014 12:35
	SW-846 9040B				02/18/2014 12:35

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9050A				02/18/2014 12:35
4020560-025B	TPZ164	02/18/2014 12:35	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:58
14020560-025C	TPZ164	02/18/2014 12:35	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 16:13
	SW-846 9251 (Dissolved)				02/21/2014 16:13
4020560-025D	TPZ164	02/18/2014 12:35	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/21/2014 18:10
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/24/2014 18:51
4020560-026A	TPZ165	02/18/2014 15:05	02/20/2014 8:00		
	Field Elevation Measurements				02/18/2014 15:05
	Standard Methods 2550 B				02/18/2014 15:05
	SW-846 9040B				02/18/2014 15:05
	SW-846 9050A				02/18/2014 15:05
4020560-026B	TPZ165	02/18/2014 15:05	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 13:59
14020560-026C	TPZ165	02/18/2014 15:05	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/24/2014 16:47
	SW-846 9251 (Dissolved)				02/21/2014 16:21
4020560-026D	TPZ165	02/18/2014 15:05	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/21/2014 18:28
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/24/2014 19:09
4020560-027A	TPZ166	02/18/2014 11:15	02/20/2014 8:00		
	Field Elevation Measurements				02/18/2014 11:15
	Standard Methods 2550 B				02/18/2014 11:15
	SW-846 9040B				02/18/2014 11:15
	SW-846 9050A				02/18/2014 11:15
4020560-027B	TPZ166	02/18/2014 11:15	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 14:00
14020560-027C	TPZ166	02/18/2014 11:15	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 16:29
	SW-846 9251 (Dissolved)				02/21/2014 16:29
14020560-027D	TPZ166	02/18/2014 11:15	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/21/2014 18:34
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/24/2014 19:15
14020560-028A	TPZ167	02/18/2014 10:35	02/20/2014 8:00		

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	Field Elevation Measurements				02/18/2014 10:35
	Standard Methods 2550 B				02/18/2014 10:35
	SW-846 9040B				02/18/2014 10:35
	SW-846 9050A				02/18/2014 10:35
14020560-028B	TPZ167	02/18/2014 10:35	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 14:00
14020560-028C	TPZ167	02/18/2014 10:35	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 16:57
	SW-846 9251 (Dissolved)				02/21/2014 16:51
14020560-028D	TPZ167	02/18/2014 10:35	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/21/2014 18:40
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/24/2014 20:04
14020560-029A	TPZ168	02/18/2014 10:50	02/20/2014 8:00		
	Field Elevation Measurements				02/18/2014 10:50
	Standard Methods 2550 B				02/18/2014 10:50
	SW-846 9040B				02/18/2014 10:50
	SW-846 9050A				02/18/2014 10:50
14020560-029B	TPZ168	02/18/2014 10:50	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/24/2014 11:44
14020560-029C	TPZ168	02/18/2014 10:50	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 17:05
	SW-846 9251 (Dissolved)				02/21/2014 16:59
14020560-029D	TPZ168	02/18/2014 10:50	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/21/2014 18:58
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/24/2014 20:10
14020560-030A	DUP 1	02/18/2014 9:33	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 14:01
14020560-030B	DUP 1	02/18/2014 9:33	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 17:13
	SW-846 9251 (Dissolved)				02/21/2014 17:07
14020560-030C	DUP 1	02/18/2014 9:33	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/21/2014 19:04
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/24/2014 19:22
14020560-031A	DUP 2	02/19/2014 9:05	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 14:03
14020560-031B	DUP 2	02/19/2014 9:05	02/20/2014 8:00		

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9036 (Dissolved)				02/24/2014 17:14
	SW-846 9251 (Dissolved)				02/24/2014 16:50
14020560-031C	DUP 2	02/19/2014 9:05	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/21/2014 19:10
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/24/2014 19:28
14020560-033A	Field Blank 1	02/18/2014 8:45	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 14:03
14020560-033B	Field Blank 1	02/18/2014 8:45	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 17:25
	SW-846 9251 (Dissolved)				02/21/2014 17:25
14020560-033C	Field Blank 1	02/18/2014 8:45	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/21/2014 19:17
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/25/2014 11:16
14020560-034A	Field Blank 2	02/19/2014 8:30	02/20/2014 8:00		
	Standard Methods 2540 C (Dissolved)				02/20/2014 14:03
14020560-034B	Field Blank 2	02/19/2014 8:30	02/20/2014 8:00		
	SW-846 9036 (Dissolved)				02/21/2014 17:44
	SW-846 9251 (Dissolved)				02/21/2014 17:44
14020560-034C	Field Blank 2	02/19/2014 8:30	02/20/2014 8:00		
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/21/2014 19:23
	SW-846 3005A, 6010B, Metals by ICP (Dissolved)			02/20/2014 13:44	02/24/2014 19:40

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring

Report Date: 27-Feb-14

Batch R187610	SampType:	LCSD		Units					RPD	Limit 1.8	
SampID: LCSD-R187	7610										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
pH, Field			1	-	7.05	7	0	100.7	7.05	0.00	02/18/2014
pH, Field			1		7.05	7	0	100.7	7.03	0.28	02/19/2014
Batch R187610	SampType:	LCS		Units							
SampID: LCS-R1876	310										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
pH, Field			1	-	7.05	7	0	100.7	99.1	101	02/18/2014
pH, Field			1		7.03	7	0	100.4	99.1	101	02/19/2014
SW-846 9050A											
	SampType:	LCSD		Units µmhos/	cm				RPD	Limit 10	
SampID: LCSD-R187				•							Date
Analyses			RL	Qual	Result	Snike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Spec. Conductance	Field		1	Quai	1420	1412	0	100.6	1413	0.56	02/19/2014
Spec. Conductance	•		1		1430		0	101.3	1412	1.27	02/18/2014
opeo. coaaciaco	,,		·		1.00	–	· ·				02/ 10/20 1
Batch R187610	SampType:	LCS		Units µmhos/	cm						
SamplD: LCS-R1876				oo µiiiiooi	····						Date
			DI	O1	Result	C:1	SPK Ref Val	%PEC	Low Limit	High Limit	Analyzed
Analyses Spec. Conductance	Fiold		RL 1	Qual	1410	1412	0	100	90	110	02/18/2014
Spec. Conductance			1		1410		0	100.1	90	110	02/19/2014
opec. Conductance	, i loid				1410	1712	Ü	100.1	30	110	02/10/201-
STANDARD METHO			OLVED)								
Datab R187421		MDIV									
24,011	SampType:	MDLK		Units mg/L							
SampID: MBLK	Samp Type:	WIDLK		Units mg/L							Date
	Samp i ype:	WIBLK	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
SampID: MBLK		WIBLE	RL 20	-	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
SampID: MBLK Analyses	lids	WIBLK		Qual		Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed 02/20/2014
SampID: MBLK Analyses Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol	lids lids	WIDLK	20 20 20	Qual	10 < 20 < 20	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed 02/20/2014 02/20/2014 02/20/2014
SampID: MBLK Analyses Total Dissolved Sol Total Dissolved Sol	lids lids	WIDLK	20 20	Qual	10 < 20	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed 02/20/2014 02/20/2014 02/20/2014
SampID: MBLK Analyses Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Batch R187421	lids lids		20 20 20	Qual	10 < 20 < 20	Spike	SPK Ref Val	%REC	Low Limit	High Limit	02/20/2014 02/20/2014 02/20/2014
SampID: MBLK Analyses Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol	lids lids lids lids		20 20 20	Qual J	10 < 20 < 20	Spike	SPK Ref Val	%REC	Low Limit	High Limit	
SampID: MBLK Analyses Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Batch R187421	lids lids lids lids		20 20 20	Qual J	10 < 20 < 20		SPK Ref Val			High Limit	Analyzed 02/20/2014 02/20/2014 02/20/2014 02/20/2014
SampID: MBLK Analyses Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Batch R187421 SampID: LCS	lids lids lids lids SampType:		20 20 20 20	Qual J Units mg/L	10 < 20 < 20 < 20						Analyzed 02/20/2014 02/20/2014 02/20/2014 Date Analyzed
SampID: MBLK Analyses Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Batch R187421 SampID: LCS Analyses Total Dissolved Sol	lids lids lids lids SampType:	LCS	20 20 20 20 20 RL 20	Qual J Units mg/L	10 < 20 < 20 < 20	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed 02/20/2014 02/20/2014 02/20/2014 02/20/2014
SampID: MBLK Analyses Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Batch R187421 SampID: LCS Analyses Total Dissolved Sol Batch R187421	lids lids lids lids SampType:	LCS	20 20 20 20 20 RL 20	Qual J Units mg/L Qual	10 < 20 < 20 < 20	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed 02/20/2014 02/20/2014 02/20/2014 Date Analyzed
SampID: MBLK Analyses Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Batch R187421 SampID: LCS Analyses Total Dissolved Sol Batch R187421	lids lids lids lids SampType:	LCS	20 20 20 20 20 RL 20	Qual J Units mg/L Qual	10 < 20 < 20 < 20	Spike 1000	SPK Ref Val	%REC 93	Low Limit	High Limit	Analyzed 02/20/2014 02/20/2014 02/20/2014 Date Analyzed 02/20/2014
SampID: MBLK Analyses Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Batch R187421 SampID: LCS Analyses Total Dissolved Sol Batch R187421 SampID: LCSQC	lids lids lids lids lids SampType:	LCS	20 20 20 20 20 8 RL 20	Qual J Units mg/L Qual Units mg/L	10 < 20 < 20 < 20 Result	Spike 1000	SPK Ref Val 0	%REC 93	Low Limit 90	High Limit	Analyzed 02/20/2014 02/20/2014 02/20/2014 Date Analyzed 02/20/2014
SampID: MBLK Analyses Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Total Dissolved Sol Batch R187421 SampID: LCS Analyses Total Dissolved Sol Batch R187421 SampID: LCSQC Analyses	lids lids lids lids lids SampType:	LCS	20 20 20 20 20 RL 20	Qual J Units mg/L Qual Units mg/L	10 < 20 < 20 < 20 Result 930	Spike 1000 Spike	SPK Ref Val 0 SPK Ref Val	%REC 93 %REC	Low Limit 90 Low Limit	High Limit 110	Analyzed 02/20/2014 02/20/2014 02/20/2014 Date Analyzed Date Analyzed

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

STANDARD METHODS 2540.4	c (Diee	OLVED)							
STANDARD METHODS 2540 (Batch R187421 SampType:	•	OLVED)	Units mg/L						
SamplD: 14020560-001B MS	Wio		Office Hig/L						Data
·		DI	0.1	D 14 C 1	SPK Ref Val	0/ DEC	Low Limit	High Limit	Date Analyzed
Analyses Total Dissolved Solids		RL 20	Qual	1130 500	652	94.8	85	115	02/20/2014
Total Dissolved Solids		20		1130 500	032	94.6	65	115	02/20/2014
Batch R187421 SampType:	MSD		Units mg/L				RPD	Limit 15	
SampID: 14020560-001B MSD									Date
Analyses		RL	Qual	Result Spik	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Total Dissolved Solids		20		1170 500	652	104.4	1126	4.17	02/20/2014
Batch R187421 SampType:	MS		Units mg/L						
SampID: 14020560-015B MS									Date
Analyses		RL	Oual	Result Spik	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Solids		20	₹ 5.552	3690 500	3184	102	85	115	02/20/2014
Batch R187421 SampType:	MSD		Units mg/L				RPC) Limit 15	
SampID: 14020560-015B MSD									Date
Analyses		RL	Qual	Result Spik	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Total Dissolved Solids		20		3720 500	3184	106.4	3694	0.59	02/20/2014
Batch R187421 SampType:	DUP		Units mg/L				RPE) Limit 15	
SampID: 14020560-011B DUP			J						Date
Analyses		RL	Oual	Result Snik	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Total Dissolved Solids		20	Quui	1420			1418	0.14	02/20/2014
Batch R187421 SampType:	DUP		Units mg/L				RPD) Limit 15	
SampID: 14020560-022B DUP									Date
Analyses		RL	Qual	Result Spik	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Total Dissolved Solids		20		466			480	2.96	02/20/2014
Batch R187421 SampType:	DUP		Units mg/L				RPC) Limit 15	
SampID: 14020560-031A DUP									Date
Analyses		RL	Qual	Result Spik	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Total Dissolved Solids		20		1860			1822	1.96	02/20/2014
Batch R187527 SampType:	MBLK		Units mg/L						
SampID: MBLK			-						Date
Analyses		RL	Qual	Result Spik	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Solids		20		< 20					02/24/2014
Total Dissolved Solids		20		< 20					02/24/2014
Batch R187527 SampType:	LCS		Units mg/L						
SampID: LCS									Date
Analyses		RL	Qual	Result Spik	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
,			•						

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

STANDARD METI	HODS 2540 C	C (DISS	OLVED)								
Batch R187527 SampID: LCSQC	SampType:	LCSQ	3	Units mg/L							Date
Analyses			RL	Oual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved S	olids		20	Quui	978	1000	0	97.8	90	110	02/24/2014
Batch R187527	SampType:	DUP		Units mg/L					RPD	Limit 15	
SampID: 14020560	1-029B DUP						00110 1111		555 5 ()		Date Analyzed
Analyses			RL	Qual		Spike	SPK Ref Val	%REC		Val %RPD	•
Total Dissolved S	olids		100		5070				5120	0.98	02/24/2014
SW-846 9036 (DIS	SSOLVED)										
Batch R187442	SampType:	MBLK		Units mg/L							
SampID: MBLK											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10						02/21/2014
Batch R187442 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Pacult	Snika	SPK Ref Val	%RFC	I ow Limit	High Limit	Analyzed
Sulfate			10	Quai	21	20	0	103.5	90	110	02/21/2014
Batch R187442 SampID: 14020560	SampType: 0-011CMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		16	10	7.3	88.5	85	115	02/21/2014
Batch R187442 SampID: 14020560	SampType:	MSD		Units mg/L					RPD) Limit 10	
•	70110MOD		DI	0 1	D 1	G . 1	SPK Ref Val	% DEC	PPD Pof '	Val %RPD	Date Analyzed
Analyses Sulfate			RL 10	Qual	Result 16	10	7.3	91.9	16.15	2.08	02/21/2014
Batch R187442	SampType:	MS		Units mg/L							
SamplD: 14020560											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			50		134	50	88.38	90.8	85	115	02/21/2014
Batch R187442	SampType:	MSD		Units mg/L					RPD	Limit 10	
SampID: 14020560	0-014CMSD		DI	01	D 1	C '1	SDK Pof Val	%PEC	DDD Dof	Val %RPD	Date Analyzed
Analyses			RL	Qual			SPK Ref Val				
Sulfate			50		136	50	88.38	95.2	133.8	1.65	02/21/2014

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

SW-846 9036 (DISSO	DLVED)										
Batch R187442 S	ampType:	MS		Units mg/L							
SampID: 14020560-01	8CMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			20		42	20	24.09	91.2	85	115	02/21/2014
Batch R187442 S	SampType:	MSD		Units mg/L					RPD	Limit 10	
SampID: 14020560-01	8CMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Sulfate			20		42	20	24.09	89.5	42.33	0.81	02/21/2014
SW-846 9251 (DISSO	OLVED)										
	ampType:	MBLK		Units mg/L							
SampID: MBLK											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5	J	2						02/21/2014
241111	SampType:	LCS		Units mg/L							
SampID: LCS											Date
Analyses			RL	Qual	Result		SPK Ref Val		Low Limit	High Limit	Analyzed
Chloride			5		21	20	0	105.6	90	110	02/21/2014
	SampType:	MS		Units mg/L							
SampID: 14020560-01	4CMS										Date
Analyses			RL	Qual			SPK Ref Val			High Limit	Analyzed
Chloride			25		153	100	55.09	97.6	85	115	02/21/2014
	SampType:	MSD		Units mg/L					RPD	Limit 15	
SampID: 14020560-01	4CMSD										Date
Analyses			RL	Qual			SPK Ref Val			Val %RPD	Analyzed
Chloride			25		155	100	55.09	99.5	152.7	1.27	02/21/2014
Batch R187451 S	SampType:	MS		Units mg/L							
SampID: 14020560-01	8CMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5		21	20	2.54	92	85	115	02/21/2014
	SampType:	MSD		Units mg/L					RPD	Limit 15	
SampID: 14020560-01	8CMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Chloride			5		20	20	2.54	89.8	20.94	2.12	02/21/201

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

SW-846 9251 (DIS	SSOLVED)										
Batch R187511 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5	J	1						02/24/2014
Batch R187511 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5		21	20	0	107.4	90	110	02/24/2014
Batch R187511 SampID: 1402056	SampType: 0-011CMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			10		72	40	33.48	97	85	115	02/24/2014
Batch R187511 SampID: 14020566	SampType: 0-011CMSD	MSD		Units mg/L					RPD	Limit 15	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Chloride			10		71	40	33.48	94.6	72.28	1.35	02/24/2014
SW-846 3005A, 6	010B, METAL	S BY I	CP (DIS	SOLVED)							
Batch 96224 SampID: MBLK-96	SampType: 224	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02		< 0.02	0.02	0	0	-100	100	02/21/201
Iron			0.02		< 0.02	0.02	0	0	-100	100	02/21/2014
Manganese			0.005		< 0.005	0.005	0	0	-100	100	02/21/2014
Batch 96224 SampID: LCS-962	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02		0.474	0.5	0	94.9	85	115	02/21/2014
Iron			0.02		0.92	1	0	92	85	115	02/21/2014
Manganese			0.005		0.479	0.5	0	95.8	85	115	02/21/2014
Batch 96224	SampType:	MS		Units mg/L							
SampID: 14020560	0-001DMS						05145 (1)41	0/050	1 11 2	18 1 12 2	Date Analyzed
A 1			RL	Qual			SPK Ref Val			High Limit	
Analyses											
Boron			0.02		0.49	0.5	0.015	95.2	75 75	125	
			0.02 0.02 0.005		0.49 0.932 0.526	0.5 1 0.5	0.015 0 0.041	95.2 93.2 96.9	75 75 75	125 125 125	02/21/201/ 02/21/201/ 02/21/201/

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC

Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring

Report Date: 27-Feb-14

SW-846 3005A, 60	10B, METAL	S BY I	CP (DIS	SOLVED)							
Batch 96224	SampType:	MSD	•	Units mg/L					RPE) Limit 20	
SampID: 14020560-	001DMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Boron			0.02	Q 0.002	0.491	0.5	0.015	95.3	0.49	0.14	02/21/2014
Iron			0.02		0.932	1	0	93.2	0.932	0.00	02/21/2014
Manganese			0.005		0.528	0.5	0.041	97.5	0.526	0.55	02/21/2014
Batch 96224	SampType:	MS		Units mg/L							
SampID: 14020560-	010DMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02	V 0.002	0.551	0.5	0.068	96.6	75	125	02/21/2014
Iron			0.02		0.949	1	0	94.9	75	125	02/21/2014
Manganese			0.005		0.495	0.5	0	99.1	75	125	02/21/2014
Batch 96224	SampType:	MSD		Units mg/L					RPE) Limit 20	
SampID: 14020560-	010DMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Boron			0.02	Q 0.002	0.557	0.5	0.068	97.8	0.551	1.07	02/21/2014
Iron			0.02		0.954	1	0	95.4	0.949	0.47	02/21/2014
Manganese			0.005		0.497	0.5	0	99.4	0.495	0.36	02/21/2014
Batch 96227	SampType:	MBLK		Units mg/L							
SampID: MBLK-962	27										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02	J	0.007	0.02	0	37	-100	100	02/21/2014
Iron			0.02		< 0.02	0.02	0	0	-100	100	02/21/2014
Manganese			0.005		< 0.005	0.005	0	0	-100	100	02/21/2014
Batch 96227	SampType:	LCS		Units mg/L							
SampID: LCS-96227	7										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			0.02	Çuui	0.499	0.5	0	99.8	85	115	02/24/2014
Iron			0.02		0.954	1	0	95.4	85	115	02/21/2014
Manganese			0.005			0.5	0	99.9	85	115	02/21/2014
Batch 96227	SampType:	MS		Units mg/L							
SampID: 14020560-				-							Date
Analyses			RL	Qual			SPK Ref Val			High Limit	Analyzed
Boron			0.02		2.23	0.5	1.76	93	75	125	02/24/2014
Iron			0.02		6.45	1	5.52	93.4	75	125	02/21/2014
Manganese			0.005		1.05	0.5	0.582	94.3	75	125	02/21/2014

http://www.teklabinc.com/

Client: Dynegy Midwest Generation, LLC Work Order: 14020560

SW-846 3005A,	6010B, METAL	S BY I	CP (DIS	SOLVED)							
Batch 96227	SampType:	MSD		Units mg/L					RPD L	imit 20	
SampID: 1402056	60-025DMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	l %RPD	Analyzed
Boron			0.02		2.22	0.5	1.76	92.6	2.23	0.09	02/24/2014
Iron			0.02		6.47	1	5.52	94.7	6.45	0.20	02/21/2014
Manganese			0.005		1.06	0.5	0.582	96.3	1.05	0.94	02/21/2014

Client: Dynegy Midwest Generation, LLC

Receiving Check List

http://www.teklabinc.com/

Work Order: 14020560

Client Project: Baldwin - Groundwater Monitoring Report Date: 27-Feb-14 Carrier: Rick Schmidt Received By: EEP Emily Pols Completed by: Reviewed by: On: On: 20-Feb-14 20-Feb-14 Emily E. Pohlman Michael L. Austin Extra pages included 35 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes 🗸 No Not Present Temp °C 3.6 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice **~** No 🗀 Chain of custody present? Yes **~** Chain of custody signed when relinquished and received? Yes No 🗀 Yes 🗹 Chain of custody agrees with sample labels? No __ Yes 🗹 Samples in proper container/bottle? No 🗀 Yes 🗹 No 🗌 Sample containers intact? Yes **V** No Sufficient sample volume for indicated test? Yes 🗹 All samples received within holding time? No NA \square Field Lab ___ Reported field parameters measured: Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. No VOA vials 🗸 Water - at least one vial per sample has zero headspace? Yes \square No 🗀 Yes No 🗌 No TOX containers Water - TOX containers have zero headspace? Yes 🗸 No 🗌 Water - pH acceptable upon receipt? Yes NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? No 🗌 Any No responses must be detailed below or on the COC.

pg.) of 🛂 Work order # ୮୯୦ଟିଟଣ CHAIN OF CUSTODY

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Field Conductivity × × × × × × × × × × × × × × × × × × ×	Dynegy Midwest Generation, LLC BLUE ICE BLUE ICE NC 604 Pierce Blvd.	NO ICE 'S 'C FOR LAB USE ONLY
Phone: (618) 206-5800 Client Comments		·
Pax: Client Comments Sample Collector's Name NATRIX Sample Collector's Name Sample Collector's Name NATRIX Sample Collector's Name Sample Collector's	(618)	
No		
No Sample Collector's Name Sample Coll	Yes	
MATRIX INDICATE Incharge Matrix		
Billing Instructions # and Type of Containers	MATRIX	IDICATE ANALYSIS REQUESTED
Sample Identification Date/Time Sampled Sampled Date/Time Sampled Date/Time Sampled Date/Time Sampled Date/Time Sampled Date/Time Sampled Date/Time Sampled Date/Time Sampled Date/Time Sampled Date/Time Sampled Date/Time Sampled Date/Time Sampled Date/Time Sampled Date/Time Sampled Date/Time Sampled Date/Time Sampled Date/Time Sampled Date/Time Da	Disso	Field Fiel
Sample Identification Date/Time Sampled A Sample Identification Date/Time Sampled A Sample Identification Date/Time Sampled A Sample Identification Date/Time Sampled A Sample Identification Date/Time Sampled A Sample Identification Date/Time Da	# and Type of Containers On Device the months of the month	d Con
Sample Identification DaterTime Sampled Sample Identification DaterTime Sampled Sample Identification DaterTime Sampled Sample Identification DaterTime Sampled Sample Identification Sample Identificatio	Chlor B Fe	peratu) pH n to W
MWV104D 2-1/8-1/4 9.3.3 3 1 X	er 3	ater
WWV154 2-16-14 4.45 3 1	× ×	× × ×
MWV150 2 -1q -1L/(10,10) 3 1 X <td>× × × × × × × × × × × × × × × × × × ×</td> <td>× × ×</td>	× × × × × × × × × × × × × × × × × × ×	× × ×
MWV151 $2-1q-1q$ $q_1 \cdot q_2$ 3 1 X <td>(0,(0)</td> <td>× × ×</td>	(0,(0)	× × ×
MWV153 2-1q-1v q,v.s. 3 3 1 X	9.40	× × ×
MWV153 2 -1q - 1q 11;35 3 1 X	9,05 3	× × ×
MWV155 3 -1q -1q 12,35 3 1 1 1 1 1 1 1 1 1	11:35 3	× × × × ×
MWV252 2-1q-1q 12-13-5 3 1 X	(Aios 3	× × × × × × × × × × × × × × × × × × ×
MW252 2-1q-1q q:,5 3 1 X	× × ×	× × × × × × × × × × × × × × × × × × ×
MW253 2-19-14 1(:26 3 1	X X X X X X X X X X X X X X X X X X X	× × ×
Relinquished By Date/Time Received 2 - 20-14 08-20 5 1	X X	
-20-14	me Received	Date/Time
	h1.02-	028 t// 0t/c
	\supset	

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client.

CHAIN OF CUSTODY

pg. \mathcal{P} of \mathcal{M} Work order # 14020800

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Samples on: ICE BLUE ICE NO ICE C	Preserved in: LAB FIELD FOR LAB USE ONLY	Lab Notes:	206-5800	Client Comments	-	Yes	ease provide	A 10 July 6 Collected	MAIKIX	Field Fiel Diss Disso	of Containers Of Containers Onno	perat	vity ate rride MN)	× × × × × × × × × × × × × × × × × × ×	×	×	× × × × × × ×	× × × × × ×	×××××××××××××××××××××××××××××××××××××××	× × × × × × × × × × × × × × × × × × ×	×××××××××××××××××××××××××××××××××××××××	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	me Received By Date/Time	8:00 C.S. MOT/L 2/10/14 8:00
ion, LLC		The state of the s	Phone: (618)	Fax:		If yes, a surcharge will apply			sample Collector's Name	3	Billing Instructions # and Type	HNC		1-14 10:20 31	7-14 4:25 31	,	3-14 13:45 3 1	19 11555 3 1			3-14 10:50 3 1	8-14 13:35 31	11.40 31	Date/Tin	2.2014
Client: Dynegy Midwest Generation, LLC	Address: 604 Pierce Blvd.	City / State / Zip O'Fallon, IL 62269	Contact: Brian Voelker	E-Mail:		Are these samples known to be involved in litigation? If yes, a surcharge will apply Are these samples known to be hazardous?	e –		Project Name/Number		Results Requested Billing Standard 1-2 Day (100% Surcharge)	Other 3 Day (50% Surcharge)	Lab Use Only Sample Identification Dat	h1-91-2 03EWM 1/6	707 MW352 2-14-14	7/12 MW355 2-19-14	744 OW156 2-18-19	2-18-19	716 MW161	X-217 MW162 2-19-101	WW262 2-19-14	7), G OW256 2-18-14	4-18-18 OWZ67 2-18-19	Relinquished By	h

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client.

18434

BottleOrder:

pg. 3 of 4 Work order # 14∪25340 CHAIN OF CUSTODY

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client:	Dynegy Midwest Generation, LLC	eneration, LLC				Samples on:	on: 🗌 ICE	BLUE ICE	NO ICE			ပ			
Address:	604 Pierce Blvd.					Preserved in:	l in:	FIELD		입	FOR LAB USE ONI	USE	NLY		
City / State / Zip	/ Zip O'Fallon, IL 62269	6			MATERIAL CO.	Lab Notes:	::								
Contact:	Brian Voelker	Marketine en commerce en c	Phone:	(618) 20	206-5800										de ad magnife actività della d
E-Mail:			Fах:			- Client Comments	nments								
Are these sample:	Are these samples known to be involved in litigation? If yes, a surcharge will apply	igation? If yes, a s	surcharge wil	l apply	Yes No										
Are these samples known to be Are there any required reportin limits in the comment section.	e hazardous? g limits to be n Yes	Yes No net on the requeste No	o ed analysis?	. If yes, plea	se provide										
Proj	Project Name/Number		Sample Collector		's Name	2	MATRIX		IND	NDICATE	ANALYSIS	i i	REQUESTED	Q	
Baldwin - Groundwater Monitoring	water Monitoring	2.5	Richschmidt	7				Disso				Field			
Result	Results Requested	Billing Instructions		# and Type	# and Type of Containers			olved			Fiel				
	3 Day (50% Surcharge)		0141	HNO		ıdwatı		(B Fe	ed Sulfa	th to W	C) d pH	DS nperatu			
Lab Use Only	Sample Identification	Date/Time Sampled				er		MN)				ıre			
	TPZ158	12-18-14	9,05	3 1		×		×	×	×	×	×		· · · · · · · · · · · · · · · · · · ·	
	TPZ159	2-18-14	5.05	3 1		×		×	×	×	× ×	×		i	
545	TPZ160	11-81-2	05:41	3 1		×		×	×	×	× ×	×			
	TPZ163	2-19-14		3 1		×		×	×	×	×	×			
	TPZ164	2-18-14	2,5	3 1		×		×	×	×	×	×			
うなつ	TPZ165	2-18-14	(5.05	3 1		×		×	×	×	×	×		=	
	TPZ166	41-81-2	11:15	3 1		×		×	×	×	×	×			,
25°F	TPZ167	61-81-2	-	3 1		×		×	×	×				· i	
Peu-	TPZ168	h1-81-2	05:01	3 1		×		×	×	×	×	×		-	
252	DUP 1	2-18-14	4/33	2 1		×		×	× ×			×			
	Relinquished By			Date/Time	4		Received	d By				Ω	Date/Time		
Par			2-20-14		00:00	23					7/7	THO I	800		
											-				
		AMANA	A				A Company of the Comp								
			S responses to the state of the	sente de la companya de la companya de la companya de la companya de la companya de la companya de la companya	prieste anna hermannet med AAD CO (1888 AAD S) was to Sell Evidence	to a particular in the contract of the property of the property of the contract of the contrac	A THE RESERVE THE PERSON OF TH		Person and for finding the first of the		Constitution (Applications)				

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client.

18434

BottleOrder:

CHAIN OF CUSTODY

□Y pg. *∀* of *^{1/1} Work order # /<i>∀*∪₂ o56.3

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client:	Dynegy Midwest Generation, LLC	eration, LLC				Samples on:	S on:	BLUE ICE		NO ICE		၀	<i>(</i>)		
Address:	604 Pierce Blvd.					Preser	Preserved in:	FIELD			FOR LAB USE ONLY	B USE	ONLY		
City / State / Zip	O'Fallon, IL 62269					Lab Notes:	tes:								
Contact: Brian Voelker	oelker	***************************************	Phone:	(618)	206-5800	1									
E-Mail:			Fах:			- Client	Client Comments								
Are these samples known to be involved in litigation? If yes, a surcharge will apply Yes Are these samples known to be hazardous? Yes No Are there any required reporting limits to be met on the requested analysis? If yes, please provide limits in the comment section. Yes No	to be involved in litigation to be hazardous? orting limits to be met or tion.	tion? If yes, a surves. Yes No on the requeste	surcharge wi	II apply . If yes, ple	Yes No ase provide	I o									
Project Na	Project Name/Number		Sample Collecto	ollector	r's Name		MATRIX			INDICATE		ANALYSIS	REQUESTED	STED	
Baldwin - Groundwater Monitoring		Rich Schreniel	K Silv	milt				Disso			Field	Field			
Results Requested	rcharae)	illing Instru	ctions	# and Typ	pe of Containers			lved			Field Dept		TC		
	3 Day (50% Surcharge)			HNO		dwate		(B Fe I	d Chlori	nductiv d Sulfa	h to W	peratu	78		
Lab Use Only Sam	Sample Identification	Date/Time Sampled				er		MN)			ater	re			
DUP 2		1-1-61-2	9.05	2 1		×		×	×			×			
DUP 3				2 1		×		×	×			×			
Field Blank 1		2-18-14	8:45	2 1		×		×	×			×			
Field Blank 2		41-14-2	8.30	2 1		×	Ar nessnes	×	×			×		:	
735 Field Blank 3	slank 3			2 1		×		×	×			×			
								diameter paragraphy agen			:				
									<u>i</u>						
						:	essa di secono	:						-	
Relii	Relinquished By			Date/Time	91		Received	ed By	The second section splitter	THE PERSONNEL PROPERTY OF THE PERSONNEL PROP		Mario de la constitución de la c	Date/Time	ne	
A removement			71-022		8:00	25	3					1001	1 800 1000	8	
	and the same of th														TO THE RESERVE TO THE
The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms	g this agreement o	on behalf of	the client,	acknowle	edges that h	e/she has I	ead and underst	ands the	terms		BottleOrder:	rder:	18434		

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client.

ATTACHMENT 9-6

NRT. 2016. Supplemental Hydrogeologic Site Characterization and Groundwater Monitoring Plan. Baldwin Fly Ash Pond System. Baldwin Energy Complex, Baldwin, IL. Natural Resource Technology, Inc.

SMARTER SOLUTIONS

EXCEPTIONAL SERVICE

VALUE

SUPPLEMENTAL HYDROGEOLOGIC SITE CHARACTERIZATION REPORT AND GROUNDWATER MONITORING PLAN

Baldwin Fly Ash Pond System Baldwin Energy Complex Baldwin, Illinois

Project No: 2340

March 31, 2016

ENVIRONMENTAL CONSULTANTS

2422 E. WASHINGTON STREET, SUITE 104
BLOOMINGTON, ILLINOIS 61704
(P) 414.837.3607
(F) 414.837.3608

SUPPLEMENTAL HYDROGEOLOGIC SITE CHARACTERIZATION AND GROUNDWATER MONITORING PLAN

BALDWIN FLY ASH POND SYSTEM BALDWIN ENERGY COMPLEX BALDWIN, ILLINOIS

Project No. 2340

Prepared For:

DYNEGY MIDWEST GENERATION, LLC 1500 Eastport Plaza Drive Collinsville, IL 62234

Prepared By:

Natural Resource Technology, Inc. 234 W. Florida Street, Fifth Floor Milwaukee, Wisconsin 53204

March 31, 2016

Stuart J. Cravens, PG

Principal Hydrogeologist

96-000106

Robert J. Karnauskas, PG Senior Hydrogeologist

WWW.NATURALRT.COM

TABLE OF CONTENTS

1	INTR	ODUCTI	ON	1-1					
	1.1	Overvi	ew	1-1					
	1.2	Site Lo	ocation and Background	1-2					
2	GEO	LOGY A	ND HYDROGEOLOGY	2-1					
	2.1	Geolog	gy	2-1					
		2.1.1	Unlithified Material Investigations	2-1					
		2.1.2	Bedrock Investigations	2-2					
	2.2	Hydrog	geology	2-4					
		2.2.1	Uppermost Aquifer	2-4					
		2.2.2	Other Monitorable Units	2-4					
		2.2.3	Hydraulic Conductivity	2-5					
3	GRO	UNDWA	TER QUALITY	3-1					
	3.1	Summa	ary of Groundwater Monitoring Activities	3-1					
	3.2	Ground	dwater Monitoring Results	3-1					
	3.3	Statisti	cal Evaluation of Background Groundwater Data	3-2					
	3.4	Statisti	cal Analysis Results	3-3					
4	GRO	UNDWA	TER MONITORING SYSTEM	4-1					
	4.1	Propos	sed Modified NPDES Monitoring Well Network	4-1					
	4.2	40 CFF	R Part 257 Monitoring Well Network	4-3					
	4.3	Aband	oned Wells	4-4					
5	APPL	ICABLE	GROUNDWATER QUALITY STANDARDS	5-1					
	5.1	Ground	dwater Classification	5-1					
	5.2	Applica	able Groundwater Quality Standards	5-1					
	5.3	Propos	sed Exceptions to the Groundwater Monitoring Parameters	5-2					
6	GRO	UNDWA	TER MONITORING PLAN	6-1					
	6.1	Monito	ring Parameters	6-1					
		6.1.1	Proposed Modified NPDES Monitoring Well Network	6-1					
		6.1.2	40 CFR Part 257 Monitoring Well Network	6-2					
	6.2	Sampli	ing Schedule	6-3					
	6.3	B Groundwater Sample Collection							
	6.4	Laboratory Analysis							
	6.5	•							
	6.6								
	6.7 Annual Statistical Analysis								
		6.7.1	Proposed Modified NPDES Monitoring Well Network	6-5					
		6.7.2	40 CFR Part 257 Monitoring Well Network	6-6					
	6.8	Data R	Reporting	6-6					
	6.9		iance with Applicable On-Site Groundwater Quality Standards						
	6.10	Correc	tive Action	6-7					
7	REFE	RENCE	S	7-1					

FIGURES

;
3

TABLES

Table 1 Background Groundwater Quality and Applicable Groundwater Quality Standards

APPENDICES

Appendix A:	AECOM (2015) Geotechnical Laboratory Results
Appendix B:	Laboratory Hydraulic Conductivity Test Results
Appendix C:	Boring Logs and Well Details
Appendix C1	MW 100 Series Boring Logs and Well Details
Appendix C2	PZ 100 Series Boring Logs and Well Details
Appendix C3	TPZ 100 Series Boring Logs and Well Details
Appendix C4	MW 200 Series Boring Logs and Well Details
Appendix C5	MW 300 Series Boring Logs and Well Details

Appendix D: Groundwater Quality Data

Appendix E: Statistical Procedure for Background
Appendix F: Groundwater Sampling Protocol

1 INTRODUCTION

1.1 Overview

This Supplemental Hydrogeologic Site Characterization Report and Groundwater Monitoring Plan was prepared by Natural Resource Technology, Inc. (NRT) in support of a Closure Plan for fly ash ponds located at the Baldwin Energy Complex (BEC) which is owned by Dynegy Midwest Generation, LLC (DMG).

This report and the Closure Plan will apply specifically to the East Fly Ash Pond, Old East Fly Ash Pond and West Fly Ash Pond, hereinafter referred to as the Baldwin Fly Ash Pond System, which are part of a system of six Coal Combustion Residuals (CCR) surface impoundments, as defined further below.

Numerous subsurface investigations have been performed concerning the ash pond system at BEC. The information presented in this report supplements comprehensive data collection and evaluations from the prior hydrogeologic investigation reports (recent to oldest), including, but not limited to, the following:

- NRT, June 11, 2014. Groundwater Quality Assessment and Phase II Hydrogeologic Investigation, Baldwin Ash Pond System A Phase II assessment to further assess the hydrogeology and groundwater quality in the vicinity of the ash pond system at BEC, following the proposed scope of work (March 22, 2013) approved, with clarifications, by Illinois EPA, June 18, 2013).
- Dynegy, March 22, 2013. Proposed Scope of Work Baldwin Ash Impoundment System A plan for conducting a more comprehensive hydrogeologic investigation along with development of a groundwater model to evaluate various pond closure scenarios on groundwater quality in the vicinity of the ash pond system; accepted, with clarifications, by Illinois EPA August 31, 2011.
- Kelron Environmental, June 30, 2012. Groundwater Quality Assessment and Initial Hydrogeologic Investigation Baldwin Ash Pond System Assessed the hydrogeology and groundwater quality in the vicinity of the ash pond system, but not beneath the ash ponds. Thirteen monitoring wells were installed around the perimeter of the ash pond system and sampled quarterly to assess upgradient and downgradient groundwater quality (full inorganic parameter list in IAC 35 Part 620.410). Submitted to Illinois EPA.
- Kelron Environmental, April 16, 2012. Off-Site Groundwater Quality Results Baldwin Energy Complex Off-site groundwater quality investigation, south and southwest of the ash pond system, to assess shallow off-site groundwater quality for the presence of inorganic parameters related to CCRs. Submitted to Illinois EPA.
- Kelron Environmental and NRT, June 7, 2010. Water Well Survey Baldwin Ash Pond System A survey identifying water wells located within 2,500 feet (ft) of the BEC's ash pond system. The water well survey was prepared in accordance with the "Right to Know" Potable Water Well Survey procedures of 35 IAC 1600.210(b)(1) and 1600.210(b)(2). Submitted to Illinois EPA.

■ Kelron Environmental and NRT, May 26, 2010. Hydrogeologic Assessment and Groundwater Monitoring Plan – Baldwin Ash Pond System A plan for initial evaluation of groundwater quality in the vicinity of the ash pond system along with an initial hydrogeologic characterization; accepted, with clarifications, by Illinois EPA August 31, 2011.

This Supplemental Hydrogeologic Site Characterization and Groundwater Monitoring Plan provides a summary of additional data collected and site investigations performed since submittal of the Groundwater Quality Assessment and Phase II Hydrogeologic Investigation (NRT, June 11, 2014) in order to satisfy the following:

- Provide information to define hydrogeology and to assess the groundwater impacts related to the CCR surface impoundments.
- Provide information that could be used to perform a model to assess the groundwater impacts associated with closure of the Baldwin Fly Ash Pond System.
- Provide information to establish a groundwater monitoring program sufficient for long-term, post-closure monitoring.

In conjunction with the Groundwater Quality Assessment and Phase II Hydrogeologic Investigation (NRT, June 11, 2014), groundwater flow and transport models were developed to evaluate the effect of various ash pond closure scenarios on groundwater quality (NRT, June 18, 2014) and to predict the fate and transport of CCR leachate components (NRT, September 30, 2014). Additional groundwater modeling is being conducted to enable estimation of the time required for hydrostatic equilibrium of groundwater beneath the unit. The existing groundwater flow and transport model for the ash pond system is also being updated to develop predictions for closure of the Baldwin Fly Ash Pond System. These groundwater modeling reports will be submitted under separate cover.

1.2 Site Location and Background

The BEC is located in southwest Illinois in Randolph and St. Clair Counties. The Randolph County portion of the BEC is located within Sections 2, 3, 4, 9, 10, 11, 14, 15 and 16 of Township 4 South and Range West. The St. Clair County portion of the property is located within Sections 33, 34, and 35 of Township 3 South and Range 7 West. The Baldwin Fly Ash Pond System is approximately one-half mile west-northwest of the Village of Baldwin. The site location is shown on Figure 1. In general, the BEC property is bordered: on the west by the Kaskaskia River; on the east by Baldwin Road, farmland, and strip mining areas; on the southeast by the village of Baldwin; on the south by the Illinois Central Gulf railroad tracks and State Route 154; and, on the north by the St. Clair/Randolph County Line.

The BEC utilizes four active ash ponds with two inactive fly ash ponds, located at the eastern end of the ash pond system (Figure 2):

■ Bottom Ash Pond (177 acres, active)

- East Fly Ash Pond (76 acres, inactive)
- Old East Fly Ash Pond (102 acres, inactive)
- West Fly Ash Pond (54 acres, active)
- Secondary Pond (25 acres, active), used for water clarification rather than direct management of CCRs, but does contain a small volume of CCR
- Tertiary Pond (3.1 acres, active), used for final water clarification and contains a very small volume of CCR

There is one outfall from the ash pond system at the Tertiary Pond that discharges to a tributary of the Kaskaskia River, south of the Cooling Pond intake structure. All six impoundments of the ash pond system have been evaluated as part of the previously conducted hydrogeologic investigations, groundwater quality assessments and modeling.

2 GEOLOGY AND HYDROGEOLOGY

The additional site characterization activities performed at BEC since the Groundwater Quality
Assessment and Phase II Hydrogeologic Investigation (NRT, June 11, 2014) have included the following:

- Unlithified zone investigation
- Bedrock investigation
- Aquifer testing
- Geotechnical borings and soil laboratory testing

The results of these supplemental site investigations are discussed below.

2.1 Geology

Geologic units present at the ash pond system include fill, ash generated at BEC, unlithified geologic materials (i.e., Cahokia Alluvium, Equality Formation, and Vandalia Till Member) and Mississippian and Pennsylvanian bedrock.

2.1.1 Unlithified Material Investigations

Supplemental investigation within the unlithified materials was performed to further evaluate the potential presence of sand layers that could represent preferential migration pathways. Eleven borings (PZ-169 through PZ-178 and PZ-182) were performed during July-August 2015 as shown on Figure 3. Borings typically extended to bedrock where monitoring wells with 10 ft screens were installed. Boring depths ranged from 14 to 50 ft below ground surface (bgs). The boring logs and piezometer installation details are provided in Appendix C2.

The location of sand seams observed as well as their thickness and base elevation are shown on Figure 4, based on all borings performed within the unlithified materials. Sand seams appear randomly disseminated across the Site and range from one locally continuous unsaturated sand lens up to 7.9 ft in thickness to isolated, discontinuous thin seams 0.2 to 1 ft thick. No continuous sand seams were observed within or immediately adjacent to the Baldwin Fly Ash Pond System that represent significant preferential migration pathways.

Two overlapping sand seams that appear to be continuous between adjacent borings occur to the west of the Baldwin Fly Ash Pond System (Figure 4) and are vertically separated by at least 6 ft of clay. The shallower sand lens at elevations between 395 to 403 ft is not saturated. These sand lenses do not

extend to the Baldwin Fly Ash Pond System as evidenced by several borings in which no sand was observed.

AECOM (2015) completed a geotechnical investigation that included additional borings that were reported in the 30% design data package for the ash ponds. The geotechnical exploratory program included the following:

- 26 auger borings at the Baldwin Fly Ash Pond System and Bottom Ash Pond. In addition,
 3 hand auger borings were completed.
- 82 Cone Penetrometer Testing (CPT) soundings at the Baldwin Fly Ash Pond System and the Secondary, Tertiary, and Bottom Ash Ponds
- 13 vibrating wire piezometers installed at selected boring locations

The geotechnical exploration locations are shown on AECOM Figure D-01 in Appendix A.

Representative samples from the borings were submitted to AECOM of Conshohocken, Pennsylvania and Terrasense of Totowa, New Jersey for laboratory testing on the soil samples for geotechnical properties. A summary of the AECOM geotechnical laboratory test results on the soil samples is provided in Appendix A. The falling head permeability tests results are discussed below. The boring logs and other geotechnical testing data are being submitted under separate cover for the Bladwin Fly Ash Pond System closure plan.

2.1.2 Bedrock Investigations

Bedrock at the site consists of predominantly shale and limestone with lesser amounts of sandstone. As noted in the Groundwater Quality Assessment and Phase II Hydrogeologic Investigation (NRT, June 11, 2014), the Mississippian and Pennsylvanian rocks in the vicinity of the BEC yield small amounts of water to wells from interconnected pores, cracks, fractures, crevices, joints, and bedding planes. Water-bearing openings are variable from place to place and are best developed near the bedrock surface in thin limestones. Shallow sandstone and creviced limestone may yield small supplies in some areas, but water quality becomes poorer (i.e., highly mineralized) with increasing depth.

Supplemental evaluation of bedrock hydraulic conductivity was performed that initially included three deeper holes (MW-304, MW-356, MW-373) extending 95 to 135 ft bgs (82 to 100 ft bgs below the bedrock surface). Packer testing was performed in these coreholes but is not reported herein because the test results were inconclusive. The bedrock was physically deformed by hydrofracking during the test and did not represent actual hydraulic conductivity. Consistent with the site geology and water wells in surrounding area, it was concluded that the most transmissive zone was near the bedrock surface.

Because there were an insufficient number of existing wells for monitoring groundwater in bedrock at the Baldwin Fly Ash Pond System, 16 additional monitoring wells were installed during September 2015

through March 2016. The base of the monitoring well screens were installed an average of approximately 21 ft below the top of bedrock. The additional bedrock monitoring wells installed at each surface impoundment (SI) unit are shown on Figure 3 and included the following.

- 1 monitoring well at an upgradient location (MW-304)
- 10 monitoring wells within and downgradient of the Baldwin Fly Ash Pond System, which is designated as an inactive SI multi unit
- 4 monitoring wells downgradient of the Secondary and Tertiary Ash Ponds, which are designated as an active SI multi unit
- 4 monitoring wells downgradient of the Bottom Ash Pond, which is designated as an active SI unit

Monitoring of upgradient groundwater quality in bedrock will be supplemented with the addition of an existing monitoring well, MW-306, located northeast of the Baldwin Fly Ash Pond System, Well numbers, locations and screened intervals for each SI unit are summarized on the following table and are shown on Figure 3.

Well Number	Depth to Bedrock (ft bgs)	Screened Interval (ft bgs)					
Upgradient Monitoring Well							
MW-304*	41	45 - 55					
MW-306	39	71 - 86					
Inactive SI Mult	i-Unit: Baldwin Fly Ash F	ond System					
MW-383	50	58 - 68					
MW-384	56	61 - 71					
MW-385**	64	80 - 90					
MW-386**	64	76 - 86					
MW-366	36	42 - 52					
MW-375	50	57 - 67					
MW-377	31	46 - 56					
MW-387**	36	48 - 58					
MW-390	40	50 - 65					
MW-391	36	55 - 70					
Active SI Multi-	Unit: Secondary and Ter	tiary Ponds					
MW-373*	13	20 - 30					
MW-374	24	30 - 40					
MW-388	27	33 - 43					
MW-389	36	42 - 52					
Active SI Unit: E	Active SI Unit: Bottom Ash Pond						
MW-356*	37	56 - 66					
MW-369	47	56 - 66					
MW-370	28	53 - 63					
MW-382	34	56 - 66					

^{*} Deep bedrock borings were partially backfilled to set the well screens at the specified depths

^{**}Monitoring well scheduled to be abandoned (See section 4.3)

Bedrock boring logs and well construction details are in provided in Appendix C5.

Bedrock topography slopes generally to the west and southwest across the CCR surface impoundments. Topographic relief is approximately 45 ft and is shown on Figure 5.

2.2 Hydrogeology

In March 2015, NRT began an assessment of the existing monitoring well network(s) at BEC with respect to the existing CCR units. Included in the assessment was a review of the current placement and number of monitoring wells with respect to individual and contiguous CCR units as well as potential locations for new monitoring wells, as appropriate. Analytical data for the existing monitoring wells was reviewed to assure that the current well constructions were adequate to provide low turbidity samples during collection of unfiltered samples. None of the monitoring wells exhibited poor construction, evidence of damage or appeared to be otherwise compromised.

The discussion below summarizes the results of the supplemental well installations.

2.2.1 Uppermost Aquifer

The hydrogeology of the ash pond system was comprehensively addressed in the Groundwater Quality Assessment and Phase II Hydrogeologic Investigation (NRT, June 11, 2014). An uppermost aquifer within the area of the six impoundments at the BEC has not been previously designated. Off-site, immediately upgradient and downgradient of the site property boundaries, both the shallow glacial deposits and the shallow bedrock have served as a source of water supply. The shallow unlithified deposits off-site have yielded water through intermittent, discontinuous sand lenses and, in the bedrock, through fractured sandstone and limestone. However, within the area of the ash impoundment only thin and intermittent sand lenses are present. Based on the above, the bedrock is the only viable aquifer in the vicinity of the ash impoundments and is being designated the uppermost aquifer, consistent with the US Environmental Protection Agency (USEPA) definition in 40 CFR Part 257.53 (USEPA, 2015). Seventeen new monitoring wells, as described above, were installed in 2015 and 2016 for purposes of groundwater monitoring within bedrock to comply with the monitoring requirements of 40 CFR Part 257.

Groundwater flow in bedrock is generally to the west and southwest, based on elevation measurements collected on March 2, 2016 (Figure 6). Piezometric heads in bedrock range from less than 1 ft to about 29 ft bgs.

2.2.2 Other Monitorable Units

Other monitorable units representing potential ash constituent migration pathways include glacial deposits and the uppermost bedrock surrounding and within the ash impoundments. The glacial deposits and

uppermost bedrock are currently monitored in compliance with existing Illinois EPA permits. Groundwater in these existing wells will continue to be monitored to comply with 35 IAC Part 620 and BEC's existing NPDES permit.

Groundwater elevation measurements have been measured on a quarterly basis. Groundwater flow in the unlithified glacial materials is to the west, based on elevation measurements collected on November 10, 2015 (Figure 7). The westerly direction of flow is consistent with previous groundwater contour maps in the unlithified deposits (NRT, June 11, 2014). The depth to the potentiometric surface in the unlithified materials ranges from 3.2 to 17.7 ft bgs.

2.2.3 Hydraulic Conductivity

Field hydraulic conductivity tests performed on the unlithified geologic materials (i.e., Cahokia Alluvium, Equality Formation, and Vandalia Till Member) and Mississippian and Pennsylvanian bedrock at the Site were presented the Groundwater Quality Assessment and Phase II Hydrogeologic Investigation (NRT, June 11, 2014). The unlithified and bedrock geologic materials had geometric mean hydraulic conductivities of approximately $3x10^{-5}$ cm/s and $5x10^{-6}$ cm/s, respectively.

Six falling head permeability tests (ASTM D5084 Method F) were performed in the laboratory on undisturbed soil samples collected from the AECOM (2015) geotechnical borings BAL-B001, BAL-B008, BAL-B010, BAL-B011, BAL-B017 and BAL-B027. Sample locations are shown on AECOM Figure D-01 in Appendix A. Test methods and details are provided in Appendix B and the results are summarized below.

Laboratory Hydraulic Conductivity Test Results

Boring Number	Sample Description	Sample Depth (feet)	Hydraulic Conductivity (cm/sec)
BAL-B001	Medium stiff, moist, pale gray with orange mottling, medium plasticity Lean CLAY (CL), trace fine gravel. [TILL]	35.6	1.3 x10 ⁻⁸
BAL-B008	Very stiff, moist, light brown with orange and gray mottling, low plasticity Silty CLAY (CL). [FILL/FLY ASH]	10.8	5.5 x10 ⁻⁹
BAL-B010	Stiff, moist to wet, gray, Silty CLAY (CL), iron staining, trace sand and clay. [LOESS]	21.3	2.4 x10 ⁻⁶
BAL-B011	Stiff, moist, gray with faint orange mottling, low plasticity Silty CLAY (CL). [FILL/FLY ASH]	15.2	1.8 x10 ⁻⁹
BAL-B017	Stiff, gray, medium plasticity CLAY (CL). [RESIDUAL]	26.7	1.7 x10 ⁻⁸
BAL-B027	Stiff, moist to wet, gray, Lean CLAY (CL), with silt and fine sand, trace gravel, iron staining. [TILL]	26.9	5.0 x10 ⁻⁹

3 GROUNDWATER QUALITY

3.1 Summary of Groundwater Monitoring Activities

An initial six quarters of sampling and analysis of groundwater from monitoring wells at the Baldwin Fly Ash Pond System was conducted from November 2010 through March 2012. The groundwater quality data collected from 2010 through 2012 included field parameters and the full list of inorganic parameters listed in 35 IAC Part 620 Section 420 (Groundwater Quality Standards for Class II: General Resource Groundwater) except for vanadium and perchlorate. Based on the results of the initial 2010–2012 (Phase I) investigation (Kelron, June 30, 2012), additional monitoring wells and piezometers were installed upgradient, downgradient, and within the ash pond system as part of the Phase II investigation (NRT, June 11, 2014). Further, the list of monitoring parameters was reduced to boron, iron, manganese, chloride, sulfate, TDS, and pH commencing in September 2013.

Samples are currently collected quarterly from 14 monitoring wells in accordance with NPDES Permit No. IL0000043 (effective January 1, 2015) for the following laboratory and/or field parameters:

Laboratory Parameters				
Boron	Manganese	(total)	Sulfate	
Chloride	Nitrate		Total Dissolved Solids (TDS)	
Iron (total)				
Field Parameter	s			
pH		Depth of Well (ft bgs)		
Specific Conductance		Elevation of measuring point (mp)		
Temperature De		Depth	to Water (ft below mp)	
		Groundwater Elevation (ft)		

Groundwater monitoring results from sampling of the 14 wells are reported to the Illinois EPA annually in accordance with the NPDES permit.

3.2 Groundwater Monitoring Results

Analytical results from November 2010 through November 2015, including non-NPDES permit required wells, are summarized in Appendix D. Statistics showing the minimum and maximum concentrations detected in the unlithified materials, bedrock and leachate wells is included. Also, a comparison of groundwater data from wells screened in unlithified materials relative to the Groundwater Quality Standards for Class II: General Resource Groundwater is shown. The well locations are shown on Figure 3.

Parameters that have been detected in groundwater at concentrations exceeding the Class II groundwater quality standards include the following:

Boron	Iron	Sulfate
Chloride*	Manganese	TDS
pН		

^{*}exceeded in bedrock well only; background chloride concentration in bedrock to be determined

Class II parameters that have not been detected in groundwater include the following:

Beryllium	Chromium	Mercury
Cadmium	Cyanide	Thallium

All other Class II parameters that have been detected are typically well below their respective groundwater quality standards.

Quarterly groundwater sampling of the new bedrock well network commenced in January 2016.

3.3 Statistical Evaluation of Background Groundwater Data

A statistical evaluation was performed to determine the maximum background concentrations likely to occur upgradient of the Baldwin Fly Ash Pond System within the unlithified glacial materials. The groundwater quality data collected from upgradient monitoring wells MW-104S/SR and MW-104D/DR was evaluated using the Electric Power Research Institute (EPRI, March 2014) computer database and analysis program, MANAGESTM (Version 3.4.49). The statistical analysis procedures used here are consistent with procedures described in the document: 2009 Unified Guidance. "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance," March 2009, EPA 530/R-09-2007 (USEPA, 2009).

The statistical methodology is provided in Appendix E. Establishing the tolerance interval(s) for the groundwater constituents was accomplished by using either a parametric or non-parametric procedure based on the percentage of non-detects in the data sets and the distribution of the sample population. If the statistical data for a constituent had less than 50 percent non-detects and was normally or lognormally distributed, a parametric procedure was used. If the data was not normally or lognormally distributed or had more than 50 percent non-detects, a non-parametric procedure was used. Appendix E, Figure E-1 is a flow chart which illustrates the processes followed to determine the appropriate statistical procedure used for each constituent based on its statistical characteristics.

3.4 Statistical Analysis Results

The results of the statistical analyses for the groundwater in the unlithified materials are located in Appendix E. A statistical summary of the background water quality data from MW-104S/SR and MW-104D/DR is provided in Table E-2, and includes the mean, median, minimum, maximum, standard deviation, Sen Slope trend, normality determination, and percent non-detects for the background dataset. The statistical analysis procedure inputs and results are provided in Table E-3.

Calculated background values (upper and lower limits) for the tested inorganic constituents and pH are listed in Appendix E, Table E-1 along with the percent non-detects, normal or lognormal distribution, test method, and confidence level. The calculated background values are also shown on Table 1 and are compared to the groundwater quality standards for Class II: General Resource Groundwater. The higher of the two values is shown as the Applicable Groundwater Standard on Table 1 (see additional discussion provided in Section 5.2).

4 GROUNDWATER MONITORING SYSTEM

A groundwater monitoring system is proposed for the Baldwin Fly Ash Pond System to monitor groundwater, evaluate post-closure groundwater quality and trends, and to demonstrate compliance with the applicable groundwater quality standards identified in Section 5. The proposed groundwater monitoring well networks consist of a sufficient number of wells, installed at appropriate locations and depths to monitor post-closure compliance with groundwater quality standards for Class II: General Resource Groundwater.

The groundwater monitoring program is consistent with the requirements of 35 IAC Part 620 and 40 CFR Part 257 and includes two monitoring well networks. As discussed in Section 2.2, groundwater within the glacial deposits and uppermost bedrock will continue to be monitored to comply with 35 IAC Part 620 and BEC's existing NPDES permit. The second monitoring well network will monitor groundwater within bedrock, which is the only viable aquifer in the vicinity of the ash impoundments and is being designated the uppermost aquifer.

The monitoring wells are designed and constructed in accordance with applicable standards, including the following:

- All monitoring wells are cased in a manner that maintains the integrity of the boreholes
- Wells are screened to allow sampling only at the specified interval
- All wells are covered with vented caps, unless located in flood-prone areas, and equipped with devices to protect against tampering and damage

Both monitoring well networks described below fulfill the following goals:

- Enable the collection of groundwater samples that represent the quality of background water that has not been affected by the Baldwin Fly Ash Pond System
- Enable the collection of groundwater samples that represent the quality of downgradient groundwater
- Include wells that are located within the stratigraphic unit(s) that may serve as potential chemical migration pathways

4.1 Proposed Modified NPDES Monitoring Well Network

The proposed modified NPDES monitoring well network includes 17 monitoring wells. Thirteen wells will be sampled and analyzed for laboratory and field parameters which are equivalent to the current NPDES Permit parameters. These wells include MW-104SR, MW-104DR, MW-150, MW-350, MW-151, MW-152, MW-252, MW-352, MW-153, MW-253, MW-154, MW-155, and MW-355. Eleven of these wells are

screened in the unlithified materials and three wells are screened in the bedrock. Two background bedrock monitoring wells (MW-304, MW-306) will also be sampled and analyzed for an expanded laboratory parameter list and field parameters, as described in Section 6.1.1.

The above monitoring wells are supplemented by 2 locations (MW-156, and MW-157S) that will monitor specific conductance, temperature and groundwater elevations only.

The proposed modified NPDES monitoring well network goes beyond Special Condition 17 of the existing NPDES permit for the Baldwin groundwater sampling program with the addition of wells MW-151, MW-304 and MW-306 in the groundwater monitoring system,

Boring logs and monitoring well construction reports for the groundwater monitoring system are provided in Appendix C. The proposed modified NPDES monitoring well network locations are shown on Figure 8. The well depths, well screen intervals, depth to groundwater elevations and monitored units at the proposed monitoring well network locations are summarized below:

Well Number	Well Depth (ft bgs)	Well Screen Interval (ft bgs)	Depth To Groundwater (ft bgs)	Unit Monitored	Screened Interval Lithology
MW-104SR	15	5 - 15	10.5	Upgradient Shallow Unlithified	Clay
MW-104DR	35	23 - 28	10.6	Upgradient Deep Unlithified	Clay; Poorly Graded Sand
MW-304	135	45-55	10.6	Upgradient Bedrock	Limestone
MW-306	86	71-86	NM	Upgradient Bedrock	Limestone
MW-150	25	15 - 25	16.6	Downgradient Shallow Unlithified	Clay
MW-350	47	42 - 47	19.5	Downgradient Bedrock	Limestone
MW-151	16	6 - 16	NM	Downgradient Shallow Unlithified	Clay
MW-152	18	7 - 17	3.5	Downgradient Shallow Unlithified	Clay; Poorly Graded Sand
MW-252	50	44 - 49	2.7+	Downgradient Deep Unlithified	Clay
MW-352	74	68 - 73	3.7	Downgradient Bedrock	Shale and Limestone
MW-153	21	10 - 20	11.6	Downgradient Shallow Unlithified	Clay

Well Number	Well Depth (ft bgs)	Well Screen Interval (ft bgs)	Depth To Groundwater (ft bgs)	Unit Monitored	Screened Interval Lithology
MW-253	35	30 - 35	9.8	Downgradient Deep Unlithified	Clay
MW-154	13	7 - 12	10.7	Downgradient Shallow Unlithified	Clay
MW-155	21	10 - 20	17.7	Downgradient Shallow Unlithified	Clay; Clayey Sand
MW-355	33	27 - 32	20.9	Downgradient Bedrock	Limestone
MW-156*	18	8 - 18	4.6	Downgradient Shallow Unlithified	Clay
MW-157S*	18	8 - 18	3.2	Downgradient Shallow Unlithified	Clay

⁺ indicates groundwater elevation above ground surface

4.2 40 CFR Part 257 Monitoring Well Network

The 40 CFR Part 257 well network consists of 7 monitoring wells installed in bedrock adjacent to the Baldwin Fly Ash Pond System (MW-366, MW-375, MW-377, MW-383, MW-384, MW-390, MW-391) and 2 background monitoring wells (MW-304, MW-306). The bedrock wells monitor the uppermost aquifer. Boring logs and monitoring well construction reports for the groundwater monitoring system are provided in Appendix C5. Sampling of these wells commenced in January 2016, with the exception of MW-306, MW-390 and MW-391 (expected to commence in March 2016). The 40 CFR Part 257 groundwater monitoring network well locations are shown on Figure 8.

The well depths, well screen intervals, depth to groundwater and monitored units at the 40 CFR Part 257 monitoring well network locations are summarized below:

Well Number	Well Depth (ft bgs)	Well Screen Interval (ft bgs)	Depth To Groundwater (ft bgs)	Unit Monitored	Screened Interval Lithology
MW-304	135	45 - 55	8.0	Upgradient Bedrock	Shale and Limestone
MW-306	86	71-86	10.6	Upgradient Bedrock	Shale and Limestone
MW-366	52	42-52	10.5	Downgradient Bedrock	Shale and Limestone

Groundwater depth elevations shown are from November 10, 2015; NM indicates groundwater elevation was not measured.

^{*} MW-156 also known as OW-156, MW-157S also known as OW-157; monitored for specific conductance, temperature and groundwater elevations only

Well Number	Well Depth (ft bgs)	Well Screen Interval (ft bgs)	Depth To Groundwater (ft bgs)	Unit Monitored	Screened Interval Lithology
MW-375	67	57-67	29.0	Downgradient Bedrock	Shale and Limestone
MW-377	56	46-56	0.3	Downgradient Bedrock	Shale and Limestone
MW-383	73	58 - 68	17.0	Downgradient Bedrock	Shale and Limestone
MW-384	94	61 - 71	6.9	Downgradient Bedrock	Shale and Limestone
MW-390	65	50 - 65	NM	Downgradient Bedrock	Shale and Limestone
MW-391	70	55 - 70	NM	Downgradient Bedrock	Shale and Limestone

Groundwater depth elevations shown are from March 2, 2016

NM indicates groundwater elevation was not measured.

Groundwater elevations may have not yet fully stabilized.

4.3 Abandoned Wells

Three piezometers (TPZ-163, TP-167 and TPZ-168) are located within the Baldwin Fly Ash Pond System. These former leachate monitoring wells will be properly abandoned prior to their being damaged or destroyed during the impoundment closure activities. Leachate data collected from these piezometers are provided in Appendix D for a limited set of parameters.

Two bedrock monitoring wells (MW-385 and MW-386) are located within the Baldwin Fly Ash Pond System along the berm separating the East and West Fly Ash Ponds. These monitoring wells will also be properly abandoned prior to their being damaged/destroyed during the impoundment closure activities.

Monitoring well MW-387 is located on the West Fly Ash Pond berm and does not provide sufficient water depth for sampling. This bedrock monitoring well will be properly abandoned and will be replaced with a new well, MW-391.

The locations of monitoring wells to be abandoned are shown on Figure 3.

5 APPLICABLE GROUNDWATER QUALITY STANDARDS

5.1 Groundwater Classification

The classification of groundwater at the Baldwin Fly Ash Pond System was addressed in the Groundwater Quality Assessment and Phase II Hydrogeologic Investigation (NRT, June 11, 2014). Field hydraulic conductivity tests performed on the unlithified geologic materials (i.e., Cahokia Alluvium, Equality Formation, and Vandalia Till Member) and Mississippian and Pennsylvanian bedrock at the Site had geometric mean hydraulic conductivities of approximately $3x10^{-5}$ cm/s and $5x10^{-6}$ cm/s, respectively.

Geologic material with a hydraulic conductivity of less than 1x10⁻⁴ cm/s which does not meet the provisions of Section 620.210 (Class I), Section 620.230 (Class III), or Section 620.240 (Class IV), meets the definition of a Class II – General Resource Groundwater. Based on the detailed geologic information provided for the unlithified materials and bedrock at BEC, along with the hydrogeologic data, the groundwater in both the unlithified deposits and underlying bedrock at the Site can be classified as Class II - General Resource Groundwater.

5.2 Applicable Groundwater Quality Standards

The groundwater quality standard for the proposed modified NPDES monitoring well network for wells screened in unlithified materials is the greater of either the background concentration or the groundwater quality standard for Class II General Resource Groundwater [35 IAC 620.420]. Based on the statistical evaluation of background groundwater data (Table 1), most background concentrations in the unlithified materials are below the groundwater quality standard for Class II General Resource Groundwater. Therefore, for these parameters, the groundwater quality standard for Class II General Resource Groundwater will apply to the proposed modified NPDES monitoring well network for wells screened within unlithified material. The exceptions include total iron, dissolved iron, dissolved manganese and pH (lower limit), where the background concentration is higher (or lower for pH lower limit) than the Class II standard. Therefore, for these parameters, the background concentration is the applicable groundwater standard.

Background groundwater quality in bedrock will be established through statistical evaluation following completion of 8 quarters of groundwater sampling of background wells MW-304 and MW-306 that commenced in January 2016. The groundwater quality standard for the proposed modified NPDES monitoring well network (bedrock wells) at the Baldwin Fly Ash Pond System will be the greater of either the background concentration or the groundwater quality standard for Class II General Resource

Groundwater. The list of applicable groundwater quality standards for the modified NPDES monitoring well network is shown on Table 1.

The groundwater quality standards (i.e., Groundwater Protection Standard) for the 40 CFR Part 257 well network will be established in accordance with the methods outlined in 40 CFR Part 257 following the collection of 8 independent samples from each of the upgradient and downgradient monitoring wells, with completion of the final sample event required by October 17, 2017.

5.3 Proposed Exceptions to the Groundwater Monitoring Parameters

Based on the results of groundwater monitoring performed at the site to date for the proposed modified NPDES monitoring well network, the following exceptions to the above applicable Class II: General Resource Groundwater standards are proposed:

- Analytical results (Appendix D) do not indicate exceedances of the groundwater quality standards for Class II General Resource Groundwater inorganic constituents listed in 35 IAC 620.420(a)(1). The analyzed constituents include antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, cyanide, fluoride, lead, mercury, nitrate, and thallium. With the exception of nitrate, these constituents will not be monitored because they are well below the standards for Class II General Resource Groundwater and are not prevalent in groundwater associated with the Baldwin Fly Ash Pond System.
- Analytical results (Appendix D) do not indicate exceedances of the groundwater quality standards for Class II General Resource Groundwater for inorganic constituents copper, nickel, selenium, silver, and zinc listed in 35 IAC 620.420(a)(2). These constituents will not be monitored because they are well below the standards for Class II General Resource Groundwater and are not prevalent in groundwater associated with the Baldwin Fly Ash Pond System.
- Perchlorate is commonly used as an oxidizer in solid propellants, munitions, fireworks, airbag initiators for vehicles, matches and signal flares. It is also used in some electroplating operations and found in some disinfectants and herbicides (USEPA, 2014). Perchlorate is an inorganic constituent listed in 35 IAC 620.420(a)(1) but has not been previously analyzed. Perchlorate will not be monitored because it is not associated with the chemical characteristics of the Baldwin Fly Ash Pond System.

The proposed groundwater monitoring parameters for the proposed modified NPDES monitoring well network and 40 CFR Part 257 groundwater monitoring well network are discussed in Section 6.1.

¹ Perchlorate, vanadium and Ra-226/Ra-228 are parameters listed in 35 IAC 620.420(a)(1) but have not been analyzed.

6 GROUNDWATER MONITORING PLAN

The groundwater monitoring plan will monitor and evaluate groundwater quality to demonstrate compliance with the groundwater quality standards for Class II: General Resource Groundwater as well as USEPA parameters, as appropriate. As discussed in Section 4, the proposed post-closure groundwater sampling network consists of four background monitoring wells and 20 compliance monitoring wells as shown on Figure 8.

6.1 Monitoring Parameters

6.1.1 Proposed Modified NPDES Monitoring Well Network

The proposed modified NPDES monitoring well network includes 17 monitoring wells. Thirteen wells will continue to be sampled and analyzed for the laboratory and field parameters listed below which are equivalent to the current NPDES Permit parameters. These wells include MW-104SR, MW-104DR, MW-150, MW-350, MW-151, MW-152, MW-252, MW-352, MW-153, MW-253, MW-154, MW-155, and MW-355.

Laboratory Parameters					
Boron (dissolved)	Manganese	(total)	Sulfate (dissolved)		
Chloride (dissolved)	Nitrate (tota	l)	Total Dissolved Solids (TDS)		
Iron (total)					
Field Parameters					
pH Depth of Well (ft bgs)					
Specific Conductance			on of measuring point (mp)		
Temperature		Depth	to Water (ft below mp)		
		Groundwater Elevation (ft)			

As discussed in Section 5, other constituents listed under 35 IAC 620 will not be monitored at the proposed modified NPDES monitoring well network because the groundwater monitoring results to date indicate that the inorganic constituents antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, cyanide, fluoride, lead, mercury, nickel, selenium, silver, thallium and zinc meet the Class II: General Resource Groundwater standards and are not associated with the chemical characteristics of the Baldwin Fly Ash Pond System.

Two monitoring wells, MW-156 and MW-157S, are monitored for specific conductance, temperature and groundwater elevation.

Two proposed background bedrock monitoring wells (MW-304, MW-306) will be sampled and analyzed for the following laboratory and field parameters:

Laboratory Parameters					
Boron (dissolved)	Manganese	(total)	Sulfate (dissolved)		
Chloride (dissolved)	Nitrate (tota	l)	Total Dissolved Solids (TDS)		
Iron (total)					
Field Parameters	Field Parameters				
рН	Depth o		of Well (ft bgs)		
Specific Conductance		Elevation of measuring point (mp)			
Temperature		Depth to Water (ft below mp)			
		Groundwater Elevation (ft)			

As discussed in Section 5, perchlorate will not be monitored because this parameter is not associated with the chemical characteristics of the Baldwin Fly Ash Pond System.

6.1.2 40 CFR Part 257 Monitoring Well Network

The 40 CFR Part 257 well network consists of 7 monitoring wells installed in bedrock adjacent to the Baldwin Fly Ash Pond System (MW-366, MW-375, MW-377, MW-383, MW-384, MW-390, MW-391) and 2 background monitoring wells (MW-304, MW-306). Groundwater samples will be collected and analyzed for the following laboratory and field parameters:

Laboratory Parameters					
Metals (totals)	Metals (totals)				
Antimony	Cadmium		Lithium		
Arsenic	Calcium		Mercury		
Barium	Chromium		Molybdenum		
Beryllium	Cobalt		Selenium		
Boron	Lead		Thallium		
Inorganics (totals)					
Fluoride	Sulfate				
Chloride	Total Disso	lved Solids			
Other (total)					
Radium 226 and 228	3 combined				
Field Parameters					
pН		Temperatu	re		
Oxidation/Reduction Potential		Specific Co	onductivity		
Dissolved Oxygen	·	Turbidity			

All parameters listed above will be sampled a minimum of eight times by October 17, 2017 to establish background groundwater quality. Following the initial eight rounds of sampling, the parameters to be monitored will be in accordance with the requirements of 40 CFR Part 257.94 and 257.95.

6.2 Sampling Schedule

Groundwater sampling for the proposed modified NPDES monitoring well network will initially be performed quarterly according to the following schedule:

Frequency	Duration
Quarterly	Begins: upon approval of this plan.
	Ends: 5 years after completion of cap and upon demonstration that monitoring effectiveness is not compromised and that there are no increasing trends attributable to the Baldwin Fly Ash Pond System.
Semiannual	Begins: after IEPA approves that quarterly monitoring requirements have been satisfied.
	Ends: 5 years after initiation of semiannual monitoring and upon demonstration that monitoring effectiveness is not compromised and that there are no increasing trends attributable to the Baldwin Fly Ash Pond System.
Annual	Begins: after IEPA approves that semiannual monitoring requirements have been satisfied.
	Ends: upon IEPA approval of a certified post-closure care report.

Five years after approval of the Closure Plan, a request may be made to modify the post-closure care plan to reduce the frequency of groundwater monitoring to semi-annual sampling by demonstrating all of the following:

- Monitoring effectiveness will not be compromised by the reduced frequency of monitoring
- Sufficient data has been collected to characterize groundwater
- Concentrations of constituents monitored at the downgradient boundaries show no statistically significant increasing trends that can be attributed to the former ash ponds

If concentrations of parameters of concern at the downgradient boundaries of the site show no statistically significant increasing trends that can be attributed to the Baldwin Fly Ash Pond System for the five years after reducing the monitoring frequency to semi-annual, a request may be made to modify the post-closure care plan to reduce monitoring frequency to annual sampling by demonstrating the same items above as for the reduction to semi-annual monitoring.

Groundwater monitoring may be discontinued upon Illinois EPA's approval of a certified post-closure care report. Specifically, when no statistically significant increase is detected in the concentration of any constituent above that measured and recorded during the immediately preceding scheduled sampling for four consecutive years after changing to an annual monitoring frequency.

Groundwater monitoring for the 40 CFR Part 257 well network will follow a schedule in accordance with the requirements of 40 CFR Part 257.94 and 257.95.

6.3 Groundwater Sample Collection

Groundwater samples will be collected consistent with the requirements of 35 IAC Part 620 and 40 CFR 257.93 as described in Appendix F. In addition to groundwater well samples, quality assurance samples will be collected as described in Section 6.5.

6.4 Laboratory Analysis

Laboratory analysis will be performed consistent with the requirements of 35 IAC Part 620 and 40 CFR 257.93 by a state-certified laboratory using methods approved by Illinois EPA and USEPA. The practical quantitation limit (PQL) for all parameters analyzed will be lower than the applicable groundwater quality standard. Concentrations lower than the PQL will be reported as less than the PQL.

6.5 Quality Assurance Program

Consistent with the requirements of 35 IAC Part 620 and 40 CFR 257.93, the sampling and analysis program includes procedures and techniques for quality assurance and quality control. Additional quality assurance samples to be collected will include the following:

- Two blind duplicate groundwater samples from randomly selected monitoring wells
- One equipment blank sample will be collected and analyzed for each day of sampling. If dedicated sampling equipment is used, than equipment blank samples will not be collected.

The duplicate and equipment blank quality assurance samples will be supplemented by the laboratory QA/QC program, which typically includes:

- Regular generation of instrument calibration curves to assure instrument reliability
- Laboratory control samples and/or quality control check standards that have been spiked, and analyses to monitor the performance of the analytical method
- Matrix spike/matrix spike duplicate analyses to determine percent recoveries and relative percent differences for each of the parameters detected

- Analysis of replicate samples to check the precision of the instrumentation and/or methodology employed for all analytical methods
- Analysis of method blanks to assure that the system is free of contamination

6.6 Groundwater Monitoring System Maintenance Plan

Consistent with the requirements of 35 IAC Part 620 and 40 CFR 257.91, maintenance will be performed as needed to assure that the monitoring wells provide representative groundwater samples. Monitoring wells will be inspected during each groundwater sampling event. Monitoring well inspections will consist of the following:

- Visual inspection, clearing of vegetation, replacement of markers, and painting of protective casings as needed to assure that monitoring wells are clearly marked and accessible
- Visual inspection and repair or replacement of well aprons as needed to assure that they are intact, drain water away from the well, and have not heaved
- Visual inspection and repair or replacement of protective casings as needed to assure that they are undamaged, and that locks are present and functional
- Checks to assure that well caps are intact and vented, unless in flood-prone areas in which case caps will not be vented
- Annual measurement of monitoring well depths to determine the degree of siltation within the wells. Wells will be redeveloped as needed to remove siltation from the screened interval if it impedes flow of water into the well
- Checks that wells are clear of internal obstructions, and flow freely

If maintenance of a monitoring well cannot address an identified deficiency, a replacement well will be installed.

6.7 Annual Statistical Analysis

6.7.1 Proposed Modified NPDES Monitoring Well Network

Trend analysis will be performed annually for each of the monitored parameters. Sen's Estimate of Slope will be applied to a minimum of four consecutive quarterly monitoring results. If there are increasing trends during closure and post-closure care periods, they will be further investigated as described below.

- If the results of sampling and analysis show an increasing trend at any compliance monitoring well, a Mann-Kendall analysis will be performed at 95 percent confidence to determine whether or not the increasing trend is statistically significant.
- If a statistically significant increasing trend occurs during post-closure care, further investigation of monitored concentrations will be performed as well as more frequent inspections of the surface of the cover system.

- If the investigation attributes a statistically significant increasing trend to a source other than the Baldwin Fly Ash Pond System, then the Illinois EPA will be notified in writing, stating the cause of the increasing trend and providing the rationale used in such a determination.
- If there is not an alternative source causing the statistically significant increasing concentration and the sampling frequency had been reduced to semi-annual or annual sampling, a quarterly sampling schedule will be reestablished. The frequency of sampling will return to either semi-annual or annual, once four consecutive quarterly samples show no statistically significant increasing trend.

Notifications concerning statistically significant increasing trends and revisions of the sampling frequency will be reported to Illinois EPA in writing within 30 days after making the determinations.

6.7.2 40 CFR Part 257 Monitoring Well Network

As required in 40 CFR Part 257.93, statistical analysis will be performed to determine whether or not a statistically significant increase over a background value has occurred for each constituent and at each well. Appropriate statistical methods will be chosen from the list of methods provided and the test chosen will be conducted separately for each constituent in each monitoring well. In addition, each statistical method chosen will comply with the performance standards, as appropriate, based on the test method used. If a statistically significant increase over background values is determined, procedures from 40 CFR Part 257 will be followed including 1) establishing an assessment monitoring program or 2) demonstrating that a source other than the Baldwin Fly Ash Pond System caused the increase or demonstrating another plausible reason for the increase (error in sampling, etc.).

6.8 Data Reporting

Sampling and analysis data from quarterly, semi-annual and/or annual groundwater monitoring for the modified NPDES monitoring well network will be reported to Illinois EPA within 60 days after completion of sampling. Statistical analysis of the laboratory analytical data will be reported to Illinois EPA with the annual report for the facility, as described in the closure plan.

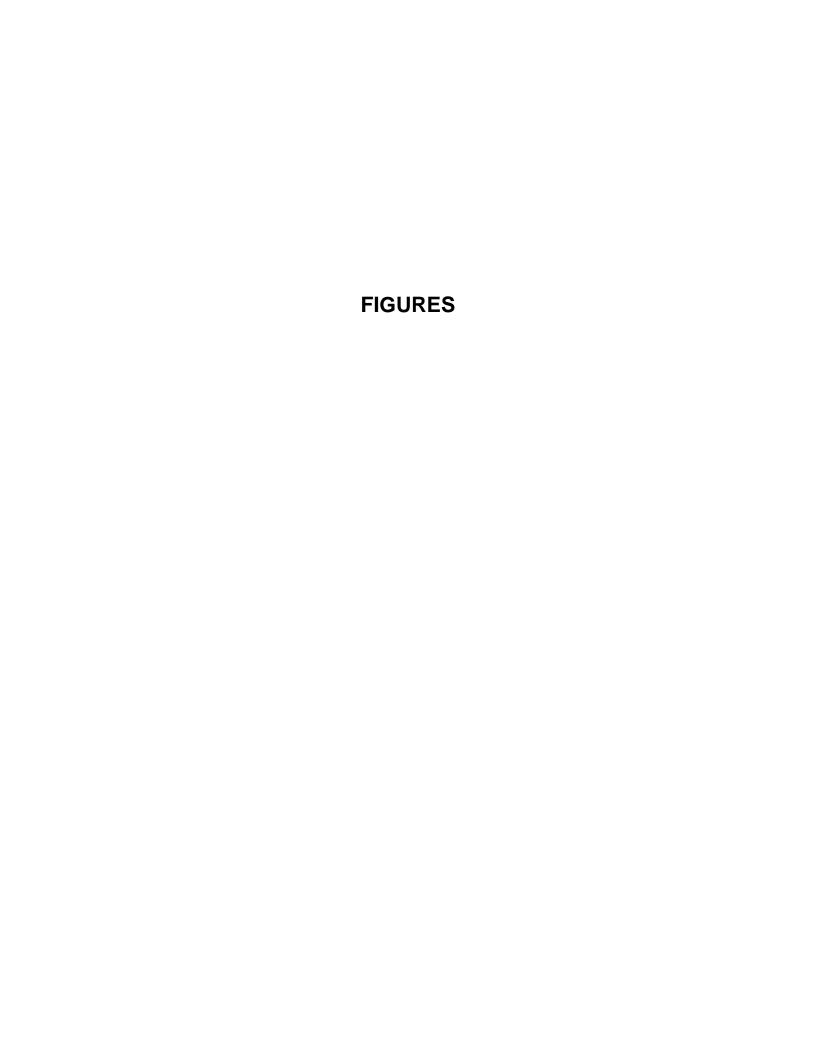
Data reporting for the 40 CFR Part 257 monitoring well network will be consistent with recordkeeping, notification, and internet posting requirements described in 40 CFR 257.105 through 257.107.

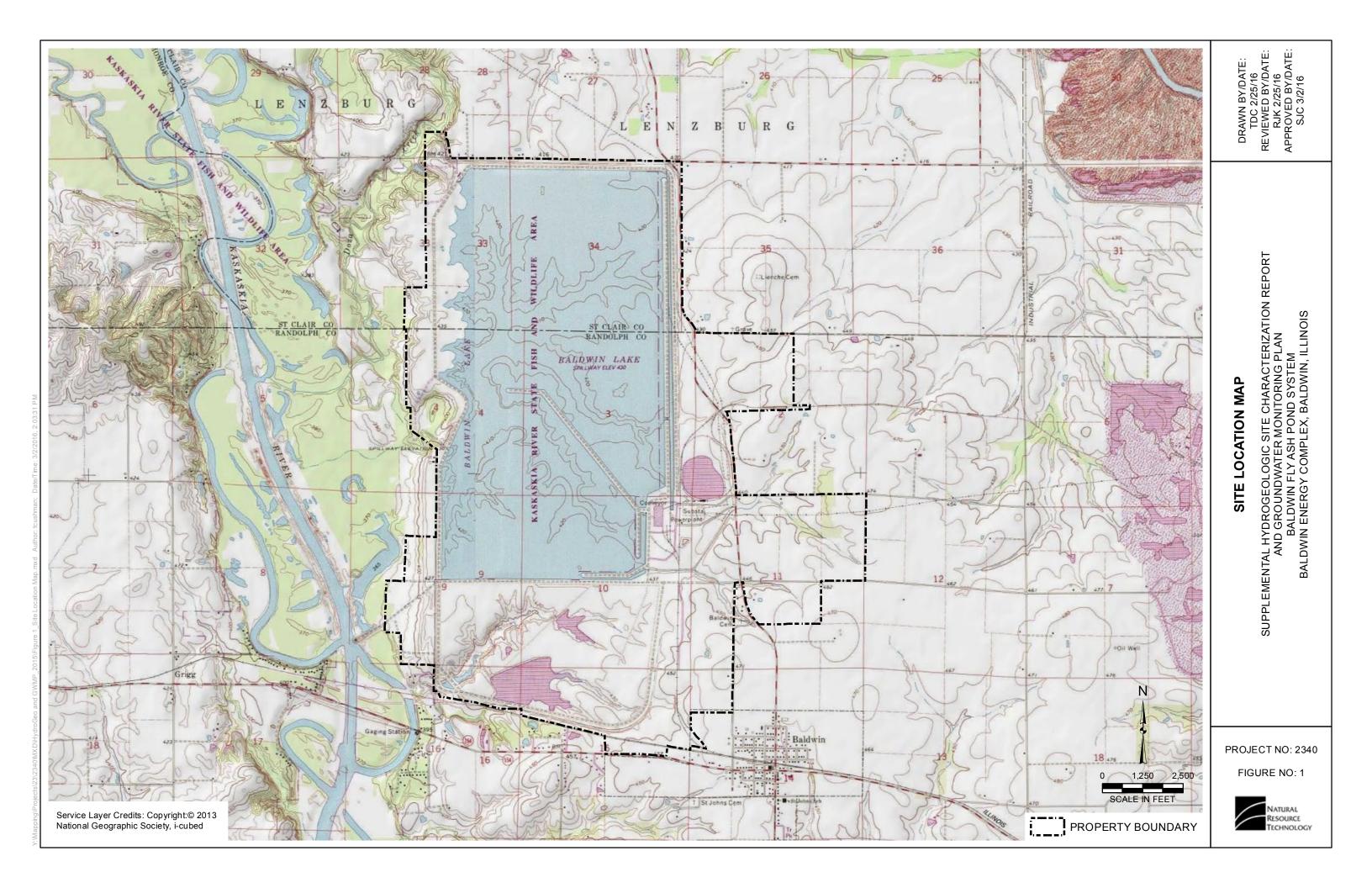
6.9 Compliance with Applicable On-Site Groundwater Quality Standards

Compliance with on-site groundwater quality standards, as measured at the modified NPDES monitoring well network, will be achieved when there are no statistically significant increasing trends that are attributed to the Baldwin Fly Ash Pond System for parameters detected at the compliance boundary for four (4) consecutive years following the change to an annual monitoring frequency.

Evaluation of groundwater quality data under USEPA (2015) will be consistent with 40 CFR Part 257.93 and 257.94.

6.10 Corrective Action

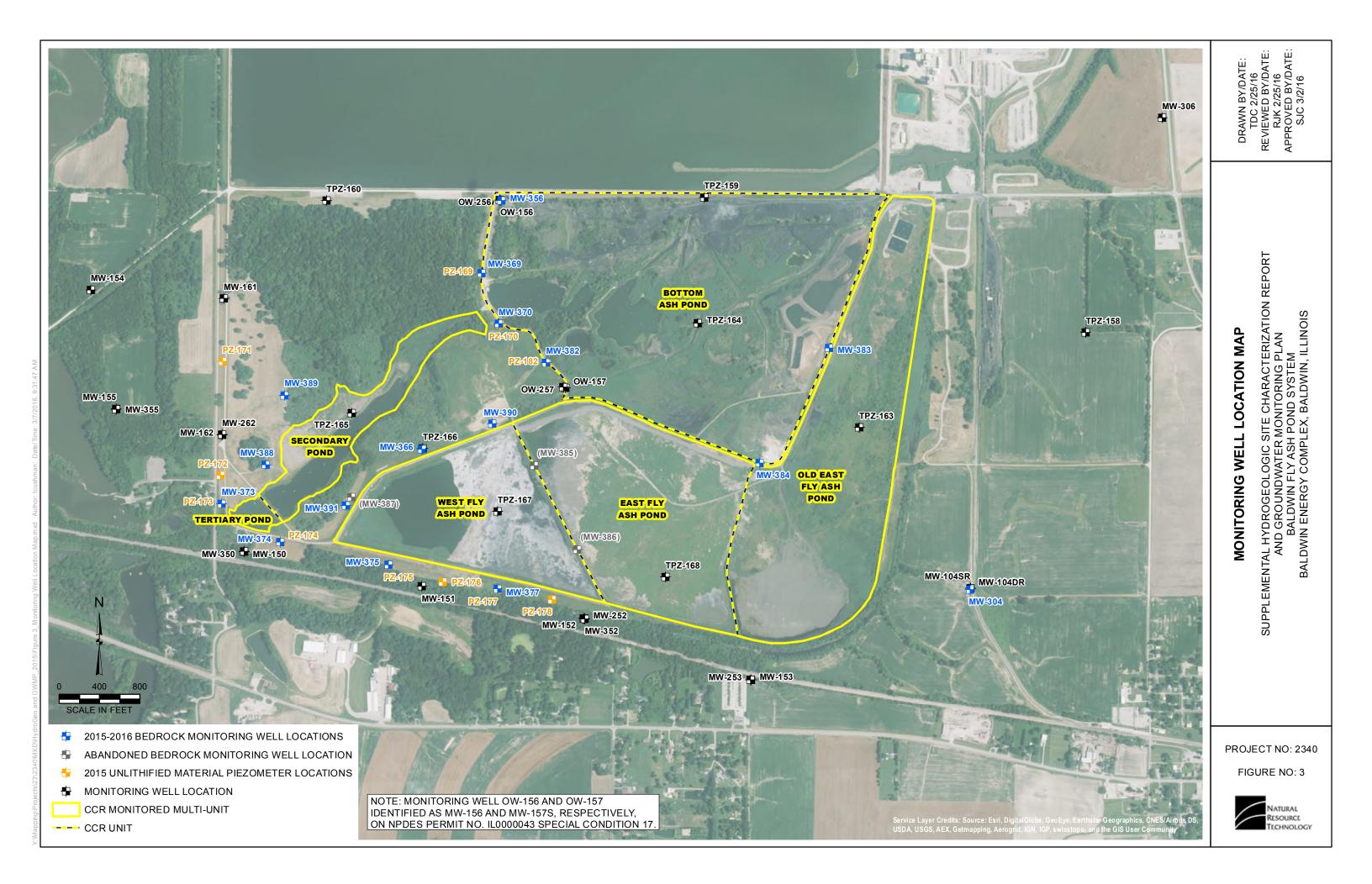

If a statistically significant increasing trend is observed to continue over a period of two or more years in groundwater sampled at the modified NPDES monitoring well network, and a subsequent hydrogeologic site investigation demonstrates that such exceedances are due to a release from the Baldwin Fly Ash Pond System and corrective actions are appropriate to mitigate such releases, a corrective action plan will be proposed as a modification to the post-closure care plan. A corrective action plan will be submitted to Illinois EPA within 180 days after completion of the investigation activities. The plan will propose corrective actions to be undertaken to mitigate the impacts associated with the constituents of concern which exceed applicable groundwater standards.

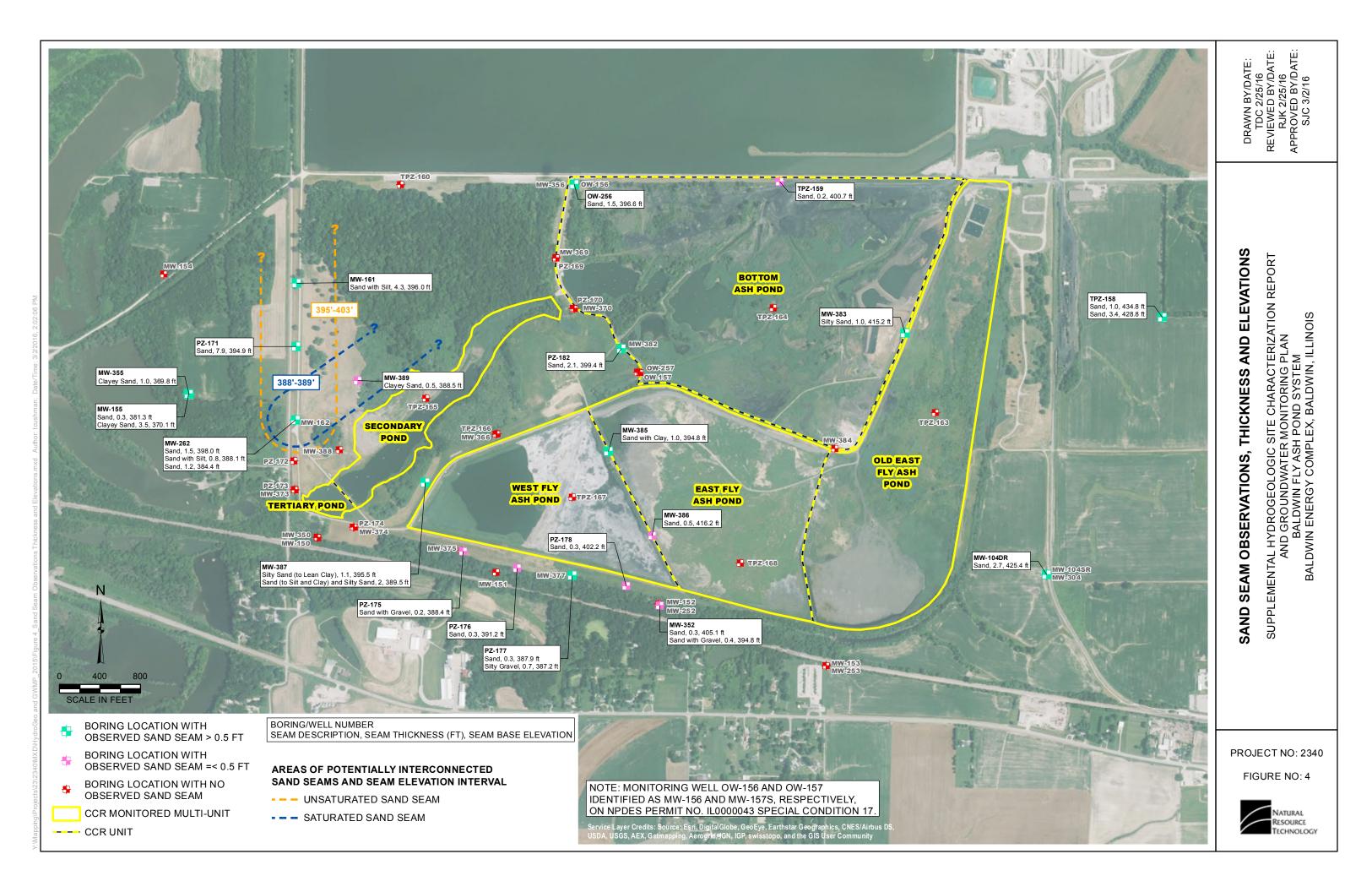


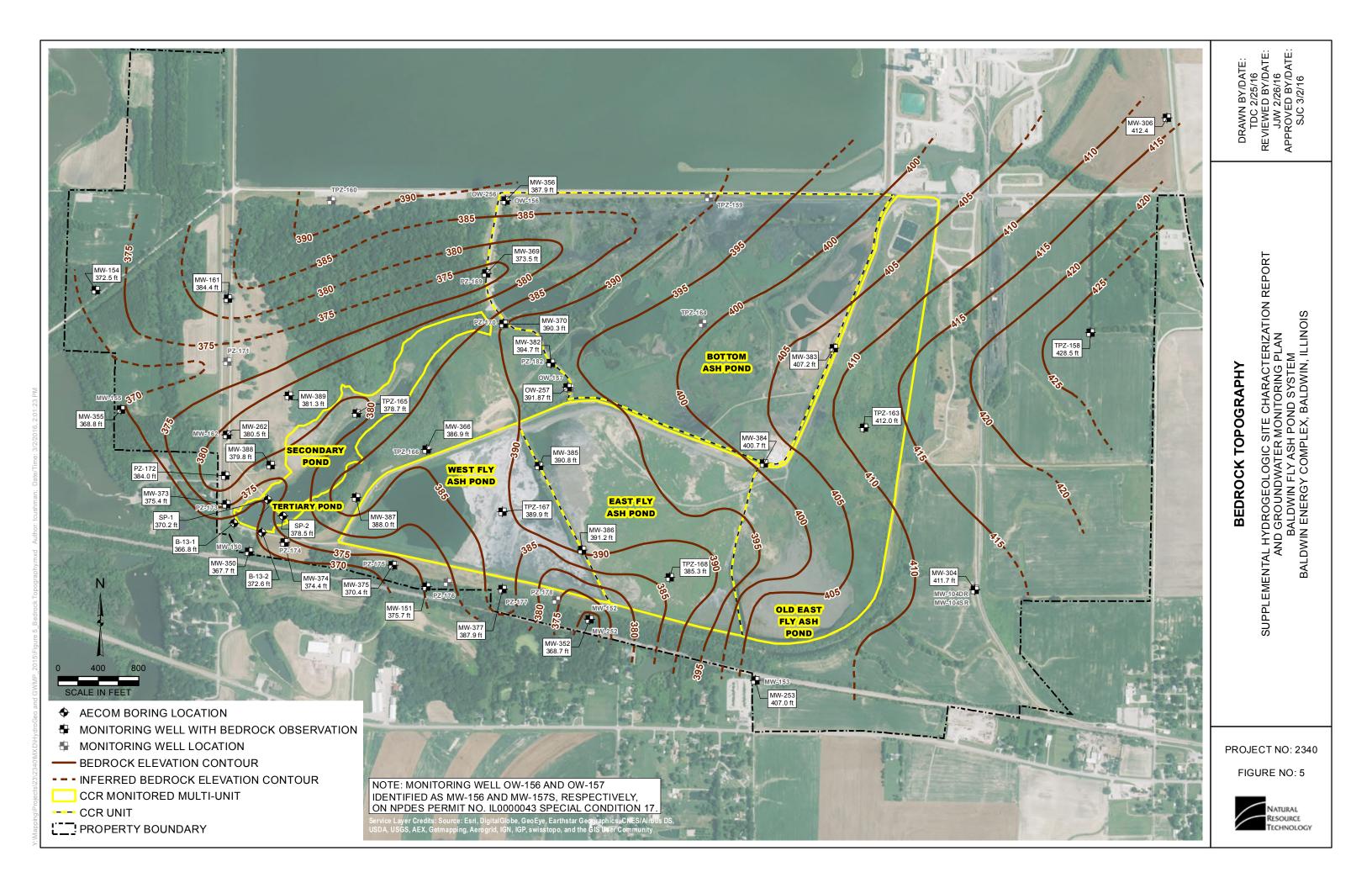
7 REFERENCES

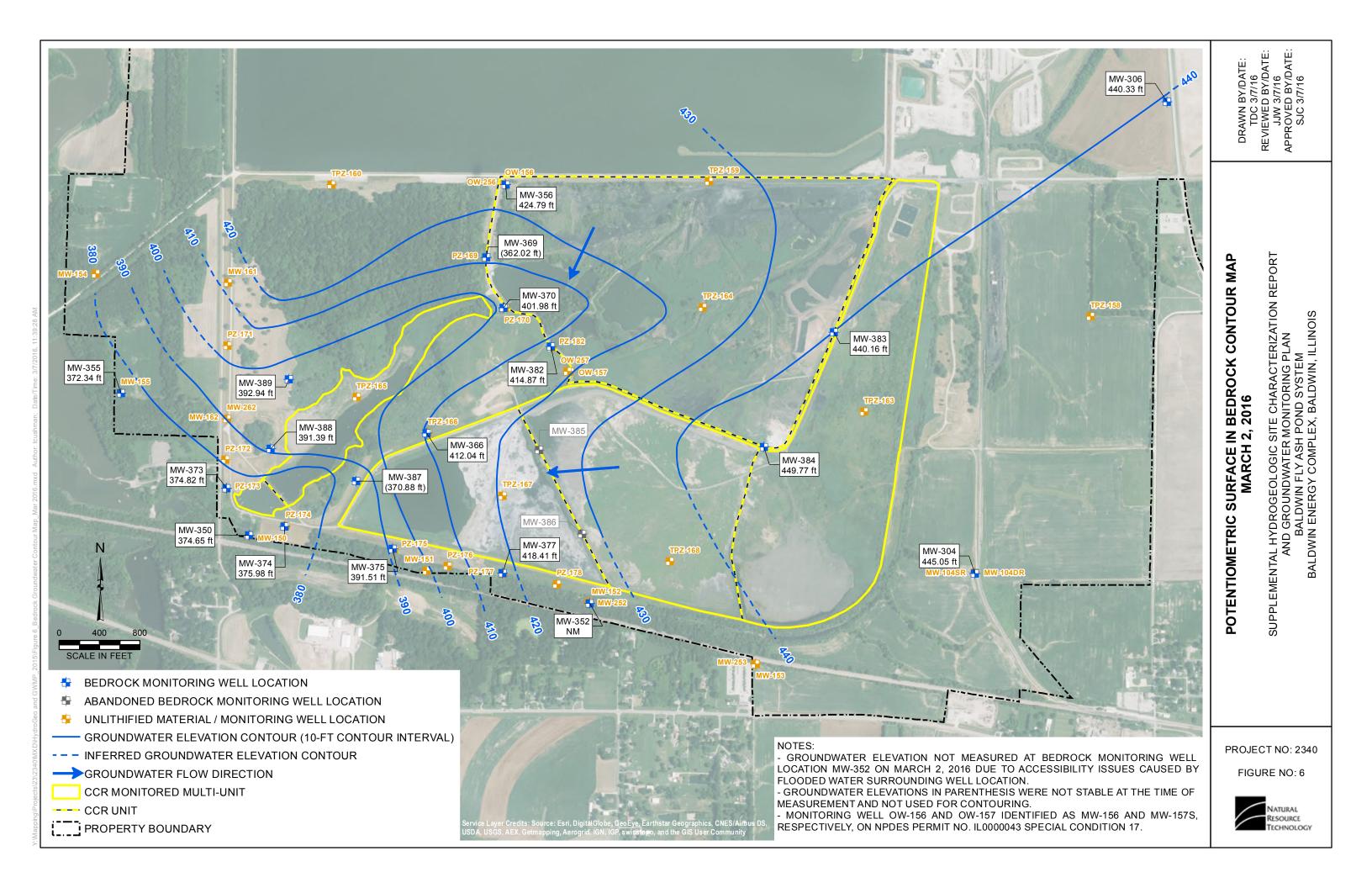
- AECOM, December 17, 2015. 30% Design Data Report for the Dynegy Baldwin Energy Complex; West Fly Ash Pond, East Fly Ash Pond, and Old East Fly Ash Pond CCR Units.
- Dynegy, March 22, 2013. Proposed Scope of Work Baldwin Ash Impoundment System
- Kelron Environmental and NRT, May 26, 2010. Hydrogeologic Assessment and Groundwater Monitoring Plan Baldwin Ash Pond System
- Kelron Environmental and NRT, June 7, 2010. Water Well Survey Baldwin Ash Pond System
- Kelron Environmental, April 16, 2012. Off-Site Groundwater Quality Results Baldwin Energy Complex
- Kelron Environmental, June 30, 2012. Groundwater Quality Assessment and Initial Hydrogeologic Investigation Baldwin Ash Pond System
- NRT, June 11, 2014. Groundwater Quality Assessment and Phase II Hydrogeologic Investigation, Baldwin Ash Pond System
- NRT, June 18, 2014. Groundwater Model and Simulation of Closure Alternatives, Baldwin Ash Pond System
- NRT, September 30, 2014. Groundwater Model and Simulation of Closure Alternatives, Model Report Addendum Baldwin Ash Pond System
- USEPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. EPA 530/R-09/007, U.S. Environmental Protection Agency, Office of Resource Conservation and Recovery, Washington, D.C., 554 p. + 4 app.
- USEPA, January 2014. Technical Fact Sheet Perchlorate
- USEPA, April 17, 2015. 40 CFR Parts 257and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule

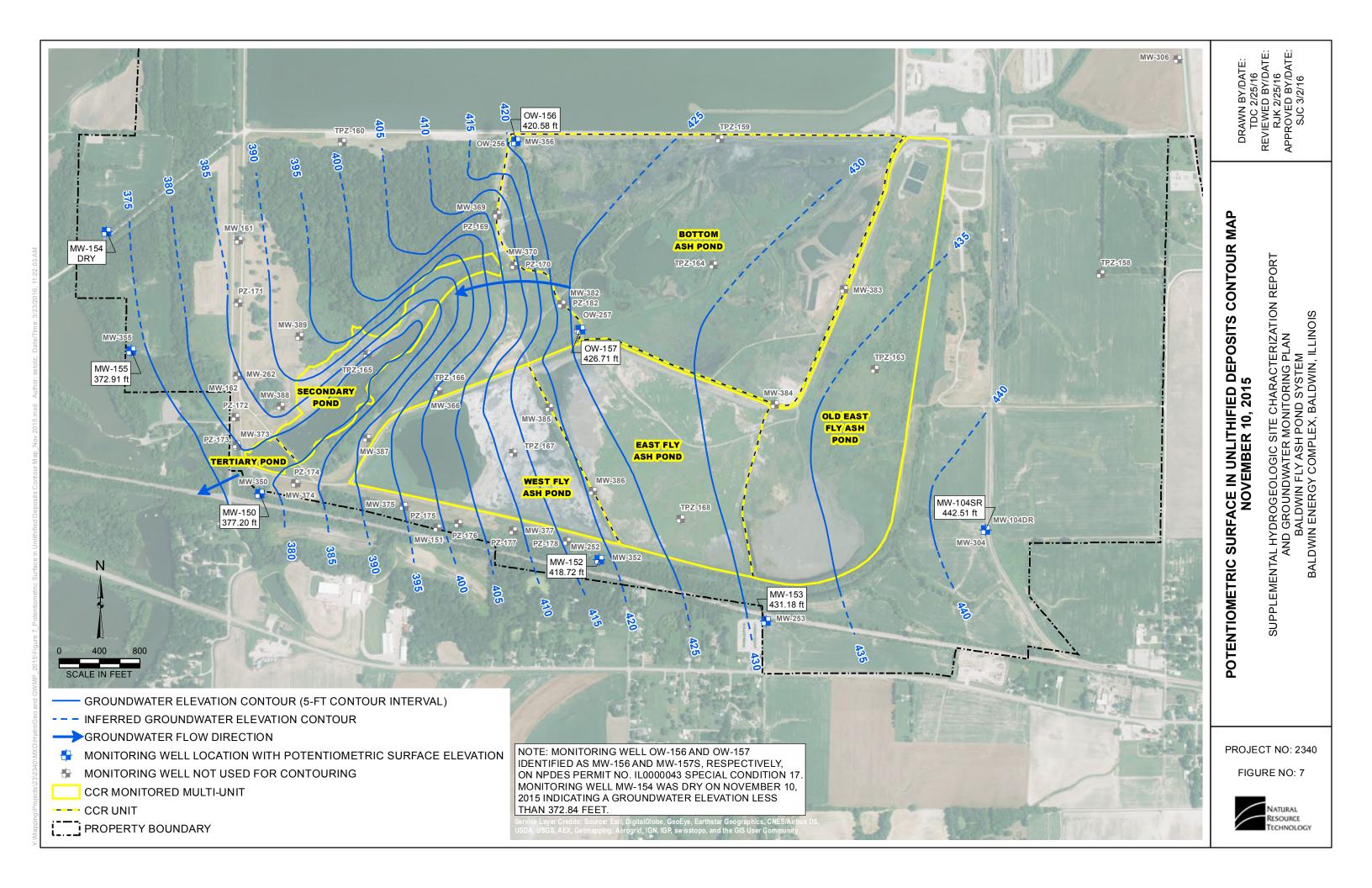
TDC 2/25/16
REVIEWED BY/DATE:
RJK 2/25/16
APPROVED BY/DATE:
SJC 3/2/16


AERIAL PHOTOGRAPH OF SITE AND ASH POND SYSTEM


SUPPLEMENTAL HYDROGEOLOGIC SITE CHARACTERIZATION REPORT AND GROUNDWATER MONITORING PLAN BALDWIN FLY ASH POND SYSTEM BALDWIN ENERGY COMPLEX, BALDWIN, ILLINOIS


PROJECT NO: 2340


FIGURE NO: 2



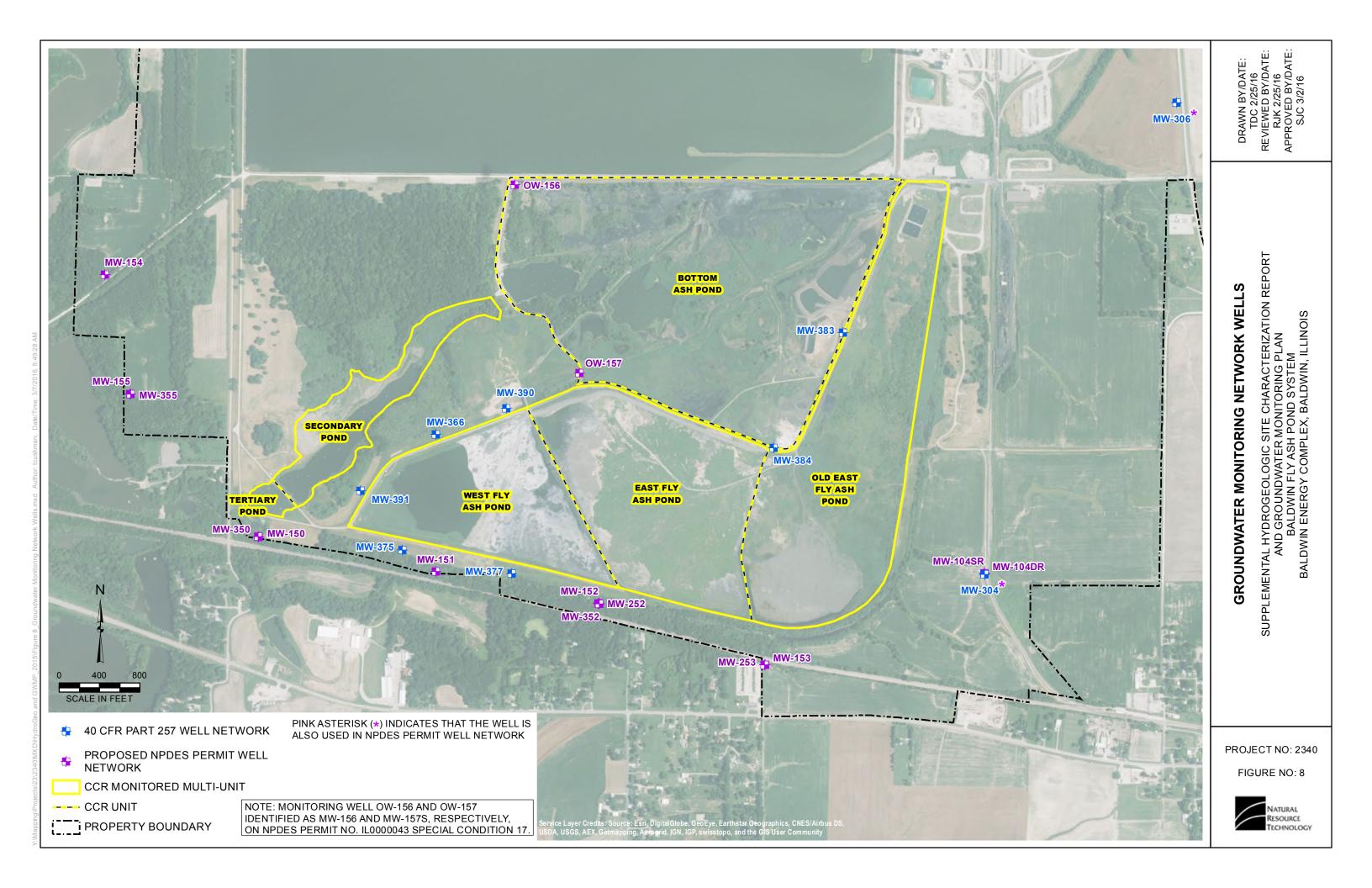


Table 1
Background Groundwater Quality and Applicable Groundwater Quality Standards
Supplemental Hydrogeologic Site Characterization Report and Groundwater Monitoring Plan
Baldwin Fly Ash Pond System
Baldwin Energy Center

		Unlithified⁴				Bedrock ⁵			
Parameter	IL Class II Std ¹ (mg/L)	Background Concentration ² (mg/L)	Applicable Groundwater Standard ³ (mg/L)	Maximum (mg/L)	Minimum (mg/L)	Background Concentration (mg/L)	Applicable Groundwater Standard (mg/L)	Maximum (mg/L)	Minimum (mg/L)
Antimony	0.024	0.005	0.024	<0.005	<0.005	USEPA (t)	na	0.0075	<0.005
Arsenic	0.2	0.032	0.2	0.032	<0.005	USEPA (t)	na	0.011	<0.005
Barium	2.0	0.621	2.0	0.24	0.0094	USEPA (t)	na	1.6	0.098
Beryllium	0.5	0.004	0.5	<0.005	<0.004	USEPA (t)	na	<0.005	<0.004
Boron (t)	2.0	na	na			USEPA (t)	na		
Boron (d)	2.0	0.237	2.0	45.3	<0.02	tbd	tbd ³	1.88	<0.02
Calcium	NS	na	NS	289	54.17	USEPA (t)	na	533	45
Cadmium	0.05	0.002	0.05	<0.002	<0.002	USEPA (t)	na	< 0.002	<0.002
Chloride (t)	200	na	na			USEPA (t)	na		
Chloride (d)	200	58.7	200	140	4.1	tbd	tbd ³	642	9
Chromium	1.0	0.005	1.0	<0.005	<0.005	USEPA (t)	na	<0.005	<0.005
Cobalt	1.0	0.005	1.0	0.01	<0.005	USEPA (t)	na	<0.005	<0.005
Copper	0.65	0.005	0.65	0.016	<0.005	na	na	< 0.005	<0.005
Cyanide (t)	0.6	0.008	0.6	<0.008	<0.007	na	na	<0.008	<0.007
Fluoride	4.0	0.793	4.0	0.865	0.119	USEPA (t)	na	0.756	0.174
Iron (t)	5.0	11	11	69.4	<0.02	tbd	tbd ³	3.82	0.02
Iron (d)	5.0	18	18	18	<0.01	na	na	1.6	0.011
Lead	0.1	0.005	0.1	0.005	<0.005	USEPA (t)	na	<0.005	<0.005
Lithium	NS	na	na			USEPA (t)	na		
Manganese (t)	10	8.2	10	24.4	<0.003	tbd	tbd ³	0.58	< 0.003
Manganese (d)	10	48.8	48.8	6.8	<0.003	na	na	0.87	<0.003
Mercury	0.01	0.002	0.01	< 0.002	<0.002	USEPA (t)	na	<0.002	<0.002
Molybdenum	NS	na	NS			USEPA (t)	na		
Nickel	2.0	0.005	2.0	<0.005	<0.005	na	na	0.007	<0.005
Nitrate (as N) (t)	100	2.26	100	10.7	<0.05	tbd	tbd ³	1.13	0.103
Nitrate (as N) (d)	100	2.25	100	18	<0.05	na	na	2.04	0.06
Selenium	0.05	0.01	0.05	0.016	<0.01	USEPA (t)	na	<0.01	<0.01
Silver	0.05	0.005	0.05	0.006	< 0.005	na	na	0.01	<0.005
Sulfate (t)	400	na	na			USEPA (t)	na		
Sulfate (d)	400	328	400	2050	23	tbd	tbd ³	65	<10
Thallium	0.02	0.002	0.02	<0.002	<0.002	USEPA (t)	na	<0.002	<0.002
Vanadium	0.1	na	0.1			na	na		
Zinc	10	0.009	10	0.014	<0.005	na	na	0.006	<0.005
TDS	1,200	999	1,200	3470	188	tbd / USEPA	tbd ³	1709	375
Field pH	6.5 - 9.0	6.06 - 7.55	6.06 - 9.0	12.4	5.6	tbd / USEPA	tbd ³	12.9	6.5
Radium 226/228*	5.0 / 5.0	na	na			USEPA (t)	na		

[O: JAZ 1/28/16, C:GFF 1/29/16, QA:SJC 3/2/16]

Notes:

All parameters are dissolved unless noted. Standards apply to dissolved or total concentration

(t) Total (d) Dissolved

tbd = To Be Determined for Illinois EPA monitoring program; based on future monitoring beginning January 2016

Bold = Background Concentration exceeds Class II Groundwater Standard

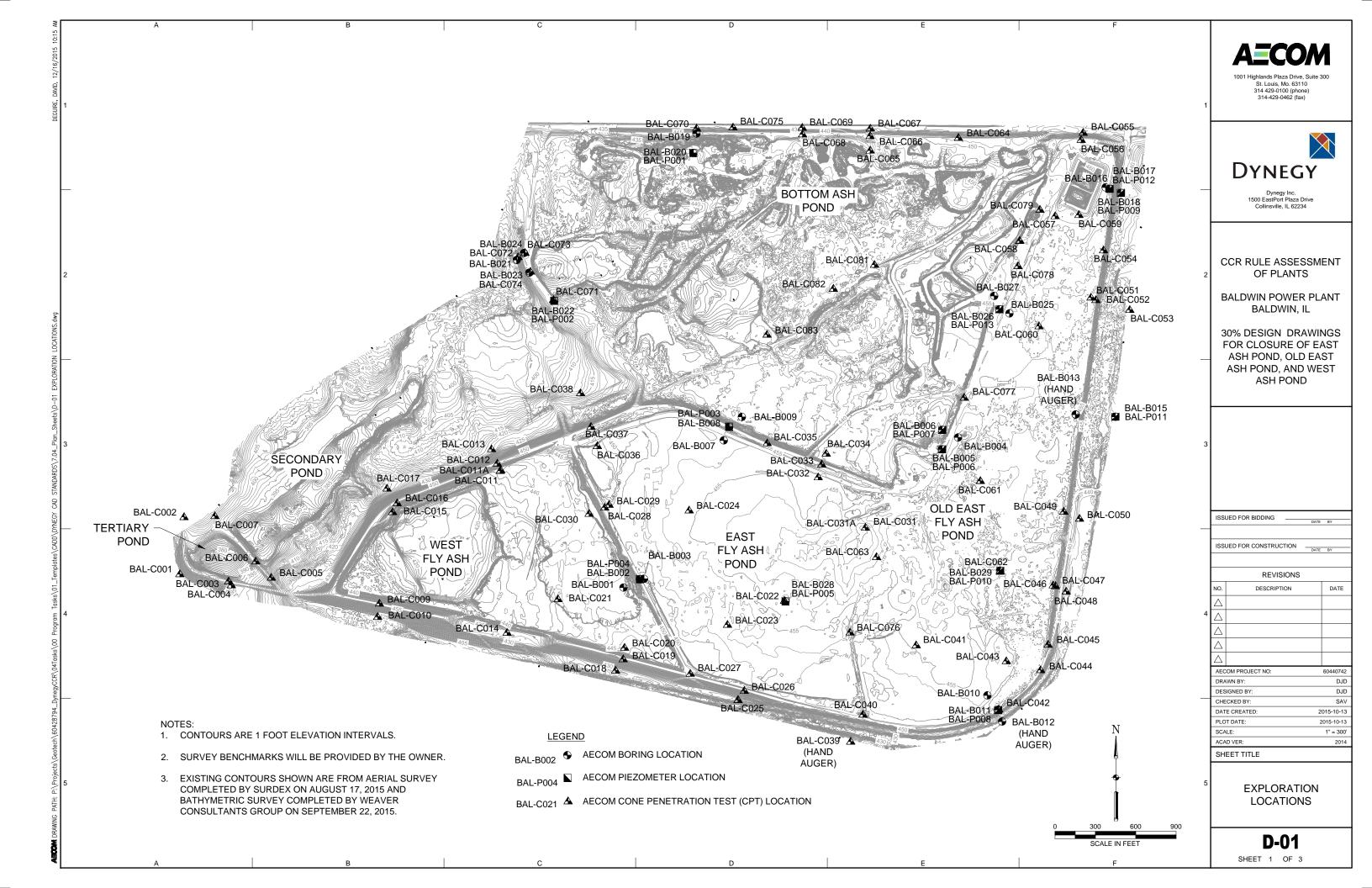
Red = Exceeds Applicable Groundwater Standard

-- = not analyzed prior to 2016 na = not applicable; parameter [dissolved and total] not proposed for Illinois EPA monitoring program under proposed modified NPDES Permi

NS = No Class II Groundwater Standard USEPA (t) = background concentration for parameter [total] required under USEPA program (40 CFR Part 257)

¹ IPCB 620 Class II: General Resource Groundwater Standard

² Background Concentration obtained from Appendix E - Statistical Procedure for Calculation of Background (Table E-1 Tolerance Limits for Background Monitoring Wells MW-104S/SR and MW-104D/DR using the Upper and Low


³ Applicable Groundwater Standard is the higher of the Background Concentration and the Class II Groundwater Standard (or the lower if compared to the pH lower limit).

⁴ Unlithified Wells used for maximum and minimum include those designated as upgradient or downgradient in Appendix D.

⁵ Bedrock wells used for maximum and minimum include MW-350, MW352, and MW-355 (all downgradient) as listed in Appendix D.

^{*} Radium 226 and 228 reported separately for IPCB Class II Groundwater Standard, reported combined for USEPA 40 CFR Part 257.

APPENDIX A AECOM (2015) GEOTECHNICAL LABORATORY RESULTS

						Summ				st Resu	lts									
							, II	DENTIFICA	TION TEST	S						STRENG	TH		LIDATION	
									SIEVE	HYDRO. %	TOTAL	DRY		PERMEA-	Type Test	PEAK		INITIAL	ONDITIONS	
BORING	SAMPLE	DEPTH	CLASSIFICATION	WATER	LIQUID	PLASTIC	PLAS.	USCS	MINUS	MINUS	UNIT	UNIT	SPECIFIC	BILITY	@	SHEAR	AXIAL STRAIN	VOID	SATUR-	REMARKS/ TEST ID
NO.	NO.	(ft)		CONTENT (%)	LIMIT	LIMIT (-	INDEX	SYMB.	NO. 200	2µm	WEIGHT	WEIGHT	GRAVITY (-)	(cm/sec)	STRESS	STRESS	@ PEAK STRESS (%)	RATIO	ATION	•
					(-)	,	(-)	(1)	(%)	(%)	(pcf)	(pcf)			(ksf)	(ksf)	51RE55 (%)	(-)	(%)	
BAL-B001	S-4	7.5-9		66.9				SM	31.5	5										
BAL-B001	S-6	15-18		37.9				CL	93.9	6										
BAL-B001	ST-2	35-37		37.5				CL	33.3	-	125.6									
BAL-B001	ST-2	35.35		23.1																
BAL-B001	ST-2A	35.6		23.8	63	15	48	CH			126.6	102.3		1.30E-08						P10576
BAL-B001	ST-2	35.9		23.2																
BAL-B001	ST-2	36.15		22.4				CH			128.4	104.9			UU@6.2	1.6	10.9			UU245g
BAL-B001	S-10	45.0-46.5	Brown silty CLAY, trace gravel	16.6																
BAL-B001	S-11	50.0-51.5	Brown silty, CLAY with gravel	12.4																
BAL-B001	S-14	65.0-66.5	Gray brown silty CLAY with fine gravel	19.0																
BAL-B001 BAL-B002	S-16 S-1	75.0-75.5 0.0-1.5	Gray brown silty CLAY with fine gravel	12.5 19.5																
BAL-B002	S-1	2.5-4.0	Brown silty CLAY, trace sand and gravel Brown silty CLAY, trace sand and gravel	16.5																
BAL-B002	S-3	5.0-6.5	Brown silty CLAY, trace sand and gravel	19.1	36	19	 	1					1							
BAL-B002	ST-1	8-10	Storm Strey Co. 11, trace Sand and gravel	13.1	30		1				120.5		1		1					
BAL-B002	ST-1A	8.25		19.1			1	СН	91.8	29										dispersion
BAL-B002	ST-1B	8.8		25.9	54	16	38	CH			120.1	95.4			UU@1.1	1	15			UU257i
BAL-B002	S-4	10.0-11.5	Brown silty CLAY, trace sand and gravel	21.0																
BAL-B002	ST-2	15-17									130.3									
BAL-B002	ST-2A	15.45		21.8	46	14	32	CL			123.3	101.2			UU@1.9	0.7	15			UU257j
BAL-B002	S-5	20.0-21.5	Brown silty CLAY, trace sand and gravel	21.7																
BAL-B002	S-6	25.0-26.5	Brown sandy silty CLAY	40.3																
BAL-B002	ST-3	27.5-30									113.5									
BAL-B002	ST-3A	27.75		34.8				ML			111.5	82.7			CIU@3.4	1.3	16.5			T3850
BAL-B002 BAL-B002	ST-3B ST-3C	28.1 28.45		26.4 32.1	21	21	NP	ML ML			118.5 114.9	93.8 87	2.491		CIU@3.5	2.9	19.6	0.69	97	C15141 T3851
BAL-B002	ST-3C	28.45		25.5	21	21	NP	ML			122	97.2	2.491		CIU@3.5	10.1	24.8			T3851
BAL-B002	S-7	30.0-31.5	Brown sandy silty CLAY with gravel	47.9				IVIL			122	97.2			CIU@3.6	10.1	24.0			13032
BAL-B002	S-8	35.0-36.5	Brown sandy silty CLAY with gravel	36.8																
BAL-B002	S-9	40-41.5		38.6				CL	94.3	5										
BAL-B002	S-10	45.0-46.5	Dark brown silty CLAY, trace sand	32.6																
BAL-B002	S-11	50.0-51.5	Dark brown silty CLAY, trace sand	25.0																
BAL-B002	S-12	55.0-56.5	Brown silty CLAY, trace sand	24.0	42	23														
BAL-B002	S-13	60.0-61.5	Dark brown silty CLAY with gravel, trace organics	33.3																
BAL-B002	S-14	70.0-71.5	Gray silty CLAY, trace sand	16.5																
BAL-B002 BAL-B003	S-15 S-4	75.0-76.0 10.0-11.5	Gray silty CLAY, trace sand Brown CLAY with fine gravel	17.4 22.3	45 39	24 17														
BAL-B003	ST-2	15-17	BIOWII CLAT WIGHTIME graver	22.5	39	17					125.3									
BAL-B003	ST-2	15.35		25.4							123.3									
BAL-B003	ST-2A	15.6																		
BAL-B003	ST-2	15.95		23.4																
BAL-B003	ST-2B	16.2		24.7	58	15	43	CH			124.8	100.1			UU@1.9	0.8	15			UU230d
BAL-B003	S-6	30.0-31.5	Brown CLAY	40.7				CL	97	7										
BAL-B003	S-8	40.0-41.5	Brown sandy silty CLAY	43.6							ļ		2.43							
BAL-B003	S-10	50.0-51.5	Brown fat CLAY, trace sand and gravel	19.3	39	17	 				ļ		ļ							
BAL-B003	S-12 S-13	60.0-61.5 65.0-66.5	Light brown silty CLAY	26.9 21.6	57	30	 	-	-		-		1							
BAL-B003	S-13 S-14	70.0-75.4	Light gray silty CLAY Light gray silty CLAY	18.7	3/	50	1	1	1		-		1		1					
BAL-B003	S-14 S-2	2.5-4	Light gray silty CDA1	10.7			1	SW-SM	5.4	0										
BAL-B004	ST-2	25-27					1	2 3.71			118.1									
BAL-B004	ST-2A	25.35	·	37.1				PT			115.8	84.5			CIU@3.0	1.4	12.1			T3892
BAL-B004	ST-2B	25.85		23.6	47	14	33	CL			127	102.7			CIU@3.1	1.4	12.3			T3893
BAL-B004	ST-2C	26.35		29.9				CL			119.2	91.8			CIU@3.2	1.8	19			T3894
BAL-B004	S-8	30-31.5		31.4	37	18	19	CL												
BAL-B004	S-9	35.0-36.5	Light gray silty CLAY, trace sand	19.4	38	15	<u> </u>						ļ							
BAL-B004 BAL-B005	S-11 S-1	45.0-46.5 0.0-1.5	Light brown silty CLAY with gravel Dark brown silty coarse SAND with gravel	20.3 9.8	 		 				 		1				1			
BAL-B005	S-1 S-2	2.5-4.0	Brown silty CLAY	25.7			1				-									
BAL-B005	ST-1	5.0-7.0	BIOWII SILLY CLAT	23.7			1				108.7						1			
5000	ST-1	5.75		24.3				 	 		100.7		 		1		 			UU275A

						Summ	ary of	Labora	tory Te	st Resu	lts									
							- 10	DENTIFICA	TION TEST	S						STRENG	TH	CONSC	LIDATION	
									CIEV (E		TOTAL	D.D.V		DED. 45.		25414		INITIAL C	ONDITIONS	
BORING	SAMPLE	DEPTH	CLASSIFICATION	WATER	LIQUID	PLASTIC	PLAS.	USCS	SIEVE	HYDRO. % MINUS	TOTAL	DRY UNIT	SPECIFIC	PERMEA- BILITY	Type Test	PEAK SHEAR	AXIAL STRAIN	VOID	SATUR-	REMARKS/ TEST ID
NO.	NO.	(ft)	CLASSIFICATION		LIMIT	LIMIT (-	INDEX	SYMB.			-				@		@ PEAK	RATIO	ATION	REMARKS/ TEST ID
				CONTENT (%)	(-))	(-)	(1)	NO. 200	2μm	WEIGHT	WEIGHT	GRAVITY (-)	(cm/sec)	STRESS	STRESS	STRESS (%)	(-)	(%)	
									(%)	(%)	(pcf)	(pcf)			(ksf)	(ksf)		(-)	(70)	
BAL-B005	ST-1B	6		22	60	17	43	CH			126.5	103.7			UU@0.7	1.9	15			
BAL-B005	S-3	7.5-9.0	Brown silty CLAY	26.2																
BAL-B005	ST-2	10.0-12.0									115.1									
BAL-B005	ST-2A	10.3		25.8				CH			121.4	96.5			CIU@0.8	0.7	19.8			T3910
BAL-B005	ST-2B	10.85		24.8	60	16	44	CH			123.7	99.1			CIU@1.2	1.4	19.6			T3911
BAL-B005	S-4	15.0-16.5	Brown silty CLAY, trace sand	25.1																
BAL-B005	S-5	20.0-21.5	Brown gray silty CLAY	27.5			<u> </u>													
BAL-B005	S-6	25.0-26.5	Brown silty CLAY	24.1	2.5	40														
BAL-B005 BAL-B005	S-7 S-8	30.0-31.5 35.0-36.5	Brown silty CLAY Brown silty CLAY	21.2 21.9	36	18														
BAL-B005	S-8 S-9	40.0-41.5	Brown silty CLAY Brown silty CLAY	16.7																
BAL-B005	S-10	45.0-46.5	Gray silty CLAY	16.6																
BAL-B005	S-10	50.0-51.5	Gray silty CLAY	22.0																
BAL-B005	S-12	55.0-56.5	Gray silty CLAY, trace sand	16.6	44	25														
BAL-B005	S-13	60.0-60.4	Gray brown silty CLAY	18.8	- ''	- 23														
BAL-B006	S-1	0.0-1.5	,,	11.6				SC	20.9	2										
BAL-B006	S-2	2.5-4.0		67.9				SC	44.4	4										
BAL-B006	S-3	5.0-6.5		31.6				SM	18.5	1										
BAL-B006	S-4	7.5-9.0		24.9				SC	12.8	0										
BAL-B006	S-5	10.0-11.5		19.9				CL	53.4	6										
BAL-B006	S-6	12.5-15	Gray brown silty CLAY, trace sand and fine gravel	21.2																
BAL-B006	ST-1	15.0-17.0									129									
BAL-B006	ST-1	15.15		25.2																
BAL-B006	ST-1	15.7		23.5																
BAL-B006	ST-1B	15.95		17.9			<u> </u>	CL			135	114.5			UU@1.4	1.7	15			UU275G
BAL-B006 BAL-B006	ST-1 S-7	16.25 20.0-21.5	Gray brown silty CLAY, trace sand and fine gravel	15.9 20.8																
BAL-B006	S-7	25.0-26.5	Light brown silty CLAY, trace sand and fine gravel	20.8	32	14							1							
BAL-B006	ST-2	30.0-32	Light brown sitty CDAT, trace sand and fine graver	20	32	14					139.5									
BAL-B006	ST-2A	30.25		13.4	29	15	14	CL			138.3	122			CIU@2.0	6.1	17.4			T3886
BAL-B006	ST-2B	30.6		13				CL			135.3	119.7	2.682		0.00			0.398	87	C15157
BAL-B006	ST-2C	31		13.3				CL			134.8	119			CIU@2.2	7.2	21.8			T3887
BAL-B006	ST-2D	31.5		14				CL			137	120.1			CIU@2.4	5	18.5			T3888
BAL-B006	S-9	35.0-36.5	Light brown silty CLAY, trace sand and fine gravel	29.6																
BAL-B006	S-10	40.0-41.5	Gray silty CLAY, trace sand	22.4																
BAL-B006	S-11	45.0-46.5	Gray CLAY, trace sand	19.1	56	23														
BAL-B006	S-12	50-51.5	Gray silty GRAVEL	9.1																
BAL-B007	S-3	5.5-7.0		65.4	NP	NP														
BAL-B007	ST-1	30-32									123									
BAL-B007	ST-1A	30.4		25				CL			125.8	100.6			CIU@3.6	2.2	15.2			T3857
BAL-B007	ST-1B	30.95		25.8	48	17	31	CL			126.6	100.6	2.609		CIU@3.7	2.9	14.7	0.554		T3859
BAL-B007	ST-1C ST-1D	31.35 31.8		22.8 26		-	 	CL CL	1		123 125.8	100.1 99.8	 	-	CIU@3.8	2.5	16.7	0.661	92	C15142 T3858
BAL-B007	S1-1D S-1	0.0-1.5	Brown silty CLAY, trace sand	15.4		 	}	CL			125.8	33.8		-	CIU@3.8	2.5	10./	1		13658
BAL-B008	S-1	2.5-4.0	Brown silty, CLAY, trace sand	21.8		 	 				 			 		 	 			
BAL-B008	S-3	5.0-6.5	Brown silty CLAY, trace sand and fine gravel	21.6	48	21														
BAL-B008	S-4	10.0-11.5	Brown silty CLAY, trace sand and fine gravel	19.6																
BAL-B008	ST-1	10-12																		
BAL-B008	ST-1A	10.35		25.7				CH	84.2	25										dispersion
BAL-B008	ST-1B	10.8		23.1	65	17	48	CH			127.5	103.6		5.50E-09						P10595
BAL-B008	S-5	20.0-21.5	Brown silty CLAY, trace sand and fine gravel	22.5																
BAL-B008	ST-2	20-22									119.5									
BAL-B008	ST-2	20.05		43.5			<u> </u>										ļ			
BAL-B008	ST-2A	20.3		23.4	58	18	40	CH			125.7	101.9	ļ		UU@2.5	0.4	15			UU278e
BAL-B008	S-6	25.0-26.5	Brown silty CLAY, trace sand and fine gravel	20.8			ļ						ļ			ļ	ļ			
BAL-B008	S-7	30.0-31.5	Brown silty CLAY, trace sand and fine gravel	26.2	38	17	<u> </u>				 			ļ		ļ		 		
BAL-BOOS	S-8	35.0-36.5	Brown silty CLAY, trace sand and fine gravel	22.9			 				 		ļ			 				
BAL-BOOR	S-9	40.0-41.5	Brown silty CLAY, trace sand and fine gravel	20.8			 				-					 	1	1		
BAL-B008 BAL-B008	S-10 S-11	45.0-46.5 50.0-51.5	Brown silty CLAY, trace sand and fine gravel	22.1 18.0			<u> </u>				 					 	1	1		
BAL-B008	S-11 S-12	55.0-56.5	Brown silty CLAY, trace sand and fine gravel Light brown SILTY SAND	19.2		 	}	SM	16		 			1	-	 	1	1		
DUT.0000	J 14	22.0 20.3	LIGHT DIOWN SILTT SAND	13.4		l		JIVI	10		l	l	1	l	L	l	1			Į.

						Summ	ary of	Labora	tory Te	st Resu	lts									
								DENTIFICA	TION TEST	rs						STRENG	тн		LIDATION	
BORING NO.	SAMPLE NO.	DEPTH (ft)	CLASSIFICATION	WATER CONTENT (%)	LIQUID LIMIT (-)	PLASTIC LIMIT (-)	PLAS. INDEX (-)	USCS SYMB. (1)	SIEVE MINUS NO. 200 (%)	HYDRO. % MINUS 2µm (%)	TOTAL UNIT WEIGHT (pcf)	DRY UNIT WEIGHT (pcf)	SPECIFIC GRAVITY (-)	PERMEA- BILITY (cm/sec)	Type Test @ STRESS (ksf)	PEAK SHEAR STRESS (ksf)	AXIAL STRAIN @ PEAK STRESS (%)	VOID RATIO (-)	SATUR- ATION (%)	REMARKS/ TEST ID
BAL-B008	S-13	60.0-61.5	Gray silty CLAY, trace sand	17.8	42	25														
BAL-B008	S-14	65.0-66.5	Gray silty CLAY, trace sand	14.0																
BAL-B009	S-1 ST-2	0-1.5 10.5-12.5		85.3				MH	78.3	10	122.5									
BAL-B009	ST-2A	10.65		4.3				CL			122.5									
BAL-B009	ST-2	10.9		24.9																
BAL-B009	ST-2B ST-2	11.15 11.45		25.2 28				CL			124.9	99.8			CIU@1.3	1.8	16.9			T3863
BAL-B009	ST-2C	11.45		26.3				CL			124.1	98.3			CIU@1.4	1.6	14.6			T3889
BAL-B009	ST-2	12		24.1				CL			124.1	30.3			CIO@1.4	1.0	14.0			13003
BAL-B009	ST-2D	12.25		26.3	40	19	21	CL	95.2	20	123.6	97.8			CIU@1.5	2.1	14.2			dispersion T3864
BAL-B009	ST-3	25-27		22.4	49		25				113.6	400.4				0.7	45			1111270
BAL-B009	ST-3 ST-3	25.25 25.85		22.1 19.5	49	14	35	CL			125.9	103.1			UU@3.1	0.7	15			UU278g
BAL-B009	S-7	30.0-31.5	Brown POORLY GRADED GRAVEL	14.5				GP	3											
BAL-B009	S-8	35.0-36.5	Gray silty CLAY, trace sand	23.2	49	25														
BAL-B009	S-9	40.0-41.5	Gray silty CLAY, trace sand	21.2						ļ										
BAL-B010 BAL-B010	S-2 S-5	2.5-4 15-16.5		50.2 42.5				SC CL	28.4 98.3	7										
BAL-B010	ST-2	20-22		42.3				CL	30.3		123.9									
BAL-B010	ST-2	20.5		24.7																
BAL-B010	ST-2	21.05		22.1																
BAL-B010 BAL-B010	ST-2B ST-2	21.3 21.6		22.2 21.9	42	18	24	CL			124.2	101.7		2.40E-06						P10578
BAL-B010	ST-2C	21.85		20.9				CL			124.9	103.3			UU@2.5	2	3.8			UU246d
BAL-B010	S-8	30.0-31.5	Light brown silty CLAY with sand and gravel	18.6	30	14														
BAL-B010	S-9	35.0-36.5	Brown silty CLAY with sand and gravel	15.0	22	14														
BAL-B010 BAL-B010	S-11 S-12	45.0-46.5 50.0-51.5	Light brown silty CLAY with sand and gravel Brown silty CLAY, trace sand	21.7 18.2																
BAL-B010	S-12	0.0-1.5	Brown silty CLAY, trace sand Brown silty CLAY, trace sand	13.0																
BAL-B011	S-2	2.5-4		23.0				CL	95.2	27										
BAL-B011	S-4	7.5-9.0	Brown silty CLAY, trace sand	18.8																
BAL-B011 BAL-B011	S-5 ST-1	10.0-11.5 15-17	Gray brown silty CLAY, trace sand	19.9							122.8									
BAL-B011	ST-1A	15-17		25.8							123.3	98		1.80E-09						P10594
BAL-B011	ST-1B	15.7		24.8				CL			125.1	100.2			CIU@1.8	2.5	12.1			T3903
BAL-B011	ST-1C	16.2		24.9				CL			122.3	98			CIU@1.9	2.8	20.1			T3904
BAL-B011 BAL-B011	ST-1D	16.55 16.8		25.4 25.6	46	18	28	CI			121.2	96.6			CILLES O	17	19.2			T3905
BAL-B011	S-6	20.0-21.5	Gray brown silty CLAY, trace sand	25.6	46	18	28	CL			121.3	96.6			CIU@2.0	1.7	19.2			13905
BAL-B011	S-7	30.0-31.5	Brown silty CLAY, trace sand	17.8																
BAL-B011	S-8	35.0-36.5	Brown silty sandy CLAY with gravel	8.8	19	11														
BAL-B011	S-9 S-10	42.5-44.0 47.5-49.0	Light brown silty CLAY, trace sand	18.2	49	24				-	-									
BAL-B011 BAL-B012	S-10 S-3	2.0-3.0	Gray silty CLAY, trace sand Brown silty CLAY, trace sand	19.8 22.0	54	24		1		1	1		1		1					
BAL-B012	S-7	6.0-7.0	Light brown silty CLAY	20.7	34	18														
BAL-B012	S-10	9.0-10.0	Light brown silty CLAY	21.3																_
BAL-B015	S-1	0.0-1.5	Light brown sandy silty CLAY with find gravel and organics	12.5																
BAL-B015 BAL-B015	S-2 ST-1	2.5-4.0 5.0-7.0	Light brown sandy silty CLAY	21.5		1		1		1	124.7		1		1					
BAL-B015	ST-1	5.6		24.8							227.7									
BAL-B015	ST-1	6.15		43																
BAL-B015	ST-1C	6.4		21.3	44	17	27	CL			129.1	106.4			UU@0.7	2.3	15			UU275D
BAL-B015 BAL-B015	S-3 S-4	7.5-9.0 10.0-11.5	Light brown sandy silty CLAY Light brown sandy silty CLAY, trace gravel	22.8 21.0		1				1	1		1		1					
BAL-B015	ST-2	11.5-13.5	Light Grown Juney Silty CLAT, trace gravel	21.0							128.6									
BAL-B015	ST-2	11.8		19.5																
BAL-B015	ST-2A	12.05	· · · · · · · · · · · · · · · · · · ·	20.8				CH			129.5	107.2			CIU@1.0	1.8	18.7			T3912
BAL-B015 BAL-B015	ST-2 ST-2B	12.35 12.6		20.8				CH		-	129.9	108.2	-		CIU@1.2	1.8	20.4			T3913
BAL-B015	ST-2B	12.0		20.1				CII		1	143.3	100.2			C10@1.2	1.0	20.4			13313

	nergy CCR-B	alawiii																	Flojet	t No.: 60440739
	1			1		Summ				st Resu	lts									1
						1		DENTIFICA	TION TEST	S	1	1		-		STRENG	TH		CONDITIONS	
BORING NO.	SAMPLE NO.	DEPTH (ft)	CLASSIFICATION	WATER CONTENT (%)	LIQUID LIMIT (-)	PLASTIC LIMIT (-	PLAS. INDEX (-)	USCS SYMB. (1)	SIEVE MINUS NO. 200 (%)	HYDRO. % MINUS 2μm (%)	TOTAL UNIT WEIGHT (pcf)	DRY UNIT WEIGHT (pcf)	SPECIFIC GRAVITY (-)	PERMEA- BILITY (cm/sec)	Type Test @ STRESS (ksf)	PEAK SHEAR STRESS (ksf)	AXIAL STRAIN @ PEAK STRESS (%)	VOID RATIO (-)	SATUR- ATION (%)	REMARKS/ TEST ID
BAL-B015	ST-2C	13.15		21.1	53	14	39	CH			128.8	106.4			CIU@1.4	1.9	20.1			T3914
BAL-B015	S-5	15.0-16.5	Light brown sandy silty CLAY, trace gravel	23.0																
BAL-B015 BAL-B015	S-6 S-7	20.0-21.5 25.0-26.5	Light brown sandy silty CLAY with gravel Light brown gray silty CLAY, trace sand and gravel	18.8 17.1	37	15	<u> </u>													
BAL-B015	S-7 S-8	30.0-31.5	Light brown gray silty CLAY, trace sand and gravel Light brown silty CLAY, with sand and gravel	23.7	37	15	1													
BAL-B015	S-9	35.0-36.5	Brown silty CLAY, trace sand	23.5													1			
BAL-B015	S-10	40.0-41.5	Gray brown silty CLAY	20.1																
BAL-B015	S-11	45.0-46.5	Light brown sandy silty CLAY with medium gravel	25.9																
BAL-B015	S-12	50.0-51.5	Gray fat CLAY	21.7	87	33														
BAL-B016	ST-1	4.0-6.0									114.6									
BAL-B016	ST-1	4.15		15.7							420	444.2					24.2			T2025
BAL-B016 BAL-B016	ST-1A ST-1	4.4 4.7		15 19.8			1	ML			128	111.3			CIU@0.5	0.8	21.2			T3825
BAL-B016	ST-1B	4.95		27.6				ML			115.4	90.5			CIU@0.6	2.1	18			T3826
BAL-B016	ST-1	5.25		33.3																
BAL-B016	ST-1C	5.5	·	31.8	24	22	2	ML			107.7	81.7			CIU@0.7	1.9	11.1			T3827
BAL-B016	S-3B	7.5-9.0	Brown SILT	41.3				ML	96	6										
BAL-B016	ST-2	10.0-12.0					ļ				103.4									
BAL-B016	ST-2	10.15		44.3																
BAL-B016	ST-2	10.65		49.8 54.9			<u> </u>													
BAL-B016 BAL-B016	ST-2 ST-2B	11.15 10.9		62.1		29	NP	ML			96.8	59.7			1			1.562	97	C15119
BAL-B016	S-4	15.0-16.5		31.3		23	141	IVIL			50.0	33.7						1.502	- 37	CISIIS
BAL-B016	S-5	20.0-21.5	Dark brown SILT	29				ML	90	4										
BAL-B016	S-8	35.0-36.5		22.6																
BAL-B016	S-10	45.0-46.5		17.9																
BAL-B016	S-11	50.0-51.5		14.5	30	15														
BAL-B016	S-12	55.0-56.5		10.3	34	14	ļ													
BAL-B016	S-14	65.0-66.5 0.0-1.5		18.2				ML				1			ļ					
BAL-B017 BAL-B017	S-1 S-2	2.5-4.0		11.5 14.7			1	ML	73.5	9					1					
BAL-B017	S-3	5.0-6.5		21.4			1	ML	67	4										
BAL-B017	S-4	7.5-9.0		28.9				ML	94.2	6										
BAL-B017	ST-1	10.0-12.0									108.5									
BAL-B017	ST-1	11.3		28.4																
BAL-B017	ST-1C	11.55		35	23	25	NP	ML	95.4	7	112.2	83.1			UU@0.8	0.4	15			UU278H
BAL-B017 BAL-B017	S-5 S-6	15.0-16.5 20.0-21.5	Brown silty CLAY	30.5 21.4	33	15														
BAL-B017	ST-2	25.5-27.5	Brown silty CLAY with fine gravel	21.4	33	15	1				122.1						1			
BAL-B017	ST-2	25.9		30.3							122.1									
BAL-B017	ST-2A	26.15		22.6				CL			125.4	102.3			CIU@2.2	6.7	20.1			T3921
BAL-B017	ST-2	26.45		21.9																
BAL-B017	ST-2B	26.7		23.5	44	15	29	CL			124.5	100.8		1.70E-08	CIU@2.4	2	19.7			T3922
BAL-B017	ST-2	27		25	ļ		ļ											ļ		
BAL-B017	ST-2C	27.25	D. The GLAVE THE C.	25.4	 	1		CL			124.4	99.2	1		CIU@2.6	1.8	12.9	ļ		T3923
BAL-B017 BAL-B017	S-7 S-8	30.0-31.5 35.0-36.5	Brown silty CLAY with fine gravel Brown silty CLAY with fine gravel	30.5 21.2	43	11	 					-			-			-		
BAL-B017	S-8	40.0-41.5	Gray brown sandy silty CLAY with fine gravel	18.1	+5	11	 	-					1	-	1	 	 	 		
BAL-B017	S-10	45.0-45.1	Gray brown sandy silty CLAY with fine gravel	15.6	1	1	1				1	1	1	1	1		1	1		
BAL-B017	S-11	50.0-51.5	Gray brown sandy silty CLAY with fine gravel	22.6			1					1			1					
BAL-B017	S-12	55.0-56.5	Brown sandy silty CLAY with fine gravel	10.3	28	9														
BAL-B018	S-2	5.0-6.5	Light brown silty CLAY	30.0	37	20														
BAL-B018	ST-2	25-27		2			 				126.1	0.7.7					25			-
BAL-B018 BAL-B018	ST-2B ST-2C	25.95 26.55		27.4 18.1	54	13	41	CH CH			123.3 129.7	96.8 109.9			CIU@3.0 CIU@3.2	0.9 2.2	22.7 18.2			T3890 T3865
BAL-B018	S1-2C S-7	26.55 35.0-36.5	Light brown silty CLAY	23.6	54	13	41	CH			129./	109.9		-	CIU@3.2	2.2	18.2	-		13805
BAL-B018	S-7	40.0-41.5	Gray silty CLAY	17.7	47	25	 						1		 		†	 		
BAL-B018	S-9	45.0-46.5	Gray silty CLAY, trace sand	18.4	- · ·	-25	†													
BAL-B019	S-1	0.0-1.5		15.3		<u> </u>	<u> </u>										İ.,			
BAL-B019	S-3	5.0-6.5		22.4	40	19														
BAL-B019	S-7	15.0-16.5		17.5																

						Summ	ary of	Labora	tory Te	st Resu	lts									
							II	DENTIFICA	TION TEST	S						STRENG	TH		LIDATION	
									SIEVE	HYDRO. %	TOTAL	DRY		PERMEA-	Type Test	PEAK		INITIAL	ONDITIONS	
BORING	SAMPLE	DEPTH	CLASSIFICATION	WATER	LIQUID	PLASTIC	PLAS.	USCS	MINUS	MINUS	UNIT	UNIT	SPECIFIC	BILITY	@	SHEAR	AXIAL STRAIN	VOID	SATUR-	REMARKS/ TEST ID
NO.	NO.	(ft)		CONTENT (%)	LIMIT	LIMIT (-	INDEX	SYMB.	NO. 200	2µm	WEIGHT	WEIGHT	GRAVITY (-)	(cm/sec)	STRESS	STRESS	@ PEAK	RATIO	ATION	,
				, ,	(-))	(-)	(1)	(%)	(%)	(pcf)	(pcf)	, ,	, , ,	(ksf)	(ksf)	STRESS (%)	(-)	(%)	
DAL DOLO	CT 1	25.27.5									128.1									
BAL-B019	ST-1	25-27.5 25.45		24.3							128.1		1				-			
BAL-B019	ST-1	26		25.1																
BAL-B019	ST-1	26.55		23.9																
BAL-B019	ST-1C	26.8		24.5	38	17	21	CL			124.8	100.3			UU@3.1	1.5	14.6			UU231a
BAL-B019	ST-2	35-37.5									118.4									
BAL-B019	ST-2	35.35		34.7																
BAL-B019	ST-2	35.9		25.6 22.3																
BAL-B019	ST-2C	36.5 36.8		22.3	55	15	40	CH			126.8	103.8	1		UU@4.1	2	8.8			UU231b
BAL-B019	S-11	45.0-46.5		16.7	33	16	40	CII			120.8	103.8			00@4.1		0.0			002310
BAL-B019	S-13	55.0-56.5		18.6	40	18														
BAL-B019	S-14	60.0-61.5		21.9	43	26														
BAL-B019	S-16	70.0-71.0		15.4																
BAL-B019	S-18	80.0-80.8		17.5																
BAL-B020	S-2A	2.5-4		19.5				SP-SM	10.8	1	424.4									
BAL-B020 BAL-B020	ST-2A	9-11 9.4		30.8				CH			121.1 120.4	92.1			CIU@1.1	0.9	19			T3901
BAL-B020	ST-2A	9.4		25.6	51	17	34	CH			123.5	98.3			CIU@1.1	1.2	18.8			T3895
BAL-B020	ST-2C	10.4		24.7	31	- 17	34	CH			125.8	100.9			CIU@1.3	1.3	17.9			T3896
BAL-B020	S-5	20.0-21.5	Brown SANDY LEAN CLAY	22.6	38	16		CL	67						5.5 € 5.5					
BAL-B020	S-7B	30.0-31.5	Brown CLAY with SAND	18.7				CL	78											
BAL-B020	S-10	45.0-46.5	Gray silty sandy CLAY with fine gravel	11.2																
BAL-B020	S-13	60.0-61.5	Gray silty CLAY	21.6	73	36														
BAL-B020	S-17	80.0-81.5	Gray silty CLAY	21.3																
BAL-B021 BAL-B021	ST-1 ST-1A	2.5-4.5 2.75		20.6				CL			117.5 125.8	104.3			CIU@0.3	0.6	18			T3834
BAL-B021	ST-1A ST-1B	3.25		22.4	49	15	34	CL			124.9	104.5			CIU@0.54		20.5			T3835
BAL-B021	S-3	7.5-9.0		20.8	43	17	J.	- CL			12.115	102			0.00-0.51	0.5	20.5			13033
BAL-B021	S-5	15.0-16.5		20.7																
BAL-B021	S-6	20.0-21.5		20.5																
BAL-B021	S-9	35.0-36.5		18.6	42	23														
BAL-B022	S-3	5.0-6.5	Brown silty CLAY, trace fine gravel	22.0	28	18														
BAL-B022 BAL-B022	ST-1 ST-1	10-12 10.35		21.1							130.3									
BAL-B022	ST-1A	10.35		20.7				CL			129.4	107.2			CIU@1.2	2.2	20.1			T3906
BAL-B022	ST-1	10.9		19.9				CL			123.4	107.2			CIOWILE	2.2	20.1			13300
BAL-B022	ST-1B	11.15		19.1	40	15	25	CL	80.3	22	130.3	109.4			CIU@1.3	2	15.3			dispersion T3907
BAL-B022	ST-1	11.45		18.7																
BAL-B022	ST-1C	11.7		18.4				CL			130.7	110.4			CIU@1.4	2.5	20.2			T3908
BAL-B022	S-8	35.0-36.5	Gray silty CLAY, trace gravel	23.6	58	25														
BAL-B022 BAL-B023	S-10 S-3	45.0-45.8 5.0-6.5	Gray silty CLAY, trace gravel	16.6 18.6	37	14														
BAL-B023	S-3 ST-1	10.0-12.5		18.0	5/	14	1	1			129				1	-	 			
BAL-B023	ST-1	10.3		23.7							127									
BAL-B023	ST-1A	10.55		22.6	51	15	36	CH			127.7	104.1			UU@1.3	2.1	15			UU230b
BAL-B023	ST-1	10.85		22.3																
BAL-B023	ST-1B	11.1																		
BAL-B023	S-6	20.0-21.5		22.3	34	18					4000									
BAL-B023 BAL-B023	ST-2	25-27.5		17.9	-		1	CL			132.8 132.2	112.1	 		CIU@3.0	2.6	21.4			T3828
BAL-B023	ST-2B ST-2C	25.65 26.05		16.2	36	14	22	CL			132.2	112.1			CIU@3.0 CIU@3.2	2.5	21.4			T3828
BAL-B023	S-7	30.0-31.5		26.7	59	30	- 22	CL			133.4	114.0			5.0 69.2	2.3				15025
BAL-B023	S-8	35.0-36.5		17.8																
BAL-B023	S-11	50.0-50.8		16.1																
BAL-B024	S-4	7.5-9.0		18.7																
BAL-B024	S-6	15.0-16.5		24.1	41	19							ļ			ļ				
BAL-B024	ST-1	20.0-22.5		28.1	ļ						128		 			ļ				
BAL-B024 BAL-B024	ST-1 ST-1A	20.45		28.1 19.4				CL			130	108.9			CIU@2.4	2.8	17.7			T3831
BAL-B024	ST-1A	21.05		20.0				CL			130	100.3			C10@2.4	2.0	11.1			13031
								ı							1	·	1			

						Summ	ary of	Labora	tory Te	st Resu	lts									
								DENTIFICA	TION TEST	S						STRENG	TH		DLIDATION	
BORING NO.	SAMPLE NO.	DEPTH (ft)	CLASSIFICATION	WATER CONTENT (%)	LIQUID LIMIT (-)	PLASTIC LIMIT (-	PLAS. INDEX (-)	USCS SYMB. (1)	SIEVE MINUS NO. 200	HYDRO. % MINUS 2μm	TOTAL UNIT WEIGHT	DRY UNIT WEIGHT	SPECIFIC GRAVITY (-)	PERMEA- BILITY (cm/sec)	Type Test @ STRESS	PEAK SHEAR STRESS	AXIAL STRAIN @ PEAK STRESS (%)	VOID RATIO	SATUR- ATION	REMARKS/ TEST ID
					()	,	()	(1)	(%)	(%)	(pcf)	(pcf)			(ksf)	(ksf)	311(E33 (70)	(-)	(%)	
BAL-B024 BAL-B024	ST-1B ST-1	21.3 21.6		20.5 20.6	49	13	36	CL			129.6	107.6			CIU@2.5	2.8	11			T3832
BAL-B024	ST-1C	21.6		19.4				CL			128.6	107.7			CIU@2.6	2.3	6.2			T3833
BAL-B024	S-7	25.0-26.5		18.1																
BAL-B024 BAL-B024	S-10 S-12	40.0-41.5 50.0-51.5		14.5 22.6	45	23														
BAL-B025	ST-1	7.5-9.5									112.5									
BAL-B025	ST-1	7.75		22.4 22.0				61	74.3											
BAL-B025 BAL-B025	ST-1A ST-1	8 8.3		25.6				CL	74.3	4										
BAL-B025	ST-1	8.85		55.1																
BAL-B025 BAL-B025	S-4 S-7	10.0-11.5 25.0-26.5		40.4 26.5	40	20							2.46							
BAL-B025	S-9B	40.0-41.5		19.3	32	16														
BAL-B025	S-11	50.0-51.5		24.2																
BAL-B025 BAL-B026	S-12 S-4	55.0-56.5 7.5-9		16.7 9.4	43	21	1	SM	14.6	-	-		1	1						
BAL-B026	S-6	15-16.5		19.4				SW-SM	5.8											
BAL-B026 BAL-B026	ST-1 ST-1	20-22 20.45		37.3																
BAL-B026	ST-1	20.45		27.3																
BAL-B026	ST-1	21.55		23.5																
BAL-B026 BAL-B026	ST-1C S-7A	21.8 25-26.5		20.1 32.9				CL CL	97.5 78.9	28	128	106.5			UU@2.6	2	8.7			UU257k
BAL-B026	ST-2	35-37		32.3				CL	70.5		126.3									
BAL-B026	ST-2A	35.35		23.6				CH			125.4	101.4			CIU@4.2	2	19			T3860
BAL-B026 BAL-B026	ST-2B ST-2C	35.9 36.25		24.0 23.5	61	14	47	CH CH			125.9 124.3	101.6 100.6	2.675		CIU@4.3	2.1	19.2	0.649	96	T3861 C15144
BAL-B026	ST-2D	36.8		22.9				CH			126.4	102.9			CIU@4.4	1.9	15.9			T3862
BAL-B026 BAL-B026	S-9 S-11	40.0-41.5 50.0-51.5	Brown silty CLAY, trace gravel Brown silty CLAY, trace gravel	17.8 23.5	48 49	13 19														
BAL-B026	S-11	55.0-56.5	Brown silty CLAY, trace gravel	16.6	43	17														
BAL-B026	S-15	70.0-71.5	Gray silty CLAY, trace sand	16.5																
BAL-B027 BAL-B027	S-1 S-7	0-1.5 20-21.5		17.7 16.7				SW-SM SP	5.3 0.2											
BAL-B027	ST-1	25-27						-			124.6									
BAL-B027 BAL-B027	ST-1 ST-1	25.55 26.1		21.1 21.8																
BAL-B027	ST-1C	26.35		21.4				CL			128.5	105.9			UU@3.1	3.3	11.9			UU275e
BAL-B027	ST-1	26.65		21.1																
BAL-B027 BAL-B027	ST-1D ST-2	26.9 35-37		21.2	43	16	27	CL			127.7 127.3	105.4		5.00E-09						P10596
BAL-B027	ST-2	35.3		19.1							127.5									
BAL-B027	ST-2 ST-2	35.85		19.9 19.8																
BAL-B027 BAL-B027	ST-2C	36.4 36.65		19.8	47	15	32	CL			130	108	1	 	UU@4.3	1.6	15			UU275f
BAL-B027	S-10	45.0-46.5	Light brown silty CLAY	24.1																
BAL-B027 BAL-B027	S-12 S-13	55.0-56.5 60.0-61.5	Gray silty CLAY, trace sand Gray silty CLAY, trace sand	17.4 19.4	47	21	1			1	 		 	 	1					
BAL-B028	S-1	0-1.5	Gray Sirry CLAT, trace Sailu	72.5																
BAL-B028	S-2	2.5-4.0		70.8				ML	67.5	11										
BAL-B028 BAL-B028	ST-1 ST-1	5.0-7.0 5.4		104.4		1	1			-	89.5		1	 						
BAL-B028	ST-1	5.95		76.6																
BAL-B028 BAL-B028	ST-1 ST-1C	6.55 6.8		114.3 90.7	17	E2	NP	NA1	01 4		90.7	47.6		<u> </u>	CYCTRX@0.	7				CTXS488
BAL-B028	S1-1C S-3	7.5-9.0		103.7	47	53	INP	ML ML	81.4 75.6	13	90.7	47.0			CTCTKX@U.	1				C1X5488
BAL-B028	ST-2	9.0-11.0									89.5									
BAL-B028 BAL-B028	ST-2A ST-2B	9.3 9.95		48.5 65	47	52	NP	ML ML	67.9		104.4 101.8	70.3 61.7	2.684	1	CYCTRX@1.	0		1.716	102	CTXS487 C15154
BAL-B028	S-4	9.95 15-17		39.6	4/	32	INP	ML	64.3	6	101.0	01.7	2.004	 		-		1./10	102	C13134

						Summ				st Resu	Its									
							IE	DENTIFICA	TION TEST	S						STRENG	TH		DLIDATION	
									C151 /5		TOTAL	D.D.V		0501454		DEAK		INITIAL (CONDITIONS	
BORING NO.	SAMPLE NO.	DEPTH (ft)	CLASSIFICATION	WATER CONTENT (%)	LIQUID LIMIT (-)	PLASTIC LIMIT (-)	PLAS. INDEX (-)	USCS SYMB. (1)	SIEVE MINUS NO. 200 (%)	HYDRO. % MINUS 2μm (%)	TOTAL UNIT WEIGHT (pcf)	DRY UNIT WEIGHT (pcf)	SPECIFIC GRAVITY (-)	PERMEA- BILITY (cm/sec)	Type Test @ STRESS (ksf)	PEAK SHEAR STRESS (ksf)	AXIAL STRAIN @ PEAK STRESS (%)	VOID RATIO (-)	SATUR- ATION (%)	REMARKS/ TEST ID
BAL-B028	S-5	20-22		34.9				ML	97.7	8										
BAL-B028	S-6A&B	25-26.5		50.6				CL	89.4	9										
BAL-B028	S-7	30.0-31.5	Brown silty Clay	26.7																
BAL-B028	S-8	35.0-36.5	Brown silty CLAY with sand and gravel	20.3	40	18														
BAL-B028	S-9	40.0-41.5	Brown silty CLAY with sand and gravel	20.7																
BAL-B028	S-10	45.0-46.5	Brown silty CLAY with sand and gravel	16.5																
BAL-B028	S-11	50.0-51.5	Brown silty CLAY with sand and gravel	20.2																
BAL-B028	S-12	55.0-56.5	Gray silty CLAY, trace sand	21.0																
BAL-B028	S-13	60.0-61.5	Gray silty CLAY with sand and gravel	16.7																
BAL-B028	S-14	65.0-66.5	Gray silty CLAY, trace gravel	18.9	39	25														
BAL-B028	S-15	70.0-71.5	Gray silty CLAY, trace gravel	18.5																
BAL-B028	S-16	75.0-76.5	Gray silty CLAY, trace gravel	20.9																
BAL-B028	S-17	80.0-81.5	Gray silty CLAY, trace gravel	17.8																
BAL-B028	S-18	85.5-86.0	Gray silty CLAY, trace gravel	17.7																
BAL-B029	S-1	0.0-1.5		20.6	42	19	23	CL												
BAL-B029	S-2	2.0-4.0		31				CL	95.7	6										
BAL-B029	S-3	7.5-9.0		31.9				ML	86	7										
BAL-B029	S-4	10.0-11.5		34.1				ML	94.5	8										
BAL-B029	S-5	20.0-21.5	Gray sandy silty CLAY	22.1	32	16														
BAL-B029	S-6	25.0-26.5	Gray brown sandy silty CLAY	19.8																
BAL-B029	S-7	30.0-31.5	Gray brown sandy silty CLAY	21.9	47	22														
BAL-B029	S-8	35.0-56.5	Brown sandy CLAY with gravel	10.9																
BAL-B029	S-9	40.0-41.5	Brown sandy CLAY with gravel	26.3	56	20														
BAL-B029	S-11	50.0-51.5	Brown gray sandy silty CLAY	21.8																
BAL-C039	S-1	0.0-1.0	Brown silty CLAY, trace sand	34.0	52	26														
BAL-C039	S-2	2.0-3.0	Brown silty CLAY with organics	24.5	37	16														
BAL-C039	S-6	5.0-6.0	Brown silty CLAY with organics, trace sand and gravel	21.7																
NOTE: Labo	ratory tests	were perform	ned by AECOM, Conshoshocken, Pennsylvania and Terrasense	, Totowa, New J	ersey.															

APPENDIX B LABORATORY HYDRAULIC CONDUCTIVITY TEST RESULTS

PERM	EABILIT	Y TEST: FA	LLING HEA	D - CO	NSTAN	T VOLUM	/IE U-TL	IBE				
			ГМ D 5084 -	Metho	d F							
Project No.: T60428794		BORING:	BAL-B001								Test No.:	P10576
Project Name: Dynegy CCR - Baldwin		SAMPLE:	ST-2A			DEF	PTH (ft):	35.6				
Specimen - Apparatus set-up - Test Information		Cell No.	Е		Appar	ratus No.	1	,	Stage No.:	5		
Preliminary Length/Area Calculations	1) Spe	cimen Teste	d in :	Х	Triaxial	Cell or		Compa	ction Mold	or		_
Lo = 3.991 in Lo= 10.137 cm				Х	with sto	ones or		Stones	with filter p	aper or		top + bottom
dLc= 0.091 in Ao = 41.93 cm^2	, ,	cimen orienta		X	Vertica				ital permea	ability de	terminatio	<u>n</u>
Lc= 3.900 in Vo = 424.99 cm ³	,	ing saturatio		shed up	-	•			X	No		Yes
Lc= 9.905 cm	,	ing consolida		Х	Top an	d bottom	drainag	e or		Тор		Bottom only
$dVc = 3 Vo * (dLc/Lo)$ $dVc = 29.07 cm^3$,	ction of perm		Х	Up duri	ing or		4	luring perm	neation		
$Vc = 395.92 \text{ cm}^3$	6) Per	meant: water	used	X	Тар			Distilled				
$Sc = 0.248 \text{ cm}^{-1}$ Ac= 39.970 cm ²	or				Demine	eralized		0.005 N	l calcium s	ulfate (C	CaSO4)	Permeability
Equations Used	Consol	Temp.	Date		Time		Ini	tial	U-tu	ibe Read		Preliminary
Kt = - 0.0000757 * Sc/dT(min) * In (ho/hf)	Stage-						σ_{c}	Ub	Head	Tail	Flow	Final at 20°C
RT = (-0.02452*(ave. temp in C) + 1.495)	Trial								(cm)	(cm)	in/out	cm/sec
K @ 20 °C = RT * Kt TubeC= 1.3127	No.	° C		hr	min	sec	psi	psi	(cc)	(cc)	gradient	Dev. from Ave.
TEST SUMMARY	initial	22.5	9/4/15	09	47	00	129.9	100.0	57.00	37.70	0.88	1.40E-08
Final Specimen and Test Conditions	final	23.1	9/4/15	11	34	00			55.87	38.10		1.30E-08
$Lc = 9.905$ cm $\varepsilon_{axial} = 2.3\%$	1	RT = 0.936	dT =		107.00 n		σ' _c =	4.3 ksf	0.085	0.096	io= 24.5	
$Ac = 40.425 \text{ cm}^2$	initial	23.1	9/4/15	11	35	00	129.9	100.0	59.27	37.04	1.00	1.49E-08
$Vc = 400.43 \text{ cm}^3$ $\varepsilon_{\text{vol}} = 5.8\%$	final	23.5	9/4/15	13	29	00			57.80	37.50		1.36E-08
$Sc = 0.245 \text{ cm}^{-1} \text{ Sc} = Lc / Ac$, final	2	RT = 0.924	dT =		114.00 n	_	σ' _c =	4.3 ksf	0.110		io= 28.2	4%
	initial	23.5	9/4/15	13	30	00	129.9	100.0	59.65	36.90	0.97	1.48E-08
$w \qquad \qquad \gamma_{t} \qquad \qquad \gamma_{d} \qquad S$	final	23.5	9/4/15	15	19	00			58.22	37.36		1.35E-08
(%) (pcf) (pcf) (%)	3	RT = 0.919	dT =		109.00 n		σ' _c =	4.3 ksf	0.107		io= 28.9	2%
Initial 23.79 126.6 102.3 94.0	initial	23.5	9/4/15	15	20	00	129.9	100.0	60.00	36.78	1.02	1.37E-08
PreTest 21.79 132.2 108.6 100.0	final	23.5	9/4/15	17	38	00			58.30	37.30		1.25E-08
	4	RT = 0.919	dT =	,	138.00 n	nin	σ' _c =	4.3 ksf	0.127	0.125	io= 29.5	-5%
HYDRAULIC CONDUCTIVITY SUMMARY	initial											
Averages for trials: 1-4	final											
ave K @ 20 °C: 1.31E-08 cm/sec	5		dT =	ı		1	σ' _c =					
(i_0) ave = 27.8	initial									ļ	_	
	final						<u> </u>					
Tested By: BB Reviewed By: G. Thomas	6		dT =				σ' _c =					

PERM	EABILIT	Y TEST: FA	LLING HEA	D - CO	NSTAN	T VOLUN	IE U-TL	JBE				
			TM D 5084 -	Metho	d F							
Project No.: T60428794			BAL-B008								Test No.:	P10595
Project Name: Dynegy CCR - Baldwin		SAMPLE:	ST-1B			DEF	PTH (ft):	10.8				
Specimen - Apparatus set-up - Test Information		Cell No.	С		Appai	ratus No.	2		Stage No.:			
Preliminary Length/Area Calculations	1) Spe	cimen Teste	d in :	X	Triaxial	Cell or		Compa	ction Mold	or		_
Lo = 3.985 in Lo= 10.121 cm				Х	with sto	ones or		Stones	with filter p	aper or		top + bottom
dLc= 0.010 in Ao = 41.87 cm^2	, ,	cimen orienta		X	Vertica				tal permea	ability de	terminatio	<u>n</u>
Lc= 3.975 in Vo = 423.74 cm ³	3) Dur	ing saturatio	n: Water flu	shed up	sides o	of specim	en to rei	move air	X	No		Yes
Lc= 10.095 cm	4) Dur	ing consolida	ation:	Х	Top an	d bottom	drainag	e or		Top		Bottom only
$dVc = 3 Vo * (dLc/Lo)$ $dVc = 3.19 cm^3$	5) Dire	ction of perm	eant:	Х	Up duri	ing or		Down d	uring perm	neation		
$Vc = 420.55 \text{ cm}^3$	6) Per	meant: water	used	Х	Тар			Distilled	I			
$Sc = 0.242 \text{ cm}^{-1}$ Ac= 41.657 cm ²	or				Demine	eralized		0.005 N	l calcium s	ulfate (C	CaSO4)	Permeability
Equations Used	Consol	Temp.	Date		Time		Ini	tial	U-tu	ibe Read	ding	Preliminary
Kt = - 0.0000746 * Sc/dT(min) * In (ho/hf)	Stage-						σ_{c}	Ub	Head	Tail	Flow	Final at 20°C
RT = (-0.02452*(ave. temp in C) + 1.495)	Trial								(cm)	(cm)	in/out	cm/sec
K @ 20 °C = RT * Kt TubeC= 1.3214	No.	° C		hr	min	sec	psi	psi	(cc)	(cc)	gradient	Dev. from Ave.
TEST SUMMARY	initial	22.3	10/3/15	15	11	00	105.0	100.0	58.00	43.50	1.16	6.53E-09
Final Specimen and Test Conditions	final	22.0	10/4/15	09	33	00			54.40	44.50		6.21E-09
$Lc = 10.095$ cm $\varepsilon_{axial} = 0.3\%$	6	RT = 0.952	dT =	1	102.00	min	$\sigma'_{c} =$	0.7 ksf	0.268	0.231	io= 18.1	
$Ac = 41.674 \text{ cm}^2$	initial	22.0	10/4/15	09	38	00	105.0	100.0	58.20	43.40	1.07	5.75E-09
$Vc = 420.72 \text{ cm}^3 \qquad \epsilon_{Vol} = 0.7\%$	final	23.6	10/4/15	14	32	00			57.20	43.70		5.38E-09
$Sc = 0.242 \text{ cm}^{-1} Sc = Lc / Ac$, final	7	RT = 0.936	dT =		294.00 n	nin	σ' _c =	0.7 ksf	0.074	0.069	io= 18.4	
	initial	23.6	10/4/15	14	36	00	105.0	100.0	58.15	43.50	1.61	5.39E-09
w γ_{τ} γ_{d} S	final	24.2	10/4/15	17	11	00			57.65	43.60		4.89E-09
(%) (pcf) (pcf) (%)	8	RT = 0.909	dT =		155.00 n	nin	σ' _c =	0.7 ksf	0.037	0.023	io= 18.2	-11%
Initial 23.07 127.5 103.6 94.9	initial	24.2	10/4/15	17	11	00	105.0	100.0	57.65	43.60	0.95	5.89E-09
PreTest 23.87 129.2 104.3 100.0	final	22.6	10/5/15	80	49	00			54.85	44.55		5.43E-09
	9	RT = 0.921	dT =	(938.00 n	nin	σ' _c =	0.7 ksf	0.208	0.220	io= 17.5	-1%
HYDRAULIC CONDUCTIVITY SUMMARY	initial											
Averages for trials: 6-9	final											
ave K @ 20 °C: 5.48E-09 cm/sec	10		dT =				$\sigma'_c =$					
(i_o) ave = 18.1	initial											
	final											
Tested By: BB Reviewed By: G. Thomas	11		dT =				$\sigma'_c =$					

PERM	EABILIT	Y TEST: FA	LLING HEA	D - CO	NSTAN	T VOLUN	IE U-TL	IBE				
			TM D 5084 -	Metho	d F							
Project No.: T60428794			BAL-B010								Test No.:	P10578
Project Name: Dynegy CCR - Baldwin		SAMPLE:	ST-2B				PTH (ft):					
Specimen - Apparatus set-up - Test Information		Cell No.	В			ratus No.	2		Stage No.:			
Preliminary Length/Area Calculations	1) Spe	cimen Teste	d in :	Х	Triaxial	l Cell or			ction Mold			_
Lo = 4.006 in Lo= 10.174 cm				X	with sto			4	with filter p			top + bottom
dLc= 0.057 in Ao = 42.20 cm^2		cimen orienta		X	Vertica				tal permea	ability de	terminatio	n -
Lc= 3.949 in Vo = 429.34 cm ³	,	ing saturatio		shed up	-	•			X	No		Yes
Lc= 10.029 cm	,	ing consolida		X	Top an	d bottom	drainag			Top		Bottom only
$dVc = 3 Vo * (dLc/Lo)$ $dVc = 18.33 cm^3$,	ction of perm		Х	Up duri	ing or		4	uring perm	neation		
$Vc = 411.01 \text{ cm}^3$	6) Per	meant: water	used	X	Тар			Distilled				
$Sc = 0.245 \text{ cm}^{-1}$ Ac= 40.980 cm^{2}	or				Demine	eralized		0.005 N	calcium s	ulfate (C	CaSO4)	Permeability
Equations Used	Consol	Temp.	Date		Time		Ini	tial	U-tu	be Read	ding	Preliminary
Kt = - 0.0000746 * Sc/dT(min) * In (ho/hf)	Stage-						σ_{c}	Ub	Head	Tail	Flow	Final at 20°C
RT = (-0.02452*(ave. temp in C) + 1.495)	Trial								(cm)	(cm)	in/out	cm/sec
K @ 20 °C = RT * Kt TubeC= 1.3214	No.	° C		hr	min	sec	psi	psi	(cc)	(cc)	gradient	Dev. from Ave.
TEST SUMMARY	initial	23.1	9/8/15	11	02	00	117.6	100.0	56.00	44.13	1.01	2.66E-06
Final Specimen and Test Conditions	final	23.1	9/8/15	11	15	00			48.37	46.55		2.44E-06
$Lc = 10.029$ cm $\varepsilon_{axial} = 1.4\%$	1	RT = 0.929	dT =		13.00 m		σ' _c =	2.5 ksf	0.568	0.560	io= 14.9	0%
$Ac = 41.453 \text{ cm}^2$	initial	23.1	9/8/15	11	16	00	117.6	100.0	56.00	44.13	0.99	2.85E-06
$Vc = 415.75 \text{ cm}^3 \qquad \epsilon_{vol} = 3.2\%$	final	23.2	9/8/15	11	31	00			47.88	46.77		2.62E-06
$Sc = 0.242 \text{ cm}^{-1} \text{ Sc} = Lc / Ac$, final	2	RT = 0.927	dT =		15.00 m	in	σ' _c =	2.5 ksf	0.604	0.611	io= 14.9	7%
	initial	23.2	9/8/15	11	32	00	117.6	100.0	56.00	44.13	1.01	2.76E-06
w γ_{τ} γ_{d} S	final	23.2	9/8/15	11	40	00			49.70	46.13		2.53E-06
(%) (pcf) (pcf) (%)	3	RT = 0.926	dT =		8.00 mi	in	σ' _c =	2.5 ksf	0.469	0.463	io= 14.9	4%
Initial 22.15 124.2 101.7 88.4	initial	23.2	9/8/15	11	41	00	117.6	100.0	56.00	44.13	1.01	2.38E-06
PreTest 23.11 129.2 105.0 100.0	final	23.2	9/8/15	12	02	00			47.60	46.80		2.18E-06
	4	RT = 0.926	dT =		21.00 m	nin	$\sigma'_{c} =$	2.5 ksf	0.625	0.618	io= 14.9	-11%
HYDRAULIC CONDUCTIVITY SUMMARY	initial]	
Averages for trials: 1-4	final										<u> </u>	
ave K @ 20 °C: 2.44E-06 cm/sec	5		dT =				$\sigma'_{c} =$					
(i_0) ave = 14.9	initial]	
	final										<u> </u>	
Tested By: BB Reviewed By: G. Thomas	6		dT =				$\sigma'_c =$					

PERM	EABILIT	Y TEST: FA	LLING HEA	D - CO	NSTAN	T VOLUN	IE U-TL	BE				
			TM D 5084 -	Metho	d F							
Project No.: T60428794			BAL-B011								Test No.:	P10594
Project Name: Dynegy CCR - Baldwin		SAMPLE:	ST-1A			DEF	PTH (ft):	15.2				
Specimen - Apparatus set-up - Test Information		Cell No.	D		Appai	ratus No.	1		Stage No.:			
Preliminary Length/Area Calculations	1) Spe	cimen Teste	d in :	x	Triaxial	Cell or		Compa	ction Mold	or		_
Lo = 3.998 in Lo= 10.155 cm				х	with sto	ones or		Stones	with filter p	paper or		top + bottom
dLc= 0.017 in Ao = 42.08 cm^2	, ,	cimen orienta		X	Vertica				tal permea	ability de	terminatio	<u>n</u>
Lc= 3.981 in Vo = 427.34 cm ³	3) Dur	ing saturatio	n: Water flu	shed up	•	•			X	No		Yes
Lc= 10.112 cm	4) Dur	ing consolida	ation:	x	Top an	d bottom	drainag	e or		Top		Bottom only
$dVc = 3 Vo * (dLc/Lo)$ $dVc = 5.45 cm^3$	5) Dire	ction of perm	eant :	x	Up duri	ing or		Down d	uring perm	neation		
$Vc = 421.89 \text{ cm}^3$	6) Per	meant: water	used	Х	Тар			Distilled				
$Sc = 0.242 \text{ cm}^{-1}$ $Ac = 41.722 \text{ cm}^{2}$	or				Demine	eralized		0.005 N	calcium s	ulfate (C	CaSO4)	Permeability
Equations Used	Consol	Temp.	Date		Time		Ini	tial	U-tu	ibe Read	ding	Preliminary
Kt = - 0.0000757 * Sc/dT(min) * In (ho/hf)	Stage-						σ_{c}	Ub	Head	Tail	Flow	Final at 20°C
RT = (-0.02452*(ave. temp in C) + 1.495)	Trial								(cm)	(cm)	in/out	cm/sec
K @ 20 °C = RT * Kt TubeC= 1.3127	No.	° C		hr	min	sec	psi	psi	(cc)	(cc)	gradient	Dev. from Ave.
TEST SUMMARY	initial	23.7	10/1/15	17	22	00	105.0	100.0	56.45	37.90	0.95	2.70E-09
Final Specimen and Test Conditions	final	21.9	10/2/15	09	04	49			54.62	38.50		2.54E-09
$Lc = 10.112$ cm $\varepsilon_{axial} = 0.4\%$	5	RT = 0.936		(942.82 n	nin	$\sigma'_{c} =$	0.7 ksf	0.137		io= 23.1	
$Ac = 41.467 \text{ cm}^2$	initial	22.5	10/2/15	15	34	00	105.0	100.0	57.61	37.55	1.10	2.25E-09
$Vc = 419.30 \text{ cm}^3 \qquad \epsilon_{Vol} = 1.9\%$	final	22.0	10/3/15	11	47	00			55.50	38.15		2.15E-09
$Sc = 0.244 \text{ cm}^{-1} Sc = Lc / Ac$, final	6	RT = 0.949	dT =		213.00	min	σ' _c =	0.7 ksf	0.158		io= 24.9	18%
	initial	22.0	10/3/15	12	05	00	105.0	100.0	57.00	37.75	1.09	1.43E-09
w γ_{τ} γ_{d} S	final	22.0	10/4/15	09	35	00			55.60	38.15		1.37E-09
(%) (pcf) (pcf) (%)	7	RT = 0.956	dT =	1	290.00	min	σ' _c =	0.7 ksf	0.105	0.096	io= 23.9	-25%
Initial 25.83 123.3 98.0 94.5	initial	22.0	10/4/15	09	40	00	105.0	100.0	56.30	37.95	1.02	1.28E-09
PreTest 26.15 126.0 99.9 100.0	final	22.2	10/5/15	80	54	00			55.00	38.35		1.23E-09
	8	RT = 0.953	dT =	1	394.00	min	σ' _c =	0.7 ksf	0.097	0.096	io= 22.8	-32%
HYDRAULIC CONDUCTIVITY SUMMARY	initial											
Averages for trials: 5-8	final											
ave K @ 20 °C: 1.82E-09 cm/sec	9		dT =				$\sigma'_{c} =$					
(i_0) ave = 23.7	initial											
	final											
Tested By: BB Reviewed By: G. Thomas	10		dT =				$\sigma'_c =$					

PERM	EABILIT	Y TEST: FA	LLING HEA	D - CO	NSTAN	T VOLUI	/IE U-TU	IBE				
			TM D 5084 -	Metho	d F							
Project No.: T60440739		•	BAL-B017								Test No.:	T3922
Project Name: Dynegy CCR - Baldwin		Sample:	ST-2B				Depth:					
Specimen - Apparatus set-up - Test Information	_	Cell No.	H-6		Appai	ratus No.	1		Stage No.:			
Preliminary Length/Area Calculations	1) Spe	cimen Teste	d in :	X	Triaxial	Cell or		Compa	ction Mold	or		_
Lo = 5.975 in Lo= 15.178 cm				Х	with sto	ones or		Stones	with filter p	aper or		top + bottom
dLc= 0.064 in Ao = 41.79 cm^2		cimen orienta		X	Vertica				tal permea	ability de	terminatio	<u>p</u> n
Lc= 5.911 in Vo = 634.27 cm ³	3) Dur	ing saturation	n: Water flu	shed up	sides o	of specim	en to rei	nove air	X	No		Yes
Lc= 15.015 cm	4) Dur	ing consolida	ation:	Х	Top an	d bottom	drainag	e or		Top		Bottom only
dVc = 3 Vo * (dLc/Lo) $dVc = 20.38 cm3$	5) Dire	ction of perm	eant:	Х	Up duri	ing or		Down d	uring perm	neation		
$Vc = 613.89 \text{ cm}^3$	6) Per	meant: water	used	Х	Тар			Distilled	I			
$Sc = 0.367 \text{ cm}^{-1}$ $Ac = 40.885 \text{ cm}^{2}$	or				Demine	eralized		0.005 N	l calcium s	ulfate (C	CaSO4)	Permeability
Equations Used	Consol	Temp.	Date		Time		Ini	tial	U-tu	be Read	ding	Preliminary
Kt = - 0.0000757 * Sc/dT(min) * In (ho/hf)	Stage-						σ_{c}	Ub	Head	Tail	Flow	Final at 20°C
RT = (-0.02452*(ave. temp in C) + 1.495)	Trial								(cm)	(cm)	in/out	cm/sec
K @ 20 °C = RT * Kt TubeC= 1.3127	No.	° C		hr	min	sec	psi	psi	(cc)	(cc)	gradient	Dev. from Ave.
TEST SUMMARY	initial	22.5	10/13/15	09	21	00	116.7	100.0	61.98	36.20	0.99	2.38E-08
Final Specimen and Test Conditions	final	22.5	10/13/15	13	38	00			58.10	37.42		2.21E-08
$Lc = 15.015$ cm $\varepsilon_{axial} = 1.1\%$	1	RT = 0.943	dT =	_	257.00 n		σ' _c =	2.4 ksf	0.291	0.292	io= 21.6	30%
$Ac = 41.570 \text{ cm}^2$	initial	22.5	10/13/15	13	40	00	116.7	100.0	61.78	36.30	1.05	2.05E-08
$Vc = 624.17 \text{ cm}^3 \qquad \epsilon_{Vol} = 1.6\%$	final	22.9	10/13/15	18	03	00			58.35	37.32		1.90E-08
$Sc = 0.361 \text{ cm}^{-1} \text{ Sc} = Lc / Ac$, final	2	RT = 0.939	dT =	2	263.00 n	nin	σ' _c =	2.4 ksf	0.257	0.244	io= 21.3	11%
	initial	22.9	10/13/15	18	12	00	116.7	100.0	61.48	36.35	1.00	1.74E-08
W γ_{τ} γ_{d} S	final	22.4	10/14/15	09	00	00			53.30	38.91		1.61E-08
(%) (pcf) (pcf) (%)	3	RT = 0.940	dT =		388.00 n	nin	σ' _c =	2.4 ksf	0.613	0.613	io= 21.0	-5%
Initial 23.51 124.5 100.8 95.4	initial	22.4	10/14/15	09	02	00	116.7	100.0	61.55	36.35	0.97	1.74E-08
PreTest 23.66 126.6 102.4 100.0	final	24.0	10/14/15	12	31	00			59.20	37.11		1.58E-08
	4	RT = 0.926	dT =		209.00 n	_	σ' _c =	2.4 ksf	0.176	0.182	io= 21.1	-7%
HYDRAULIC CONDUCTIVITY SUMMARY	initial	24.0	10/14/15	12	37	00	116.7	100.0	62.20	36.18	1.07	1.90E-08
Averages for trials: 2-5	final	22.9	10/14/15	15	37	00			59.90	36.85	<u> </u>	1.72E-08
ave K @ 20 °C: 1.70E-08 cm/sec	5	RT = 0.920	dT =		180.00 n	nin	σ' _c =	2.4 ksf	0.172	0.161	io= 21.8	1%
(i_o) ave = 21.3	initial]]	
	final										<u> </u>	
Tested By: BB Reviewed By: GET	6		dT =				$\sigma'_c =$					

PERMEABILITY TEST: FALLING HEAD - CONSTANT VOLUME U-TUBE														
ASTM D 5084 - Method F														
Project No.: T60428794		BORING: BAL-B027					Test No.: P10596							
Project Name: Dynegy CCR - Baldwin		SAMPLE: ST-1D				DEPTH (ft): 26.9								
Specimen - Apparatus set-up - Test Information			Apparatus No. 3 Stage No.: 4											
Preliminary Length/Area Calculations	1) Spe	cimen Teste	d in :	X	Triaxial	Cell or			ction Mold			_		
Lo = 3.986 in Lo= 10.125 cm				Х	with sto	ones or		Stones	with filter p	aper or	-			
dLc= 0.018 in Ao = 41.55 cm^2		cimen orienta		X	Vertica				<u> </u>	ability de	etermination			
Lc= 3.968 in Vo = 420.72 cm ³	,	ing saturation		shed up	7	•		emove air x No				Yes		
Lc= 10.079 cm	,	ing consolida		Х	Top an	d bottom	drainag			Top		Bottom only		
$dVc = 3 Vo * (dLc/Lo)$ $dVc = 5.70 cm^3$,	ction of perm		Х	Up duri	ing or		Down during permeation						
$Vc = 415.02 \text{ cm}^3$	6) Per	meant: water	used	X	Тар			Distilled						
$Sc = 0.245 \text{ cm}^{-1}$ Ac= 41.176 cm ²	or				Demine	eralized		0.005 N	calcium s	ulfate (C	CaSO4)	Permeability		
Equations Used	Consol	Temp.	Date		Time		lni	tial		be Read	ding	Preliminary		
Kt = - 0.0000755 * Sc/dT(min) * In (ho/hf)	Stage-						σ_{c}	Ub	Head	Tail	Flow	Final at 20°C		
, , , , , , , , , , , , , , , , , , , ,	RT = (-0.02452*(ave. temp in C) + 1.495)								(cm)	(cm)	in/out	cm/sec		
K @ 20 °C = RT * Kt TubeC= 1.3132	No.	° C		hr	min	sec	psi	psi	(cc)	(cc)	gradient	Dev. from Ave.		
TEST SUMMARY	initial	22.9	10/5/15	11	34	00	121.5	100.0	65.60	46.90	1.05	9.40E-09		
Final Specimen and Test Conditions	final	22.7	10/5/15	16	07	27			63.75	47.45		8.86E-09		
$Lc = 10.079 \text{ cm}$ $\epsilon_{axial} = 0.5\%$	1	RT = 0.936	dT =		273.45 n		σ' _c =	3.1 ksf	0.138	0.131	io= 23.3	79%		
$Ac = 40.862 \text{ cm}^2$	initial	22.7	10/5/15	16	43	00	121.5	100.0	65.65	46.85	0.27	7.28E-09		
$Vc = 411.86 \text{ cm}^3$ $\varepsilon_{vol} = 2.1\%$	final	23.5	10/5/15	18	22	26			65.10	47.50		6.81E-09		
$Sc = 0.247 \text{ cm}^{-1} \text{ Sc} = Lc / Ac$, final	2	RT = 0.929	dT =		99.43 m	_	σ' _c =	3.1 ksf	0.041	0.155	io= 23.4	37%		
	initial	23.5	10/5/15	18	24	00	121.5	100.0	66.40	46.65	1.01	5.93E-09		
w γ_{τ} γ_{d} S	final	22.2	10/6/15	09	03	00			62.70	47.80		5.59E-09		
(%) (pcf) (pcf) (%)	3	RT = 0.935	dT =		379.00 n		σ' _c =	3.1 ksf	0.277	0.274	io= 24.6	13%		
Initial 21.16 127.7 105.4 90.0	initial	22.2	10/6/15	09	07	00	121.5	100.0	65.85	46.80	1.01	5.07E-09		
PreTest 22.27 131.6 107.7 100.0	final	22.5	10/7/15	80	41	12			61.18	48.25		4.84E-09		
	4	RT = 0.947	dT =		414.20	_	σ' _c =	3.1 ksf	0.349	0.346	io= 23.8	-2%		
HYDRAULIC CONDUCTIVITY SUMMARY	initial	22.6	10/7/15	80	57	00	121.5	100.0	65.58	46.85	1.04	5.18E-09		
Averages for trials: 3-6	final	22.8	10/7/15	17	04	00			63.76	47.40		4.90E-09		
ave K @ 20 °C: 4.95E-09 cm/sec	5	RT = 0.938	dT =		187.00 n		σ'c=	3.1 ksf	0.136	0.131	io= 23.4	-1%		
(i_o) ave = 23.0	initial	22.8	10/7/15	17 09	04	00	121.5	100.0	63.76	47.40	0.94	4.76E-09		
	final 22.8 10/8/15				16	. 00			61.00	48.32	 	4.49E-09		
Tested By: BB Reviewed By: G. Thomas	6	RT = 0.936	dT =	(972.00 n	nın	σ' _c =	3.1 ksf	0.206	0.220	io= 20.4	-9%		

APPENDIX C BORING LOGS AND WELL DETAILS

APPENDIX C1 MW 100 SERIES BORING LOGS AND WELL DETAILS

KELRON ENVIRONMENTAL LOG OF BORING MW-104SR **INCORPORATED** (Page 1 of 1) Ash Pond System Monitoring Well Network Date Completed : 07/26/11 Driller : Matt Cooper Hole Diameter : 7 3/4"OD; 3 3/4" ID : Stu Cravens (Kelron) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 452.52 Location: Twp 04S, Rng 07W, 10 SE, SE, SE Sampling Method : MacroCore (60") Top of Casing Elevation 455.54 **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2386609, 554205 Well: MW-104SR GRAPHIC Samples Elev.: 455.54 Depth Surf. Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF 452.52 Feet Cover 0 Continuous boring - no soil sampling conducted Concrete Refer to boring log for adjacent nested well MW-104DR for a description of subsurface materials Seal Bentonite Chips 450 Riser (Sch 40 PVC) 5 445 Screen (10 Slot) c:\powerp~1\baldwin\ashmon~1\bec104sr.bor 10 (Slotted screen interval = 9.40 ft) Filter Pack 440 - groundwater level at completion = 14.06' bls 08-12-2011 END BOREHOLE AT 15 FEET BLS **Bottom Cap** 15

KELRON LOG OF BORING MW-104DR **ENVIRONMENTAL** INCORPORATED (Page 1 of 2) Ash Pond System Monitoring Well Network Date Completed : 07/25/11 Driller : Matt Cooper Hole Diameter : 7 3/4"OD; 3 3/4" ID **Baldwin Energy Complex** Geologist : Stu Cravens (Kelron) Dynegy Midwest Generation, Inc. **Drilling Method** Land Surface Elevation: 452.62 : Hollow-Stem (CME-550) Location: Twp 04S, Rng 07W, 10 SE, SE, SE Top of Casing Elevation 455.62 Sampling Method : MacroCore (60") **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2386609, 554201 Well: MW-104DR GRAPHIC Elev.: 455.62 Depth Surf Samples Recovery inches Qp JSCS in **DESCRIPTION** Elev. TSF 452.62 Feet Cover SILTY CLAY, trace sand, med plasticity, organics and Concrete roots, dry hard, light gray (Gley1-7/1) with brown mottling (Fe-oxidation) (10YR 3/1), dry 2 3 60/60 3.5 450 CL - moist 4 2.5 5 2.5 5 6 2.5 CLAY (Fat) with Silt, high plasticity, soft to very soft, 7 2.5 high organics and roots, dark gray grading to gray with brown mottling, moist 8 60/60 445 - groundwater level at completion = 8.03' bls 9 10 CH - medium hardness 10 11 1.75 12 2.25 - light gray (GLEY1-7/1) with yellow-brown Fe-oxid mottling (10%) Riser (Sch 40 PVC) 13 60/60 2.25 440 14 3.0 CLAY (lean) with Silt, medium plasticity, light gray with Seal CL 15 yellow-brown mottling (10%) Bentonite Chips 2.5 15 CLAY with Silt, trace sand and fine gravel, high 16 3.75 plasticity, medium to stiff, light gray with brown mottling 17 (20%) 2.75 18 60/60 3.5 435 19 3.5 CH 20 3 20 c:\powerp~1\baldwin\ashmon~1\bec104dr.bo - trace sand and gravel, medium to high plasticity, 21 3 medium to stiff hardness, mottling 25 to 50% 22 2.5 23 60/60 2.5 430 24 2.5 SANDY FAT CLAY, fine sand, trace fine gravel, high CH plasticity, greenish gray (GLEY-6/1), moist 25 2.5 25 SAND (fine to medium), trace gravel, poorly graded, 26 light gray, wet - brown Screen (10 Slot) SP (Slotted screen interval = 4.52 ft) 27 2.5 Filter Pack 28 425 60/60 SILTY CLAY, trace sand and gravel (angular), medium plasticity, very stiff, olive brown (2.5Y 4/4) with light 08-12-2011 **Bottom Cap** 29 4.0 CL gray mottling <20%, moist (TILL) 30 4.5 30

KELRON LOG OF BORING MW-104DR ENVIRONMENTAL INCORPORATED (Page 2 of 2) Date Completed : 07/25/11 Driller Ash Pond System Monitoring Well Network : Matt Cooper Hole Diameter : 7 3/4"OD; 3 3/4" ID Geologist : Stu Cravens (Kelron) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 452.62 Location: Twp 04S, Rng 07W, 10 SE, SE, SE Sampling Method : MacroCore (60") Top of Casing Elevation 455.62 **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2386609, 554201 Well: MW-104DR GRAPHIC Samples Elev.: 455.62 Depth Surf. Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF Feet 452.62 30 CL SHALE, highly weathered; Clay with Silt, platy /laminated, medium to high plasticity, very stiff, moist 31 3.0 32 33 60/60 SH 420 34 3.5 - unweathered, light gray, fissile, dry 35 35 **END BOREHOLE AT 35 FEET BLS** - 415 40 - 410 45 - 405 c:\powerp~1\baldwin\ashmon~1\bec104dr.bor 50 - 400 55 - 395 08-12-2011

60

KELRON ENVIRONMENTAL LOG OF BORING MW-150 **INCORPORATED** (Page 1 of 1) Date Completed : 09/08/2010 Driller Ash Pond System Monitoring Well Network : Matt Cooper Hole Diameter : 8 1/2"OD; 4 1/4" ID Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 393.84 Location: Twp 04S, Rng 07W, 16 SE, NW, NE Sampling Method : MacroCore (60") Top of Casing Elevation 396.54 **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2379413, 554563 Well: MW-150 GRAPHIC Samples Elev.: 396.54 Depth Surf. Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF Feet 393.84 Cover 0 Continous boring - no soil sampling conducted. Concrete 393 Refer to boring log for adjacent nested well MW-350 for a description of subsurface materials 5 388 Seal Bentonite Chips Riser (Sch 40 PVC) 10 383 15 378 Filter Pack c:\powerp~1\baldwin\ashmon~1\bec150~1.bor 20 373 Screen (pre-pack) END BOREHOLE AT 25.2 FEET BLS 25 **Bottom Cap** - 368 01-14-2011 30

KELRON **LOG OF BORING MW-151 ENVIRONMENTAL INCORPORATED** (Page 1 of 1) Ash Pond System Monitoring Well Network Date Completed : 09/21/2010 Driller : Matt Cooper Hole Diameter : Brendon Wilder (PSC) **Baldwin Energy Complex** : 8 1/2"OD; 4 1/4" ID Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 397.22 Location: Twp 04S, Rng 07W, 16 SE, NE, NE : MacroCore (60") Top of Casing Elevation 399.96 Sampling Method **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2381171, 554221 Well: MW-151 GRAPHIC Elev.: 399.96 Depth Surf Samples Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF 397.22 Feet Cover SILTY CLAY, light brown, dry 397 31/48 Concrete 2 1.5 CL 3 1.0 Seal Bentonite Chips 4 1.5 5 32/60 SANDY CLAY, dark gray (10YR 4/1) Riser (Sch 40 PVC) 392 6 1.0 - moist 7 0.5 - moist to wet CL 8 - very dark gray-brown; grain size analysis @7.5-8 1.0 ft: 39% sand, 41.8% silt, 19.2% clay 9 2.5 10 46/60 2.5 SILTY CLAY, yellowish-brown (10YR 5/1) 10 387 11 3.0 Screen (pre-pack) 12 2.75 CL 13 - two small light gray sandy seams 2.5 Filter Pack 14 2.75 - 2-inch layer of dusky red CLAY (10R 3/2) 15 58/60 2.5 CLAY, low plasticity, medium soft 15 382 16 2.5 - shaley, light olive brown (2.5Y 5/4) grading to **Bottom Cap** olive gray; grain size analysis @16-17 ft:: 17 3.5 c:\powerp~1\baldwin\ashmon~1\bec151~1.bor 1%sand, 28.5% silt, 70.5% clay - platy/laminated 18 2.75 CH 19 2.75 20 24/27 2.5 20 377 21 Refusal in bedrock at 21.5 feet BLS 4.5-**END BOREHOLE AT 21.5 FEET BLS** 22 LIMESTONE, no recovery Drove split-spoon to 21.75 feet BLS - no recovery 01-14-2011 25

KELRON ENVIRONMENTAL LOG OF BORING MW-152 INCORPORATED (Page 1 of 1) : 09/22/10 Ash Pond System Monitoring Well Network Date Completed Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 422.18 Location: Twp 04S, Rng 07W, 16 SE, NE, NE Sampling Method : MacroCore (60") Top of Casing Elevation 424.99 **Drilling Company** : PSC X,Y Coordinates : 2382779, 553906 Well: MW-152 GRAPHIC Samples Elev.: 424.99 Depth Surf. Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF Feet 422.18 Cover 0 422 Continuous boring - no soil sampling conducted. Concrete Refer to boring log for adjacent nested well MW-352 for a description of subsurface materials. Seal Bentonite Chips Riser (Sch 40 PVC) 5 417 10 412 Filter Pack Screen (pre-pack) c:\powerp~1\baldwin\ashmon~1\bec152~1.bor 15 407 **END BOREHOLE AT 17.7 FEET BLS Bottom Cap** 01-14-2011 20

KELRON ENVIRONMENTAL LOG OF BORING MW-153 **INCORPORATED** (Page 1 of 1) Date Completed : 09/22/2010 Ash Pond System Monitoring Well Network Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 442.77 Location: Twp 04S, Rng 07W, 15 SW, SW, NE Sampling Method : MacroCore (60") Top of Casing Elevation 445.67 **Drilling Company** : PSC X,Y Coordinates : 2384435, 553298 Well: MW-153 GRAPHIC Samples Elev.: 445.67 Depth Surf. Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF Feet 442.77 Cover 0 Continuous boring - no soil sampling conducted Concrete 442 Refer to boring log for adjacent nested well MW-253 for a description of subsurface materials Seal 5 Bentonite Chips 437 Riser (Sch 40 PVC) 10 432 -Filter Pack 15 427 Screen (pre-pack) c:\powerp~1\baldwin\ashmon~1\bec153~1.bor 20 END BOREHOLE AT 20.5 FEET BLS Bottom Cap - 422 01-14-2011 25

KELRON **LOG OF BORING MW-154 ENVIRONMENTAL INCORPORATED** (Page 1 of 1) Ash Pond System Monitoring Well Network Date Completed : 09/20/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD; 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 384.99 Location: Twp 04S, Rng 07W, 09 SW, NE, SW : MacroCore (60") Top of Casing Elevation 387.76 Sampling Method **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2377892, 557163 Well: MW-154 GRAPHIC Elev.: 387.76 Depth Surf. Samples Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF 384.99 Feet Cover 0 SILTY CLAY, hard, very dark gray (10YR 3/1), dry Concrete 384 CL 1 35/48 CLAY, black, moist Seal Bentonite Chips CH Riser (Sch 40 PVC) 5 379 2 44/60 SANDY CLAY with gravel, very stiff to hard, low plasticity, dark gray with yellow-brown mottling, dry - grain size analysis @ 8-9.2 ft: 17.4% gravel, 30.5 %sand, 18.8% silt, 33.4% clay CL Filter Pack c:\powerp~1\baldwin\ashmon~1\bec154~1.bor 10 3 24/42 374 CLAY, shaley, gray with light olive-brown mottling - grain size analysis @ 11-12 ft: 12.5% sand, 23% silt, 64.5% clay Screen (pre-pack) CH Refusal in bedrock at 12.5 feet BLS **Bottom Cap** 4 LIMESTONE Drove split-spoon to 12.75 feet BLS - 1-inch recovery END BÖREHOLE AT 12.75 FEET BLS 01-14-2011 15

KELRON ENVIRONMENTAL **LOG OF BORING MW-155 INCORPORATED** (Page 1 of 1) Ash Pond System Monitoring Well Network Date Completed : 09/10/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD; 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 390.62 Location: Twp 04S, Rng 07W, 09 SW, SE, SW Sampling Method : MacroCore (60") Top of Casing Elevation 393.55 **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2378141, 555983 Well: MW-155 GRAPHIC Elev.: 393.55 Depth Surf Samples Recovery inches Qp in **DESCRIPTION** Elev. TSF 390.62 Feet Cover SILTY CLAY, hard, reddish brown, dry 40/48 Concrete 390 2 CL 3 4 4.5 CLAY (lean), hard, low plasticity, pale brown (10YR 6/3), grading to Fat CLAY 5 53/60 5 Bentonite Chips 6 385 CL/CH 7 4.5 Riser (Sch 40 PVC) - grain size analysis @ 7 - 8 ft: 8 2.5% sand, 47.2% silt, 50.3% clay SANDY CLAY, dry 9 0.75 CL SP SAND, 4-inch seam, poorly graded, loose 10 44/60 CLAY with sand grading to SANDY CLAY, very soft, 10 11 380 12 1.5 13 CL 14 1.5 15 50/60 -Filter Pack 15 16 0.5 375 17 c:\powerp~1\baldwin\ashmon~1\bec155~1.bor Screen (pre-pack) CLAYEY SAND, poorly graded, dark yellow brown 18 1.5 - grain size analysis @ 18.5 - 19.5 ft: 19 SC 53.9 %sand, 28.1% silt, 18.0% clay 20 20 **Bottom Cap END BOREHOLE AT 20.5 FEET BLS** 370 01-14-2011 25

KELRON ENVIRONMENTAL **LOG OF BORING OW-156** Incorporated (Page 1 of 1) Date Completed : 09/10/2010 Driller : Matt Cooper Ash Pond System Monitoring Well Network **Baldwin Energy Complex** Hole Diameter : 8 1/2"OD; 4 1/4" ID Geologist : Brendon Wilder (PSC) Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 425.14 Location: Twp 04S, Rng 07W, 10 NW, NW, SW Sampling Method : MacroCore (60") Top of Casing Elevation: 427.87 **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2378141, 555983 Cover Surf. Elev.425.15 Well: OW-156 GRAPHIC Recovery inches Elev.: 427.87 Samples Depth Qp **DESCRIPTION** in TSF Feet 0 425 SILTY CLAY, stiff, medium brown, dry Concrete 32/48 2.5 2 1.5 3 3.5 Seal Bentonite Chips 1.75 5 56/60 2.0 5. - stiff to very stiff, low plasticity 420 Riser (Sch 40 PVC) 6 1.75 - dark gray-brown (10YR 3/3) with light brown mottling (10YR 6/3) 7 1.75 8 1.75 9 2.25 CL 10-CLAY (lean) with Sand, soft to medium, light brown 10 60/60 1.0 - 415 (10YR 6/3) with brown-yellow mottling (10YR 6/6), moist 1.5 11 -Filter Pack 12 1.75 13 1.75 1.5 Screen (10-slot) 15 50/60 2.25 15 - 410 16 2.0 17 2.5 **Bottom Cap** END BOREHOLE AT 17.7 FEET BLS 18 1.25 04-09-2014 19 Terminated probing with MacroCore at 19.5 feet bls 20

KELRON ENVIRONMENTAL **LOG OF BORING OW-157 INCORPORATED** (Page 1 of 1) Ash Pond System Monitoring Well Network Date Completed : 09/9/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD; 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem (CME-550) Land Surface Elevation: 432.64 Location: Twp 04S, Rng 07W, 10 SE, SW, SW Sampling Method : MacroCore (60") Top of Casing Elevation 429.90 **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2382593, 556189 Well: OW-157 GRAPHIC Samples Elev.: 432.64 Depth Surf. Recovery inches Qp **DESCRIPTION** Elev. TSF Feet 429.90 Cover 0 SILTY CLAY with Fly Ash, dark gray-brown, dry Concrete 429 CL/FL 1 48/48 Seal Bentonite Chips CLAY with Silt, hard, medium plasticity, light olive brown, moist 5 Riser (Sch 40 PVC) 424 2 60/60 СН 10 CLAY with Sand, stiff, wet 419 CL CLAY, trace to some Sand, very stiff to hard, medium Filter Pack 3 60/60 to high plasticity c:\powerp~1\baldwin\ashmon~1\bec157~1.bor Screen (10-slot) 15 CL/CH 414 60/60 **Bottom Cap END BOREHOLE AT 17.5 FEET BLS** 01-14-2011 Terminated probing with MacroCore at 19.5 feet bls 20

	KELRON ENVIRONMENTAL Incorporated		LOG OF PROBEHOLE MW-161 (Page 1 of 3)									
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: HSA (: Macro			G G C	asing (I	Elevation	: John Gates : Stuart Cravens (Kelro : 428.74 vation : 431.27 : 2379206, 557078			
Depth in Feet	DESCRIPTION	Surf. Elev. 428.74	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		MW-161 : 431.27 — Cover			
- 0	FILL - Silt with clay, organics (roots), stiff, yellowish brown (10YR 6/4), dry	, non-plastic, light		1	38/42		FL/CL			Concrete		
- - -	SILT with clay, roots, hard, brownish yello	ow (10YR 6/6)		3		>4.5 3.0	ML					
-	Silty CLAY with roots, very stiff, medium preddish-brown mottling and manganese s	plasticity, with staining, moist	- 425	4	60/60	2.0						
5- - - -	- medium hardness, medium to high p brownish gray (10YR 6/2) with mottl manganese staining	lasticity, light ing and		6		2.25	CL					
-	SILT, stiff, non-plastic, brownish yellow (1	10YR 6/6)		8		2.51.75						
-	- with clay, very soft, medium plasticity		- 420	9	60/60	1.0	ML			요한 사건 사건 사건 사건 사건 사건 사건 사건 사건 사건 사건 사건 사건		
10-	Silty CLAY, stiff to very stiff, high plasticity gray (10YR 6/2) with reddish brown and by grading to light gray, moist	y, light brownish black mottling		10		2.5	CL			─ Seal Bentonite Grout		
-	SILT, very soft, non-plastic, light brownish	n gray (10YR 6/2)		12		0.75	ML			Riser (Sch 40 PVC)		
-	Silty CLAY, stiff, medium plasticity, gray ((10YR 6/1), moist	- 415	13		2.0				100 100 100 100 100 100 100 100 100 100		
15	- soft to medium hardness, high plasti brown (10YR 5/6)	city, yellowish		15	60/60	1.5						
- -	- <25% mottling			16		1.5	CL					
- -				17		1.252.25						
-			- 410	19	60/60	2.0						

	KELRON ENVIRONMENTAL Incorporated	LOG OF PROBEHOLE MW-161 (Page 2 of 3)								61 (Page 2 of 3)			
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/21/ : 8 1/2" : HSA (: Macro	OD / 4 CME- Core	55LC) (60")		Ge Gi Ca	riller eologis round E asing (I Y Coor	levatic ИР) Еlе	on evati	: John Gates : Stuart Cravens (Kelron : 428.74 vation : 431.27		
Depth in Feet	DESCRIPTION		Surf. Elev. 428.74	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC			IW-161 31.27		
20-				20		1.0	CL						
-	SILT with clay, stiff, low plasticity, browr	nish yellow (10YR	-	21		2.0					—Seal Bentonite Chips		
-	6/8)			22		2.0	ML			4	3p3		
-	- soft, yellowish brown (10YR 5/4), w Silty CLAY, stiff, low to medium plasticit		-										
-	(10YR 6/3) with reddish-brown mottling,	40-	23		1.0					Riser (Sch 40 PVC)			
-	- soft to very soft, high plasticity, light - brown (10YR 5/3) with <10% reddis	-	- 405	24	60/60	0.75							
25				25									
-				26			CL						
-													
_	- with fine sand			27		1.0					Filter Pack		
-				28							Screen 2"ID, 9.45' open		
-	SAND with Silt, fine grained, gray-browr	n, wet	- 400	29	53/60						,		
30-				30									
JU -							SP/SM						
-	<sample 31.5-32.5'="" @="" mc161-32=""> grain size analysis: 89.8% Sand, 10</sample>	0.2% Silt		31									
-		· ····		32									
-	- pale green (Gley1 5G 6/2) CLAY (lean), trace fine-medium sand, h	ard, low plasticity,		33		3.0					─Bottom Cap		
-	greenish-gray (10GY 5/1), moist [TILL] - medium to stiff, medium to high pla	sticity	- 395	34	60/60	2.5			L		··· •~p		
-													
35 [—]				35		1.25							
-				36		1.5	CL						
_				37		1.75					—Seal		
-				38		3.0					Bentonite Chips		
-	- trace sand, stiff to hard		- 390										
-	1			39	44/60	2.0							

	KELRON ENVIRONMENTAL Incorporated		LO	G O	F PI	ROE	BEHC	DLE	MW-161 (Page 3 of 3)				
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Hole Diameter : 8 1/2" OD / 4 1/4" ID						asing (: John Gates : Stuart Cravens (Kelron) : 428.74			
Depth in Feet	DESCRIPTION		Surf. Elev. 428.74	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: MV Elev.: 43				
40 —	Sandy SILT, medium hardness, non-plate Silty CLAY with shale and fine-coarse limit (rounded to sub-rounded up to 1.5"), still greenish gray (Gley1 10Y 5/1) SHALE, laminated, hard, weathered (to 44.3' bls) END BOREHOLE AT 44.7 FEET BLS Refusal of Macrocore and Auger on top bedrock	mestone gravel ff to very stiff, p of bedrock =	- 385	40 41 42 43 44	14/14	1.5 2.0 1.5 2.0	CL ML CL SH			[−] Seal Bentonite Chips			
50—			- 380										
 55 - - - -			- 375										
- - - 60			- 370										

	KELRON ENVIRONMENTAL Incorporated	LOG OF PROBEHOLE MW-162 (Page 1 of 2)									
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	lole Diameter : 8 1/2" OD / 4 1/4" ID Geologist rilling Method : HSA (CME-55LC) Ground El ampling Method : MacroCore (60") Casing (M							: John Gates : Stuart Cravens (Kelro : 430.83 ation : 433.20 : 2379193, 555725	
Depth in Feet	DESCRIPTION		Surf. Elev. 430.83	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		MW-162 433.20 ∕— Cover	
0-	Continous Boring - no soil sampling con Descriptions of subsurface materials on adjacent boring log for well MW-262.	ducted. this log are from	430							Concrete	
-	Silty Clay with gravel, roots, stiff, non-pl (10YR 6/3), dry	astic, pale brown									
-	- brownish yellow (10YR 6/6), moist										
5	- medium stiff, high plasticity		- 425				CL			Seal Bentonite Grout	
10-	SILT, very soft, non-plastic, light yellowi 6/4), moist [LOESS] - clayey, soft to medium hardness, lo plasticity	·	- 420							Riser (Sch 40 PVC)	
- - - - -	- soft, yellowish brown (10YR 5/4)						ML			—Seal Bentonite Chips	
_	- non-plastic									Filter Pack	

	KELRON ENVIRONMENTAL Incorporated		LOC	j ()	F PI	ROE	BEHC)LE	MW-162 (Page 2 of 2)
Phase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.		Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/20 : 8 1/2" : HSA (: Macro	OD / 4 (CME-5 oCore (55LC) 60")		G G	asing (I	: John Gates st : Stuart Cravens (Kelro Elevation : 430.83 MP) Elevation : 433.20 rdinates : 2379193, 555725
Depth in Feet	DESCRIPTION		Surf. Elev. 430.83	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: MW-162 Elev.: 433.20
15 — - -			- 415				ML		Riser (Sch 40 PVC)
-	Sandy CLAY (lean), medium hardness, plasticity, yellowish brown, moist	low to medium					CL		
- 20- - - -	SILT, very soft, non-plastic, brownish ye moist	ellow (10YR 6/6),	- 410				ML		Filter Pack Screen 2"ID; 9.45' open
- - - - 25-	Silty CLAY, very soft, low plasticity - medium plasticity, wet						CL		
- - - -	END BOREHOLE AT 25.9 feet BLS		405						Bottom Cap
-									

APPENDIX C2 PZ 100 SERIES BORING LOGS AND WELL DETAILS

SOIL BORING LOG INFORMATION

Facilit	y/Projec	t Nan	ne		License/	Permit/	Monitor	ing Nu	mber		Boring	Numb		OI	3			
	dwin E										_	PZ-1						
	-	-	Name o	f crew chief (first, last) and Firm	Date Dri	lling St	arted		Da	te Drilli	ng Con	npleted			ling Me			
	d Dutt					7/27	/2015			,	7/20/2	0015			ollow s	tem		
Bul	ldog D	riiir	ıg	Common Well Name	7/27/2015 Final Static Water Level Surfac					7/28/2015 Face Elevation B					auger Borehole Diameter			
				PZ-169		Feet (NAVD88) 420.01 Feet (NAVD88)								8.3 inches				
	Grid Or			stimated:) or Boring Location	1	•				Local C			,,,					
State				7 N, 2,381,764.94 E	La	t		49.00					Ν			\square E		
E 117	1/4	of		/4 of Section , T N, R	Long			12.9		7'11	Fe	et [S		Feet	□W		
Facilit	y ID			-	State Illinois		Civil To Baldw		ty/ or v	/illage								
Sar	nple		Τ	Kandoipii	11111015		Daluv	VIII			Soil	Prop	erties					
	1		l	Soil/Rock Description							5011	Пор			1			
	tt. & d (in	ınts	Feet	And Geologic Origin For						ive (tsf)						S		
er ype	th A	C_{O}	l l	Each Major Unit		CS	nic	am		gth (bure ent	7	city	_		nen		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Office		OS O	Graphic Log	Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	200		Comments		
1 1	24		- 4	☐ 0 - 0.2' SILT: ML, dark grayish brown (10YR	4/2), /-	<u> </u>				O S	20	1 1	<u> </u>	Ъ	~			
ss	15.5	4 9 10 11		trace roots and clay, very soft (<0.25 tsf), dry	·	, WL												
ΙÅ			-1	0.2 - 2' SILTY CLAY CL/ML, brown (10YR 5, cohesive, nonplastic to low plasticity, dry.	/3),	CL/ML		X X										
L			_2	L		L												
2 ST	24 22		- ²	2 - 4' Shelby Tube Sample.											ST2: 2			
01			<u>-3</u>												500lbs	of		
															pressi	ıre.		
3	24	2	-4	4 - 10' SILTY CLAY CL/ML, dark yellowish b														
ss	21	2 3 6 6	E	(10YR 3/6), trace brown (10YR 5/3) and gray	(10YR													
ΙX		U	_5	6/1) mottling, cohesive, nonplastic to low plas stiff to very stiff (1.0-2.5 tsf), dry to moist.	ticity,													
1	\		E	, , , ,														
4	24	2 3 5 7	- 6															
ss	20	5 7	<u> </u>															
/			F '			CL/ML												
_	1	2	<u>-8</u>	01 101 de de constitute de con	44-													
5 SS	24 24	2 3 4	Ē	8' - 10' dark grayish brown (10YR 4/2), very of brown (10YR 2/2) mottling, trace dark yellowis														
I X		5	<u>_</u> 9	brown (10YR 6/3), cohesive, moist. 8.9' dark brown (10YR 3/3) mottling.														
//	\		E	6.3 dark brown (10111 5/3) motting.														
6	24	1	-10	10 - 12' SILTY CLAY to LEAN CLAY: CL/M		<u> </u>												
ss	23	1 3 4 5	Ē ,,	yellowish brown (10YR 3/6), trace yellowish b (10YR 5/6) mottling, decreasing silt content w														
ΙŅ			<u></u> 11	depth, moist.	101	CL/ML												
L	1		-12	10.3' trace wood pieces. 11.4' - 11.7' trace very dark brown (10YR 2/2	2) _	L												
7 ST	24 24		E 12	mottling. 12 - 14' Shelby Tube Sample.	/										ST7: 2			
٠.			-13	12 - 14 Shelby Tube Sample.											400lbs	of		
			Ē												pressu	ле.		
			-14	<u> </u>		<u> </u>												
		y that	the info	ormation on this form is true and correct to the be	st of my k	nowled	lge.											
Signat	ure	1	1	Firm Natur	ral Reso	urce T	echnol	logy					(414)					
	<u> T/V</u>	m	<u>N//</u>	hyge Ct 234 W	/. Florida	St., Fift	h Floor,	, Milwa					(414)			IT CDI		
								i empia	ue: ILL	INOIS B	OKING	LUG -	rroject:	BALD	win Gli	LAD. I N		

shoe of

sample

SS19

In Feet

Depth]

15

16

17

18

19

20

2.1

-23

24

25

26

27

28

29

30

31

32

33

34

35

-37

content with depth).

Sample

Number and Type

8

SS

SS

10

SS

11

SS

12

ST

13

SS

14

SS

15

16

SS

17

SS

18

SS

19

SS

Length Att. & Recovered (in)

24

22

24

22.5

24 23

24

21

25

24

24

24

24

24

21.5

21

24

20

24

17

11

1 2 4

9 14

5 50 for 5"

Blow Counts

Boring Number PZ-169 Page 2 of Soil Properties Soil/Rock Description Compressive Strength (tsf) And Geologic Origin For Moisture Diagram Plasticity Graphic Content Liquid Each Major Unit S_{C} Limit P 200 Well go 14 - 20' LEAN CLAY: CL, dark yellowish brown (10YR 3/6), grades to gray (10YR 6/1), yellowish brown (10YR 5/6) mottling, trace very dark brown (10YR 2/2) mottling, silt (5-30%), cohesive, low to medium plasticity, stiff to very stiff (1.5-3.5 tsf), moist. 16' - 19.9' dark yellowish brown (10YR 3/6) and yellowish brown (10YR 5/6) mottling. CL 18' trace dark yellowish brown (10YR 6/3) mottling, trace silt, softer with depth. 18.8' trace very fine and coarse sand. 20 - 22' **SILTY CLAY** CL/ML, gray (10YR 6/1), dark yellowish brown (10YR 3/6) and trace very dark brown (10YR 2/2) mottling, trace to few very fine sand seams, cohesive, nonplastic to low plasticity, CL/ML stiff to very stiff (1.75-2.5 tsf), moist. 21' trace very fine sand seams. ST12: 24" 22 - 24' Shelby Tube Sample. push at . 150lbs of pressure, wet tube (free water) 24 - 28' LEAN CLAY WITH SAND: s(CL), pale brown (10YR 6/3), trace brownish yellow (10YR 6/6) mottling, very fine sand, trace coarse sand, trace silt, cohesive, soft, moist to wet. s(CL) 28 - 30' SILTY CLAY CL/ML, gray (10YR 5/1), trace strong brown (7.5YR 5/6) and very dark brown (10YR 2/2) mottling, very fine sand (10-20%), trace CL/ML coarse sand and fine gravel, stiff to hard (1.25->4.5 tsf), moist to wet (on bottom). 30 - 32' LEAN CLAY: to SILTY CLAY CL yellowish brown (10YR 5/4), trace gray (10YR 5/1) and yellowish brown (10YR 5/6) mottling, silt CL (15-25%), trace very fine to fine gravel, cohesive, medium to high plasticity, very stiff (2.5-4.0 tsf), moist 30.2' small dark brown (10YR 3/3) fragments (possible shale) 32 - 38' LEAN CLAY: CL, yellowish brown (10YR 5/4), trace gray (10YR 5/1) mottling, silt (5-15%), trace fine to coarse sand, low to medium plasticity, medium to hard (0.75->4.5 tsf), dry to moist (increasing moisture content with depth). 33.1' - 33.3' dark gray (10YR 4/1). CL 34' - 35.4' no coarse sand, moist. subangular gravel in 36' - 37' low plasticity, moist (decreasing moisture

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number PZ-169 of 3 Page Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts RQD/ Comments Number and Type And Geologic Origin For Moisture Content Plasticity Index Diagram Graphic Log USCS Liquid Limit Each Major Unit P 200 Well CL -38 20 SS 38 - 40' No Recovery. 24 0 39 40 - 42' **LEAN CLAY:** CL, yellowish brown (10YR 5/4), trace gray (10YR 5/1) mottling, silt (0-10%), subrounded to subangular gravel (5-10%), trace fine to coarse sand, low to medium plasticity, medium to hard (0.75->4.5 tsf), moist to wet. 21 SS 18 6 16 35 50 for 6" 41 CL 42' End of Boring.

	Page 1 of 2 cility/Project Name License/Permit/Monitoring Number laldwin Energy Complex Page 1 of 2 Boring Number PZ-170														
				1	Licens	e/Permit/	Monito	ring N	umber						
				f crew chief (first, last) and Firm	Date D	Orilling St	arted		Da	te Drilli		PZ-1		Drill	ing Method
	ad Dutt	-	varric 0	refew effer (first, fast) and Firm	Date	nining 50	artcu		Da	ic Dilli	ng Con	ipicica			llow stem
	lldog D		ıg			7/29	/2015			,	7/29/2	2015			ger
			<u> </u>	Common Well Nam	e Final S	Static Wat			Surfac	e Elevat			Вс		Diameter
				PZ-170	F	Feet (NA	AVD88	8)	418	3.58 Fe			88)	8	.3 inches
				stimated:) or Boring Location ON 2 281 044 02 E	1	Lat38	8° 11	' 44	.106"	Local C	irid Loc		_		
State				9 N, 2,381,944.92 E E/W	I	ong89		2' 10.6			r.]N]S		E E
Facili	1/4 tv ID	01	1	/4 of Section , T N, R	State		Civil To			Village	Fe	ei _	19		Feet W
	-,			Randolph	Illinois		Baldy		,,	8-					
Sa	mple			1							Soil	Prope	erties		
	1		ب	Soil/Rock Description								Ţ,			
4)	stt. &	nnts	Fee	And Geologic Origin For						sive (tsf)					ıts
ber	th A	°C	h In	Each Major Unit		CS	hic	ram		pres	ture	<u>ت</u> ت	icity		men
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	3		S	Graphic Log	Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	24		 	0 - 2' SILTY CLAY CL/ML, yellowish brow	/n (10YR	+-		NA K	1	0 01	20	1 1	1		H 0
ss	8	4 5 6 9	E	5/6), trace brown (10YR 5/3) and very dark (10YR 2/2) mottling, silt (15-25%), trace ro	brown										
- li	(-1	gravel, and coarse sand, cohesive, nonpla	stic to low	CL/ML			d						
V	\		E	plasticity, hard (>4.5 tsf), dry.											
2	24		-2	2 - 4' Shelby Tube Sample.			[<u> </u>								ST2: 24"
ST	21		E												push at 500lbs of
			-3												pressure.
			E												
3	24	2	-4	4 - 8' SILTY CLAY CL/ML, yellowish brow	/n (10YR										
SS	15	2 3 5 7	E	5/6), trace brown (10YR 5/3) and very dark (10YR 2/2) mottling, silt (5-15%), trace ver	c brown v fine sand	,									
1/	$\langle $		<u>-5</u>	and gravel, low plasticity, very stiff to hard	(2.5->4.5										
/	\		E .	tsf), dry.											
4	24	3	- 6	6' - 7.4' trace gray (10YR 5/1) mottling.		CL/ML									
SS	17	3 5 8 8	E _												
1/	$\langle $		- 7												
1	\		F .												
5 SS	24	3 4 6	F-8	8 - 10' SILTY CLAY to LEAN CLAY: CL/											
SS	17	6 6	F .	yellowish brown (10YR 5/6), trace brown (and very dark brown (10YR 2/2) mottling, s											
1/	$\parallel \parallel$		<u>-</u> 9	(5-15%), trace very fine sand and gravel, s decreases with depth, clay content increases		CL/ML									
V			F 10	depth, medium plasticity, very stiff (3.25 ts	f), dry.										
6 SS	24	3 4 5 5	10	10 - 12' LEAN CLAY: CL, brown (5YR 4/3											
55	20	5 5	- ,,	very dark brown (10YR 2/2) mottling, trace content increasing with depth, medium to h											
1/	$\setminus \mid \cdot \mid$		 11	plasticity, stiff (1.75-2.0 tsf).	Ü	CL									
1			- 12												ST7: 24"
7 ST	24 24		12	12 - 14' Shelby Tube Sample.											push at 250lbs of
JI	24														pressure.
I here	by certif	v that		rmation on this form is true and correct to the	best of my	knowled	lge.			1	I		<u> </u>		l
Signa	-	1/1	1		tural Res			logy				Tel·	(414)	837-36	507
-	97	Im	N	Infect 234	W. Florid	a St., Fift	h Floor	, <u>Mil</u> w	aukee,	<u>WI 53</u> 2	04		(414)		

Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

In Feet

Depth]

14

15

16

-17

18

19

20

22

23

24

-25

27

28

29

30

-31

Sample

Number and Type

SS

SS

10

SS

11

SS

12

SS

13

ST

14

15

SS

16

SS

Length Att. & Recovered (in)

24

21

24

24

24

20

24

20.5

24

24

24

22

24

22

17

13

11 30 50 for 5"

Blow Counts

Boring Number PZ-170 Page 2 of Soil Properties Soil/Rock Description Compressive Strength (tsf) And Geologic Origin For Comments Moisture Diagram Plasticity Graphic Liquid Each Major Unit USCLimit P 200 Well Log 12 - 14' Shelby Tube Sample. (continued) 14 - 24' SILTY CLAY CL/ML, yellowish brown (10YR 5/6), trace brown (10YR 5/3) and very dark brown (10YR 2/2) mottling, silt (10-20%), trace gravel, cohesive, low plasticity, stiff to very stiff (1.0-3.0 tsf), dry to moist. 14.9' - 15.3' very dark brown (10YR 2/2) mottling. 16' - 18.5' increaed very dark brown (10YR 2/2) mottling (5-15%), very fine sand (0-10%), trace fine gravel, subangular, cohesive, low to medium plasticity, dry to moist. 16.8' - 17.1' very dark brown (10YR 2/2) mottling. 18' - 20' silt (15-25%), very fine sand (0-10%), trace fine gravel, medium plasticity, moist. CL/ML 19' layer of gravel (2" thick, subangular to subrounded). 19.8' very soft (0.25 tsf). 20' - 24' subangular to subrounded gravel, low plasticity, dry to moist. 20.8' increased gravel content (10-15%). 21.2' decrease in gravel content (5-15%). 24 - 26' Shelby Tube Sample. ST13: 24" push at 650lbs of pressure. 26 - 28.2' SILTY CLAY CL/ML, yellowish brown (10YR 5/6), trace brown (10YR 5/3) and very dark brown (10YR 2/2) mottling, silt (10-30%), very fine sand (0-15%), trace fine subangular to subrounded CL/ML gravel, gravel decreases with depth to no gravel, trace <1mm thick very fine sand seams, cohesive, low to medium plasticity, plasticity increasing with depth, very stiff to hard (2.0->4.5 tsf), moist, decreasing silt and sand content with depth. 28.2 - 30' **LEAN CLAY:** CL, very dark gray (2.5Y CL 3/1), trace silt, cohesive, medium to high plasticity, hard (>4.5 tsf), dry 28.5' black (2.5Y 2.5/1) 28.9' greenish gray (GLEY 1 6/1). BDX 30 - 31.1' SHALE: to LEAN CLAY: BDX (SH), (SH) greenish gray (GLEY 1 6/1), trace silt, cohesive, Hollow Stem medium to high plasticity, dry, shale (residual soil to Auger highly decomposed, very weak, fissile). Refusal at 31.1' End of Boring. 31.1 ft bgs on Shale Bedrock.

- II	/D :	. .			Tr · /	TD :	A. (3. T	1		D :	Pag		of	3	
	ty/Projec dwin F		_{ne} y Com	nlex	License/	Permit/	/Moni	itoring	g Num	ıber		_	Numb PZ-1				
				f crew chief (first, last) and Firm	Date Dri	illing S	tarted			Date	e Drilli		npleted		Dril	ing Me	ethod
	ad Dut														ho	llow	stem
Bul	ldog I	rillir	ng	Common Well Name	E' 1.C	7/30			la.			7/31/2	2015	D		ger	
				PZ-171	Final Sta	et (N			St		Elevat		AVD8			Diame .3 inc	
Local	Grid Oı	igin	(es	stimated:) or Boring Location	<u> </u>				40.5	I		Grid Lo		,0)		.5 1110	1105
State	Plane		-	7 N, 2,379,199.67 E E ®		at			40.54					N			<u></u> Е
Facili	1/4	of	1	//4 of Section , T N, R County S	Long State	g <u>-89</u>			45.080 n/City		illage	Fe	et _	S		Feet	□ W
1 denn	ty ID			1 -	Illinois			dwir		OI V	mage						
Sar	nple			The state of the s								Soil	Prope	erties			
	% (ii)	S	क्र	Soil/Rock Description						Ī	a (
. e	I +: -:	Blow Counts	Depth In Feet	And Geologic Origin For							Compressive Strength (tsf)	o		S :			nts
nber Typ	Length Att. Recovered (Č ≪	th L	Each Major Unit		CS	Graphic		Diagram		npre	Moisture Content	uid iit	Plasticity Index	00		Comments
Number and Type	Len		Dep			S O	Gra	Log	Dia		Cor Stre	Mo	Liquid Limit	Plastic Index	P 200	RO	Cor
1 SS	24 16	2 5 4	F	0 - 2' SILT: ML, brown (7.5YR 4/3), 5-15% cl trace roots, cohesive, nonplastic, dry.	ay,												
		4	<u> </u>	0.7' increase in clay content (15-25%).													
- 1/			† '			ML											
L			E.,	L		L											
2 ST	24 24		-	2 - 4' Shelby Tube Sample.												ST2:	
01			_3													250lb	s of
			F 3													press	ure.
			-4			L											
3 SS	24 18	1 3 3 3	 	4 - 10.8' SILTY CLAY CL/ML, brown (10YR very dark brown (10YR 2/2) and dark yellowis	5/3), sh												
\		3	<u>-</u> 5	brown (10YR 4/4) mottling, silt (10-20%), cohlow to medium plasticity, medium to stiff (0.5-	esive,												
			F	tsf), moist.	1.70												
. L	1		<u>-</u> 6														
SS	24 24	1 3 3 5	E	6' low plasticity.													
\		5	F_7														
1/	\setminus		E			CL/ML											
_	1		-8	7.7' silt (25-35%), trace very fine sand, nonpl	astic to												
5 SS	24 17	1 2 3 3	E	low plasticity. 8' silt (5-15%), medium plasticity.													
)	[3	<u>_9</u>														
/	\setminus		E														
,	24	2	-10	101 - 14 (20 500) - 14	ما د سدام												
6 SS	24 24	2 2 3 4	E	10' silt (20-50%), silt content increasing with moist.	aeptn,												
)		4	-11	10.8 - 12' CLAYEY SILT ML/CL, clay (30-50)%),												
/	\setminus		E	medium (0.5-0.75 tsf), moist.		ML/CL											
L			-12	<u> </u>		<u>L</u>											
I here	by certif	y that	the info	ormation on this form is true and correct to the be	est of my k	knowled	dge.										
Signa	ture	1/1	1 _	Firm Natur										(414)			
		NIN	nd	My Cot 234 W	/. Florida	St., Fif	th Flo							(414)			NT.GPJ
								16	шріац	, ill	LIOID D	ONIDO	LOG -	r roject.	DALD	WILL OIL	LAD. ILL

Boring Number PZ-171 Page of Soil Properties Sample Length Att. & Recovered (in) Soil/Rock Description In Feet Blow Counts Compressive Strength (tsf) And Geologic Origin For 2 d Number and Type Comments Moisture Diagram Plasticity Graphic Liquid Depth] Each Major Unit OSC Limit P 200 Well Log 24 12 - 14' Shelby Tube Sample. ST7: 24' 26 push at 200lbs of 13 pressure. 14 14 - 20' SILTY CLAY CL/ML, brown (10YR 5/3), 8 24 24 very dark brown (10YR 2/2) and dark yellowish SS brown (10YR 4/4) mottling, silt (30-40%), cohesive, 15 low to medium plasticity, medium to stiff (0.75-2.0 tsf), moist. 9 24 2 3 5 5 SS 24 CL/ML 17.4' - 19.7' dark yellowish brown (10YR 4/4), brown (10YR 5/3) mottling, clay (20-30%), cohesive, 10 nonplastic, moist. 24 SS 20 19 20 - 22' Shelby Tube Sample. ST11: 24" 11 24 push at ST 16 350lbs of -21 pressure. 22 22 - 26' SILTY CLAY CL/ML, brown (10YR 5/3), 12 SS 24 very dark brown (10YR 2/2) and dark yellowish 21 brown (10YR 4/4) mottling, silt (10-20%), cohesive, 23 low to medium plasticity, very soft to medium (0.25-1.0 tsf), moist. 22.8' - 23' sandy clay layer, very fine sand, wet. WOR 1 2 3 CL/ML WOR = 13 24 24' - 26' silt (5-15%), medium to high plasticity, SS Weight of moist. Rods 25 26 26 - 28' SILTY CLAY to SANDY LEAN CLAY: 14 24 24 CL/ML, yellowish brown (10YR 5/4), very fine sand SS (30-50%), increasing sand content with depth, silt (20-40%), decreasing silt content with depth, clay CL/ML content decreasing with depth, cohesive, nonplastic to low plasticity, decreasing plasticity with depth, wet. 28 - 28.7' CLAYEY SILT to POORLY-GRADED 15 24 3 7 10 SS 21.5 SAND: ML/CL, yellowish brown (10YR 5/4), clay ML/CL (10-20%), fine sand (10-20%), cohesive, nonplastic, 29 28.7 - 36.6' POORLY-GRADED SAND: SP. yellowish brown (10YR 5/4), fine sand, silt (5-15%), clay (5-15%), medium and coarse grained sand 16 24 (5-10%), wet. 24 SS SP 30' trace clay, trace medium and coarse sand. -31

Boring Number PZ-171 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description In Feet Compressive Strength (tsf) Blow Counts S Lyumber and Type And Geologic Origin For Comments Moisture Plasticity Index Diagram Graphic Liquid Limit Depth 1 Each Major Unit USC P 200 Well Log 28.7 - 36.6' **POORLY-GRADED SAND:** SP, yellowish brown (10YR 5/4), fine sand, silt (5-15%), clay (5-15%), medium and coarse grained sand (5-10%), wet. *(continued)*32' - 33.8' sand grading from fine to very fine with 24 5 9 15 20 21.5 33 depth. -34 18 SS 24 22 SP -35 -36 19 SS 24 22 36' - 36.6' increase in silt content with depth (5-15%). 36.4' clay layer (2mm thick). 36.5' clay layer (2mm thick). 37 36.6 - 38' **LEAN CLAY:** CL, dark gray (2.5Y 4/1) to CL very dark gray (2.5Y 3/1), trace silt, trace fine sand seams, high plasticity, stiff (1.5-1.75 tsf), moist. 38' End of Boring.

					T= -	·					-	Pag		of	2	
	y/Projec			1	License	/Permit/	Monit	toring	Numbe	er	Boring					
	dwin E			f crew chief (first, last) and Firm	D-t- D	.:11: C4	1		Ιτ)-4- D.:II		PZ-1		D:11	: M-	411
•	_	-	Name o	r crew chief (first, last) and Firm	Date Dr	niing Si	iarted		1	Date Drill	ing Con	npietea			ing Me	
	id Dut Idog E		NG.			7/21	/201	5			7/31/2	2015			ollow s	tem
Dui	luog L	/111111	ıg	Common Well Name	Final St				Surf	ace Eleva		2013	Bo		ger Diamet	er
				PZ-172		eet (NA				10.22 F		AVDS			.3 inc	
Local	Grid Or	igin	(e:	stimated:) or Boring Location	٠.					Local (Grid Lo		,0)		.5 1110	
	Plane			8 N, 2,379,176.11 E E /®	L	at38	3°1	11'29	9.3676	<u>"</u>		Г	N			\square E
	1/4	of	1	/4 of Section , T N, R	Lor	ng89	9° _5	<u>52' 45</u>	5.4188	<u>"</u>	Fe		S		Feet	\square $\stackrel{\square}{\mathbb{W}}$
Facilit	y ID			1 -	State				/City/ o	r Village						
				Randolph	Illinois		Balo	dwin								
Sar	nple										Soil	Prope	erties			
	(iii)	įχ.	्र ह	Soil/Rock Description						9 G						
. 0	Att. ed (Junt	ı Fe	And Geologic Origin For					_	ssiv (tsl	. a		>			nts
lber Typ	gth /	ŭ	h Ir	Each Major Unit		CS	hic		ran	ipre ngth	sture	gi ,	hicit	0		ıme
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			S O	Graphic	Well	Diagram	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200		Comments
1	24		+ -	0 - 0.5' FILL, TOPSOIL: ML, dark grayish bro	own	(FILL)		+	₹ N	0 32						-
ss	17	3 6 5 4	-	(10YR 4/2), trace clay, gravel, roots, and gras noncohesive, dry.	ss,	<u> _ ML</u> _	Ť	\mathbb{N}								
			-1	\ 0.4' angular gravel.	i	'			\sim							
/\			E	0.5 - 2' SILTY CLAY CL/ML, yellowish brown	n — — —	CL/ML	-									
L			_2	(10YR 5/4), very dark brown (10YR 2/2) and s brown (7.5YR 4/6) mottling, silt (5-15%), trace	strong e fine	<u> </u>										
2 ST	24 17			sand, cohesive, low plasticity, dry.		′									ST2: 2	
01	17		F .	2 - 4' Shelby Tube Sample.											500lbs	
			-3												pressi	ıre.
			F													
3	24	2	-4	4 - 9.2' SILTY CLAY CL/ML, yellowish brown				П								
ss \	19	2 3 4 6		(10YR 5/4), increased very dark brown (10YF	R 2/2)											
I Y		ь	_5	and strong brown (7.5YR 4/6) mottling, silt (5- trace fine sand, cohesive, medium plasticity, v	·15%), verv											
1/			F .	soft to very stiff (0.25-2.5 tsf), moist.	very											
- 1			Ė,													
4	24	2	-6	6' silt (10-20%), low to medium plasticity.												
ss	22	2 2 4 8	E			CL/ML										
I X			_7													
/\																
_	1		-8													
5 SS	24 20	1 3 5 9	F	8' decreased mottling, trace brown silt seams content increasing with depth (20-50%).	s, silt											
- IV		9	9	3 · · · · · · · · · · · · · · · · · · ·												
11				9.2 - 10' SILT: ML, brown (7.5YR 4/4), clay				Ш								
- /				(5-15%), cohesive, nonplastic, moist.		ML										
6	24		-10	10 - 12' Shelby Tube Sample.				Ш							ST6: 2	24"
ST	16			, , , , , , , , , , , , , , , , , , , ,											push a	
			-11												450lbs	
			E													
			E -12		-L											
I herel	ny certif	v that		ormation on this form is true and correct to the be	st of my	knowlea	loe				1				1	
Signat	-	//						1				- TO 1	(41.4)	027.2	707	
oigiiai	4	1/1/2		Firm Natur						e, WI 532	204		(414) (414)			
		14/11		234 W	. I lollua	ы., ғп	ui F100			LLINOIS E						VT.GPJ

Boring Number PZ-172

Page 2 of 2

- C-	1 -			Boring Number PZ-1/2	T		1		Π	Cl - :1	Pag		of	
Sar	nple									5011	Prope	rties		
	Length Att. & Recovered (in)	ıts	eet	Soil/Rock Description					ev e					
r 3e	Att	Blow Counts	Depth In Feet	And Geologic Origin For	\sigma	0	ء ا		essiv h (ts	е т		ty		ents
nbe Tyj	gth	×	th I	Each Major Unit	C	phic	II grar		npre	stu	aid ait	tici	9	D/ nme
Number and Type	Length Att. Recovered (Blo	Dep		N S	Graphic Log	Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
7 \	24	1	-	12 - 18' SILTY CLAY CL/ML, brown (7.5YR 4/4),										
ss	24	1 3 4	E	cohesive, nonplastic to low plasticity, stiff to very stiff (1.25-2.75 tsf), moist.										
Įχ			_13	(1.22 2.12 2.7, 1.12.2.1										
/\				13.3' soft (0.5 tsf).										
, L	1		- 14											
8 SS	24 24	2 3 4 7	-											
- 1		7	1.5											
I۸			<u> 15</u>		CL/ML									
γ,	V		_					1						
9	24	2	-16	15.8' hard (4.0 tsf).										
9 SS	22.5	2 4 4 6	Ė	10 CL 10 CL in agree and come death breaking (10)/D 2/2)			∦ :∦:							
I X			-17	16.6' - 16.8' increased very dark brown (10YR 2/2) mottling.										
/\			E											
Ľ			_ 18		L									
10 ST	24 22		- 10	18 - 20' Shelby Tube Sample.										ST10: 24" push at
31	22						: :							350lbs of
			19 											pressure.
			Ē				[:]	1						
11	24	1	-20	20 - 21' SANDY LEAN CLAY: s(CL), dark gray		///	#: <u> </u> ::							
11 SS	23	1 3 3 3	_	(10YR 4/1), with clay seams, trace yellowish brown	s(CL)		1 目							
I V		3	-21	(10YR 5/8 mottling), cohesive, nonplastic, wet, clay seams (medium to high plasticity).			1 .∄.							
Ι/\			Ė	21 - 22' SANDY LEAN CLAY WITH GRAVEL:		10	1: E:							
Ι'			- 22	s(CL)g, mostly yellowish brown (10YR 5/8) with some dark gray (10YR 4/1), silt (>15%), cohesive,	s(CL)g		\$: : : : : : : : : : : : : : : : : : :							
12 SS	14	1 2 50 for 2'	22	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Γ									
55 X	12	50 for 2"		22 - 24' SILTY CLAY CL/ML, yellowish brown										
Γ.	1		_23	(10YR 5/8) with dark gray (10YR 4/1) mottling, sand (5-15%), cohesive, low plasticity.	CL/ML									
			Ė	(c 10.0), concerns, ion placement.										
13	22	15	-24	24 - 26' LEAN CLAY: CL, trace gravel, hard (4.5			#: 							
ss \	18	15 14 18 50 for 4"	E	tsf), cohesive, dry.			1:目:	1						
ΙX		50 for 4"	-25		l		非掛:							
/\					CL]:目:							
<u></u>	1		-				排目:							
14 [⊠] SS	2	50 for 2"	-26	26 - 26.2' SHALE: BDX (SH), clay (5-15%).	BDX			1						
SS	2			26.2' End of Boring.	(SH)									
	1	İ	ļ	I	1	I	1	1	I		1			ı

T	. 75	. 3.7			Tr : //		O. F		NT 1		l n		Pag		of	2
	ty/Projec			1	License/	Permit/	Monit	oring	Num	ber	B		Numb			
	dwin E			f crew chief (first, last) and Firm	Date Dri	llim ~ Ce	toutod			Date Di	ر الناند		PZ-1		Dwill	ing Method
	_	-	Name o	r crew ciner (mst, last) and rinn	Date Dil	illing Si	iarteu			Date Di	3111111	g Con	ipieteu			_
	ad Dut lldog E		ıσ			8/3/	2015				Q	3/3/20	015			llow stem ger
	nuog L	111111	ıg	Common Well Name	Final Sta				Su	l rface Ele			013	Bo		Diameter Diameter
				PZ-173		et (N				388.43			AVDS			.3 inches
Local	Grid Or	igin	(es	stimated:) or Boring Location	-					Loca			cation	,0)		.5 1101105
State	Plane	555	,035.3	8 N, 2,379,187.28 E E Æ	La	ıt <u>38</u>	301	1'_	26.5	<u>2"</u>			Г]N		□ E
	1/4	of	1	/4 of Section , T N, R	Lon				5.289			Fee		S		Feet W
Facili	ty ID			1 -	State				-	or Villag	ge					
				Randolph	Illinois		Balo	lwin								
Sa	mple											Soil	Prope	erties		
	& jin)	ò	et	Soil/Rock Description						e						
o	Att.	dunt	. Fe	And Geologic Origin For						SSiv	(ts]	n)		>		nts
lber Typ	gth ,	ŭ	- H	Each Major Unit		CS	hic		ran	pre	ngth	stur	ig ,	hicit	0)/
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			SO	Graphic	Well	Diagram	Compressive	Stre.	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	24		-	0 - 2' No Recovery. Gravel Pad.			-0+0+		₩.		-					
ss	0		F				-0+0+0									
			-1			(FILL)	0+0+0 0+0+0	0+1 0+1	\propto							
V							0+0+0	0+ 0+								
_	1	_	-2	 		L	0+0+0	0+ + 1								
2 SS	24 13	2 2 2 3	<u> </u>	2 - 10.9' SILTY CLAY CL/ML, dark grayish (10YR 4/2), trace sand and wood, cohesive,												
		3	F ₂	plasticity, very stiff (2.5-3.5 tsf), moist.	modium											
1/	\setminus		-3													
1			E					╟╠	∄::							
3	24	2	-4	4' yellowish red (5YR 4/6) mottling.					∄:							
ss	7	2 5 4 5		, , , , , , , , , , , , , , , , , , , ,					∄ ∷							
\	$\langle $	3	-5					:E	∄:							
V	\		F						∄:							
			E ₆					╟╠	∄:]							
4	24	2 4 8 9	- 6	6' - 7.7' yellowish brown (10YR 5/6) with dar	k gray				∄:							
SS	20	8 9		(10YR 4/1) mottling, hard, laminated, dry.		CL/ML		:: =	∄:							
l,	$\langle $		- 7						∄:1							
/			F						∄::							
5	24	2	<u>-8</u>					: =	∄:							
ss	19	2 4 6 8	E	8.2' very dark gray (10YR 3/1), trace dark ye	ellowish				∃ ::							
\	/	8	_9	brown (10YR 4/6) mottling, small hard nodule clay in the matrix, dry to moist.	es or			╟∷╞	∄:							
	\setminus		þ í	, ,]∷							
1			F						∄:							
6	24	2 3 6 7	-10					╟∷╞	∄:							
ss	18	6 7	E	10.6' olive (5Y 5/6) with bluish gray (GLEY2	5/2)]∷							
	$\langle $		-11	mottling.	<i>'</i> /	 			∄::]							
/			F	10.9 - 13.8' SILT: ML, dark reddish gray (5Y cohesive, nonplastic, stiff (2.0 tsf), moist.	R 4/2),	ML			 :							
L			-12	Corresive, Horipiastic, Still (2.0 tsi), Moist.		<u></u>		III: E	∃.'				<u> </u>			
I here	by certif	y that	the info	ormation on this form is true and correct to the bo	est of my k	nowled	dge.			•						
Signa			$\overline{}$	Firm N. 4				വിവ	TV				Tel·	(414)	837-36	507
_		1/2	fil.		V. Florida					kee, WI f	53204	4		(414)		
						, -		Ter	nplate:	ILLINOI	S BO	RING				WIN GINT.GPJ

				Boring Number PZ-173						Pag	ge 2	of	2
San	_								Soil	Prope	rties		
	Length Att. & Recovered (in)	ıts	eet	Soil/Rock Description				ve if)					
r pe	Att	Jone	In F	And Geologic Origin For	\sigma	၁	E	essiv th (ts	er f		ity		ents
Number and Type	ngth cove	Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic Log	Well Diagram	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
an N	Le Re		De	10.0 10.0 T. M. ded as difference (5)(D.4(0)	n	Grap Log	ĭ Ö	<u>ე ჯ</u>	<u> </u>	Ľ Ľ	Pla Inc	P 2	<u> </u>
7 SS //	22 16	2 5 15 50 for 4"	_	10.9 - 13.8' SILT: ML, dark reddish gray (5YR 4/2), cohesive, nonplastic, stiff (2.0 tsf), moist. <i>(continued)</i>									
IX		50 for 4"	_ —13	12' - 13.3' trace brown (7.5YR 4/4) mottling, trace gravel, trace sand, increasing sand and gravel with	ML								
Λ				depth. 12.6' wet.									
8 \	2	50 for 2" 50 for 1"	_ 14	12.8' clay (0-15%)/	<u> </u>								Hollow Stem Auger
8 SS 9 SS	0 1	50 TOF 1"		13.8 - 14.1' BEDROCK BDX (SH), wet.	BDX (SH)								Refusal at 13.5 ft bgs
SS	i			14.1' End of Boring.									on Bedrock.
													SS8: Rock chips in
													spoon. Split Spoon
													Refusal at 14.1 ft bgs
													on Bedrock.

Signature

Papel M Haft

Facil	ity/Pro	ject Nar	ne		License/I	Permit/	Monitor	ring Niji	mher		Rorino	Pag Numb		of	2
			y Com	plex	Electise	Cilino	ivionitoi	ing run	inoci		Dornig	PZ-1			
				f crew chief (first, last) and Firm	Date Dri	lling St	arted		Da	te Drilli	ng Cor			Drill	ing Method
		utton Drilli	ng				2015				8/4/2	015		au	llow stem ger
				Common Well Name	Final Sta					e Elevat					Diameter
Laga	1 Cmi d	Origin		PZ-174 stimated: ☐) or Boring Location ☒	Fe	et (NA	AVD88	3)	398	3.97 Fo			38)	8	.3 inches
	e Plane			3 N, 2,379,774.23 E	La	t38	<u> 11</u>	22.85	552"	Local	niu Lo]N		
~		/4 of		/4 of Section , T N, R	Long	-89)° 52	37.95	524"		Fe]S		☐ E Feet ☐ W
Facil	ity ID			County	State		Civil To	own/Cit	y/ or V	/illage					
				Randolph	Illinois		Baldy	vin							
Sa	mple										Soil	Prope	erties		
	Length Att. &	(iii)	ह	Soil/Rock Description						9 C					
r e	Att.	oun	n Fe	And Geologic Origin For				ц		essiv h (ts	e		5 2		suts
nbe	gth	Recovered (II Blow Counts	Depth In Feet	Each Major Unit		CS	Graphic Log	Well Diagram		npre	istur	Liquid Limit	Plasticity Index	200	D/ nime
Number and Tyne	Len L	Rec Blo	Dep			n S	Grap Log	Well Diagr		Compressive Strength (tsf)	Moisture Content	Liquic	Plastic Index	P 2(RQD/ Comments
1 SS	24 5	. 2 3 5 3	-	0 - 2' TOPSOIL: ML, brown (10YR 4/3), tra grass and roots, cohesive, nonplastic, dry.	ce		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
33	W J	3	- ,	grass and roots, conesive, nonplastic, dry.			\ \ \ \								
	λl		F 1			ML	\ \ \ \								
	'\		-				\ \ \ . \ . \ . \ . \ . \ . \ . \ . \ .								
2 SS	24	. 2	2			<u></u>	\ \ \								
SS	/ o	. 2 2 2 4	F	-											
	XI		_3												
	/\		F												
3	24	. 2	-4	4 - 24.7' LEAN CLAY: CL, dark grayish bro		<u> </u>									
SS	6	. 2 2 4 5	E	(10YR 4/2), dark yellowish brown (10YR 4/4	l)										
	VI.	5	<u>-</u> 5	mottling, silt (10-20%), cohesive, medium planoist.	asticity,										
	Λl		F												
			E ₋₆												
4 SS	24	. 4 4 5 7	-												
	VI T	7	<u>-</u> 7												
	Λl		E'												
	' \		-												
5	24		-8	8' - 9.9' increased yellowish brown (10YR 4		CL									
SS	23	5 5	L	mottling, increase in silt content with depth (50%).										
	λl		- 9												
	/\		E												
6	24	. 2	10	10' - 11.7' decrease in silt content with dept	h										
ss	20		F	(10-20%).											
	X		-11	10.6' - 11.2' dark yellowish brown (10YR 4/- very dark brown (10YR 2/2) mottling (50%),											
	/\		F	moist.	-										
[-12												
I la ou	alarr a a	4:C-414	41 : 6.	armation on this form is true and correct to the	C 1-	1	las								

Firm Natural Resource Technology
234 W. Florida St., Fifth Floor, Milwaukee, WI 53204
Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

Boring Number PZ-174 Page 2 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) In Feet Blow Counts S 2 Number and Type And Geologic Origin For Comments Moisture Plasticity Index Diagram Graphic Liquid Limit Depth 1 Each Major Unit USC P 200 Well Log 4 - 24.7' LEAN CLAY: CL, dark grayish brown 24 (10YR 4/2), dark yellowish brown (10YR 4/4) mottling, silt (10-20%), cohesive, medium plasticity, 13 moist. (continued) 12' - 13.8' trace coarse sand, dry. -14 8 SS 24 14' - 15.8' increased sand content, trace gravel, dry. 21 -15 16 16' - 18' yellowish brown (10YR 5/4), moist. 9 24 SS 24 ∟₁₇ -18 10 SS 18' - 20' coarse sand and gravel (5-15%), moist. 24 CL 19 3 7 9 15 11 24 SS 24 21 22 12 SS 24 4 7 8 10 24 23 13 SS 8 8 11 50 for 2" 24' - 24.7' decreased moisture content with depth. Hollow Stem Auger Refusal at 24.7 ft bgs 24.7' End of Boring. on Shale Bedrock.

Signature

Papel M Happ

											Pag		of	3
	ty/Project dwin E			plex	License/	Permit/	Monitoring N	umbe	r	Boring	Number PZ-1			_
				f crew chief (first, last) and Firm	Date Dri	lling S	tarted		ate Drill				Drill	ing Method
	ad Dut												ho	llow stem
Bu	lldog E	Drillir	ng	Common Well Name	E: 10		/2015 ter Level	IC C	FI	8/7/2	015	l D		ger
				Common Well Name PZ-175			AVD88)		ice Eleva 19.87 F		м			Diameter .3 inches
Local	Grid Or	rigin	☐ (e:	stimated: or Boring Location	٠				Local (Grid Lo		00)	8	.5 menes
				2 N, 2,380,846.31 E E (W)	La	it38	8° <u>11'</u> 20.5	5152 '	<u>'</u>]N		□Е
	1/4	of	1	/4 of Section , T N, R	Long	g <u>-8</u> 9	9° <u>52'</u> 24.5			Fe]S		Feet W
Facili	ty ID			1 -	State		Civil Town/C	ity/ or	Village					
	1.			Randolph	Illinois		Baldwin	_		0 - 11	D			
Sa	mple									5011	Prope	erties		
	Length Att. & Recovered (in)	nts	eet	Soil/Rock Description					ive sf)					
Number and Type	a At erec	Blow Counts	Depth In Feet	And Geologic Origin For		N N	.c. E		Compressive Strength (tsf)	nt nt	_	ity		RQD/ Comments
dm. d T	ngtl cov	MO	apth	Each Major Unit		SC	Graphic Log Well Diagram	þ	omp	Moisture Content	Liquid Limit	Plasticity Index	P 200) Dimin
<u>Ź</u> 8	24		Ĭ	0 - 0.9' SILT: ML, brown (10YR 5/3), trace ro	oto	D			ರ ಸ	Σŭ	<u> </u>	된 된	Ъ	జెర
ss	17	4 7 5 4	E	and grass, noncohesive, nonplastic, hard (3.0)->4.5	ML								
	X	4	-1	tsf), dry. 0.9 - 5.4' LEAN CLAY: CL, brownish yellow	710VB	 		2						
/	\		E	6/6), black (10YR 2/1) mottling, silt (5-15%), d	Ìry,									
2	24	2	-2	cohesive, low plasticity, very stiff (2.5-3.0 tsf). 2' dry, increase in moisture content with dept										
SS	15	2 4 4 6	_3	brown (10YR 5/3) silt seams.	,									
1	\setminus					CL								
_	1		E_4											
3 SS	24 17	2 3 4 6	E .	4' increased brown (10YR 5/3) and black mot (10YR 2/1), moist.	ttling									
	X	6	_5	,										
/	\		E	5.4 - 13.5' SILT: ML, light yellowish brown (1	0YR									
4	24 23	2	- 6	6/4), trace dark gray (10YR 4/1) mottling, clay (5-15%), moist, cohesive, nonplastic, medium	to stiff									
ss	23	2 2 4 4	F _	(0.5- 1.5 tsf).										
	\mathbb{N}		- 7											
L			-8											
5 SS	24 22	1 2 3	E	8' decreased mottling.										
	/	3	<u>_</u> 9											
/	\		E			ML								
6	24	1	10	10' brown (7.5YR 4/4), no mottling.										
ss	24	1 2 2 2	E	(
	X		-11											
/	\		Ē 12											
7 SS	24 23	1 2 3 4	12	12' increasing clay content with depth, low pla	asticity.									
33	∥ ²³	3 4	-13											
	\		E 13			L								
L			- -14											
Lhere	hy certif	Sythat	the infe	ormation on this form is true and correct to the be	et of my k	novylo	dge							

Firm Natural Resource Technology
234 W. Florida St., Fifth Floor, Milwaukee, WI 53204
Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

-37

Boring Number PZ-175 Page of Soil Properties Sample Length Att. & Recovered (in) Soil/Rock Description In Feet Blow Counts Compressive Strength (tsf) And Geologic Origin For Number and Type Moisture Diagram Plasticity Graphic Liquid Depth] Each Major Unit SC Limit P 200 Well go 8 13.5 - 22.3' **LEAN CLAY:** CL, brown (7.5YR 4/4), 24 SS silt (5-15%), moist, cohesive, low to medium plasticity, stiff to very stiff (1.5-4.0 tsf) increasing with 15 depth. (continued) 14' trace black (10YR 2/1) and dark gray (10YR 4/1) mottling, trace silt. 16 24 2 3 4 4 16' brown (7.5YR 5/4), silt (5-15%). SS 24 17 18 18' trace black (10YR 2/1) and dark gray (5-50% 10 24 CL 23 SS 10YR 4/1) mottling, trace silt, silt content decreasing with depth, wet. 19 20 20' no black (10YR 2/1) mottling, yellowish brown 11 24 SS 23 (5-15% 10YR 5/8) mottling. 2.1 22 12 22.3 - 26' SILT: ML, clay (5-15%), trace coarse SS 24 sand, decrease in clay content with depth, moist, 23 cohesive, nonplastic, very soft to very stiff (<0.25-3.0 tsf) decreasing with depth. 24 23.9' sandy silt seam (2" thick), wet. 13 24 2 2 3 ML 24' some sandy and clayey silt seams, trace coarse SS 24 sand to fine gravel, moist to wet in sandy silt seams. 25 26 26 - 28' LEAN CLAY: to SILT: CL, silt (40-60%), 14 24 11 8 9 10 SS 24 coarse sand to fine gravel (5-15%), trace fine sand seams, moist, cohesive, low plasticity, stiff (1.5-2.0 27 CL tsf). 28 28 - 28.4 SANDY SILT: s(ML), yellowish brown 15 24 8 11 15 20 s(ML) (10YR 5/4), wet, cohesive, nonplastic, stiff (1.5 tsf). 28.4 - 31.3' LEAN CLAY: CL, yellowish brown 29 (10YR 5/4), coarse sand to fine gravel (5-15%), trace fine sand seams, hard (>4.5 tsf), dry to moist. 30 CL 16 9 19 20 23 SS 24 31 31.3 - 31.5' WELL-GRADED SAND WITH (SW)g GRAVEL: (SW)g, dark yellowish brown (10YR 4/6), 32 17 24 24 31.5 - 43.8' **LEAN CLAY:** CL, gray (10YR 5/1), dry, very stiff to hard (2.5->4.5 tsf), cohesive, nonplastic. SS 33 32' trace yellowish brown (10YR 5/6) seams and mottling, medium to high plasticity, increasing moisture content with depth. 18 24 34' trace mottling, moist, decreasing moisture SS 24 CL content with depth. -35 36 19 24 36' dry to moist, silty clay seam (4" thick, moist). SS 24

Boring Number PZ-175 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) In Feet Blow Counts And Geologic Origin For Number and Type Comments Moisture Plasticity Index Diagram Graphic Liquid Limit Depth] Each Major Unit OSC P 200 Well go 31.5 - 43.8' LEAN CLAY: CL, gray (10YR 5/1), dry, very stiff to hard (2.5->4.5 tsf), cohesive, nonplastic. 38 20 (continued) 24 SS 24 38' trace black (10YR 2/1) mottling. 38.3' yellowish brown (10YR 5/6) with gray (10YR 39 5/1) mottling. 21 SS 24 24 CL 42 22 SS 3 5 8 20 42' trace fine gravel. 24 24 43 43.8 - 45.7' SANDY LEAN CLAY WITH GRAVEL: 44 23 24 3 11 12 14 s(CL)g, brown (10YR 5/3), mostly broken rock, SS 20 moist. s(CL)g 45 44' black (10YR 2/1) mottling, seams of wet gravel, coarse sand to coarse gravel. 45.7 - 50' **LEAN CLAY:** CL, light yellowish brown (10YR 6/4), brownish yellow (10YR 6/6) and dark gray (10YR 4/1) and black (10YR 2/1) mottling, trace fine gravel, some laminations, very stiff (2.5-3.5 tsf). 24 24 3 5 7 11 SS 24 CL 48 48' moist to dry. 25 24 SS 24 12 20 48.7' laminated, dry. 49 50 50 - 50.2' **SHALE:** BDX (SH). 26 50 for 1' Hollow Stem BDX SS 0 Auger 50.2' End of Boring. (SH) Refusal at 50.2 ft bgs on Shale Bedrock.

Signature

Facil	ity/Proje	ct Nan	ne		License/F	Permit/	Monitoring N	ımber		Boring	Paş Numb		of	2
	ldwin E			plex	License	CITITO	.vioimornig i vi			Boring	PZ-1			
				of crew chief (first, last) and Firm	Date Dril	ling St	arted	Da	te Drilli	ing Cor			Drill	ing Method
	ad Dut Illdog I		າσ			8/6/	2015			8/6/2	015			llow stem ger
	indog i	7111111	15	Common Well Name	Final Sta			Surfac	e Eleva		015	Вс		Diameter
				PZ-176	Fee	et (NA	AVD88)	403	3.46 F	eet (N	AVD8	88)	8	.3 inches
	l Grid O			stimated: or Boring Location or Boring Location	T ==	t38	8° 11' 18.	834"	Local (Grid Lo	cation			
Stat	e Plane		-	6 N, 2,381,381.02 E E/₩		0.0						N		<u></u> Ε
Engil	1/4 ity ID	of]	1/4 of Section , T N, R County S	Long	, —	Civil Town/Ci		/illaga	Fe	eet _	S		Feet W
racii	пуп				Illinois		Baldwin	ity/ Of	village					
Sa	mple									Soil	Prope	erties		
				Soil/Rock Description										
	od (i	nnts	Fee	And Geologic Origin For					sive (tsf)					ıts
ber	th A	ပိ	h In	Each Major Unit		CS	hic		pres gth	ture	<u> </u>	icity		/ men
Number and Tyme	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			ns (Graphic Log Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	24	3 3 4 4	+ -	0 - 0.5' TOPSOIL: ML, dark grayish brown (1	0YR			1	0 01					
SS	15	4	E	4/2), clay (5-15%), trace grass and roots, cohe nonplastic, stiff (1.5 tsf), dry.	esive, _	_ML_								
	XΙ		1	0.5 - 2.4' SILT: ML, dark grayish brown (10YF				₹						
	$\backslash \backslash$		E	brownish yellow (10YR 6/6) and dark brown (3/3) mottling, clay (30-50%), trace roots, cohe	10YR sive,	ML								
2	24	3	_2	low plasticity, very stiff (3.0 tsf), dry.	,									
2 SS	16	3 5 5	-	2.4 - 6.3' LEAN CLAY: CL, dark yellowish bro										
	XI		_3	(10YR 4/4), dark gray (10YR 4/1) mottling, silt (5-15%), trace roots, cohesive, medium plastic										
	\mathbb{N}		F	moist.	o,,									
2	24	2	-4	4' increase in silt content (40-60%), dry to mo	vict									
3 SS	9	2 3 4 4	E	4 increase in siit content (40-00%), dry to mo	JIST.	CL								
	VI.	4	_5											
	\mathbb{N}		F											
			E_6											
4 SS	24 21	3 3 3 4	-6	6.3 - 12' SILT: ML, dark gray (10YR 4/1), coh										
	W 2'	4	F _	nonplastic, moist.	icsive,									
	Λl		- 7											
	/\		-											
5	24	1	- 8	8' sand (0-40%), sand content increasing with	n depth,									
SS	12	1 1 2	E	moist to wet.										
	XΙ		-9			ML								
	/\		F			IVIL								
6	24	1	-10	10' increase in sand content (40-60%).										
SS	13	1 1 2	F	15 meredes in same series (10 0070).										
	X		-11											
	\mathbb{N}		E											
			-12											
T 1	-1	C .1 .	.1	ermation on this form is true and correct to the base	1	-								

Firm Natural Resource Technology
234 W. Florida St., Fifth Floor, Milwaukee, WI 53204
Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

Boring Number PZ-176 Page 2 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) In Feet Blow Counts S 2 Number and Type And Geologic Origin For Comments Moisture Diagram Plasticity Graphic Liquid Depth] Each Major Unit OSC P 200 Limit Well Log 12 - 12.3' WELL-GRADED SAND: SW, very dark 24 SW 20 grayish brown (10YR 3/2), fine gravel (>15%), moist. 12.3 - 16' **LEAN CLAY:** CL, gray (10YR 5/1), brownish yellow (5-15% 10YR 6/6) and trace very dark brown (10YR 2/2) mottling, silt (5-15%), trace 13 sand seams, cohesive, medium plasticity, stiff to very stiff (1.5-3.0 tsf). -14 8 24 CL 14 increase in thickness of sand seams (1"-2" thick, SS moist, wet). 15 16 16 - 28.6' **LEAN CLAY:** CL, dark gray (10YR 4/1), light yellowish brown (10YR 6/4) mottling, cohesive, low plasticity, very stiff to hard (3.5->4.5 tsf) dry. 2 4 7 10 9 24 SS 17 -18 18' increased mottling, mostly brown (10YR 5/3), brownish yellow (10YR 6/6), dark gray (10YR 4/1), 10 24 4 6 8 12 SS 18 and olive gray (5Y 5/2) mottling. -19 20' olive gray (5Y 5/2), brownish yellow (10YR 6/6) 11 24 5 16 22 25 SS 17 20.3' dark gray (2.5Y 4/1), brownish yellow (10YR -21 6/6) mottling, clay becoming blocky and laminated. 22 11 7 22' pale olive (5Y 6/3), dark gray (10YR 4/1) 12 SS CL mottling, laminated. 23 At 23.6' rock fragment on 13 21 31 43 24' brownish yellow (10YR 6/6) mottling. 13 24 bottom of SS split spoon. Refusal of 25 split spoon. 26 14 24 24 SS 27 15 SS 16 28' hard (4.5 tsf). 50 for 2" 8 1 0 50 for 1" 28.6' End of Boring.

Signature

Paper M Happ

											Pag		of	2
	ty/Projec dwin F			plex	License/I	Permit/	Monitoring N	umber		Boring	Numb PZ-1			
				f crew chief (first, last) and Firm	Date Dri	lling St	arted	Da	ate Drilli				Drill	ing Method
	ad Dutt Ildog D		ıg			8/5/	2015			8/6/2	015			llow stem ger
				Common Well Name	Final Sta			Surfac	e Elevat			Вс		Diameter
				PZ-177	Fe	et (NA	AVD88)	41	7.93 F			38)	8	.3 inches
				stimated: or Boring Location	_{T-}	ıt38	3° 11'18.0	1996"	Local (Grid Lo	cation			
State				8 N, 2,381,923.59 E E/₩								N		\square E
- II	1/4	of	1	/4 of Section , T N, R	Long	g <u>-89</u>				Fe	et _	S		Feet W
Facili	ty ID			1 -	state		Civil Town/C	ity/ or	Village					
	1.			Randolph	Illinois		Baldwin	T		0 - 11	D			
Sai	mple									5011	Prope	erties	I	
	% . (π)	ıts	eet	Soil/Rock Description					e Ci					
r	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And Geologic Origin For		S S	, F	:	essi h (t	e		₹		ents
$^{ m nbe}_{ m Ty}$	gth	×	th]	Each Major Unit		C	Graphic Log Well Diagram	6	npr	istu	uid iit	stici	8	D/Q
Number and Type	Ler	Blo	Dep			S O	Graphic Log Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	24	1 6	-	0 - 4' TOPSOIL: ML, dark yellowish brown (1	0YR		1 1	4						
SS	12	6 8 5	E ₁	4/4), clay (5-15%), clay content increasing wit depth, trace sand and roots, cohesive, nonpla	n Istic.									
1/	\		- 1	dry.	,		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
, F	1		\mathbb{L}_2			ML	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
2 SS	24 4	4 4 6 7	Ē			IVIL	\ \ \ \							
		7	_3				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
/	\		-				↓ .							
3	24	2	- 4	4 - 19.3' LEAN CLAY: CL, yellowish brown (10YR									
ss	17	2 3 4 5	E _	5/4), trace black (10YR 2/1) and dark gray (10)YR									
)		ŭ	<u>-5</u>	4/1) mottling, silt (5-15%), moist, cohesive, me plasticity, stiff to very stiff (1.0-3.5 tsf).	eaium									
L			_6											
4 SS	24 23	1 2 4 4	- 0	6' dark yellowish brown (10YR 4/4), decrease	ed									
33	23	4	E ₇	mottling.										
/	\		Ē .											
5	24	2	-8	8' trace black (10YR 2/1) and dark gray (10Y	D 4/1)									
ss \	20	2 2 4 4	F	mottling.	11 4/1)									
)		4	- 9											
/	\		Ē			CL								
6	24	2	-10											
ss	20	2 4 6 7	F 11											
- 1/	$\setminus \mid \mid$		-11											
L			- -12											
7 SS	24 20	3 4 5 8	E 12	12' yellowish brown (10YR 5/4), yellowish bro (10YR 5/8) mottling, trace coarse sand to fine	own									
		8	-13	no black mottling.	graver,									
/			E !											
8	24	3	14	14' trace black (10YR 2/1) mottling.										
ss	23	3 3 6 7	Ė											
	1	,	-15											
I here	by certif	that	the info	rmation on this form is true and correct to the be-	et of my k	novylo	laa							

Firm Natural Resource Technology
234 W. Florida St., Fifth Floor, Milwaukee, WI 53204
Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

Boring Number PZ-177 Page 2 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description In Feet Blow Counts Compressive Strength (tsf) And Geologic Origin For Number and Type Moisture Diagram Plasticity Graphic Liquid Depth] Each Major Unit SC Limit P 200 Well go 4 - 19.3' **LEAN CLAY:** CL, yellowish brown (10YR 5/4), trace black (10YR 2/1) and dark gray (10YR 4/1) mottling, silt (5-15%), moist, cohesive, medium plasticity, stiff to very stiff (1.0-3.5 tsf). *(continued)* 16 9 24 2 4 4 5 SS 23 16' increased gravel content. -17 CI 18 10 24 1 2 3 2 SS 24 19 19.3 - 22' **SILT:** ML, yellowish brown (10YR 5/4), brownish yellow (10YR 6/8) mottling, clay (5-15%), 20 11 24 2 3 4 trace sand, cohesive, nonplastic, soft (0.5 tsf), wet. SS 20' increase in clay content with depth (30-50%), ML 21 trace gravel. 2 4 13 11 22 - 29.7' LEAN CLAY: CL, yellowish brown (10YR 12 5/4), strong brown (7.5YR 5/6) mottling, silt (5-15%), trace sand and gravel, stiff to hard (1.5->4.5 tsf) SS 16 23 increasing with depth, moist to wet. 24' sand (5-15%), moist. 13 3 4 7 9 SS 24 24.5' - 25.3' black sand (0-15%). 25 26 CL 26' no mottling, decreasing sand and gravel content 14 24 4 6 11 13 SS 24 with depth to trace, dry to moist, moisture content increases with depth, cohesive, low to medium 27 plasticity, plasticity decreasing with depth. 28' clay becoming laminated with depth. 15 24 SS 22 50 for 5" 28.7' brownish yellow (10YR 6/6), yellowish brown 29 (10YR 5/4) mottling. 29.7 - 30' WELL-GRADED SAND: SW, trace 11 50 for 3" gravel and silt (noncohesive, nonplastic, rock flour), SS 17 6 GM 50 for 1' Hollow Stem 1 30 - 30.7' SILTY GRAVEL: GM, gravel is broken 1 Auger pieces of bedrock, silt is laminated, cohesive, and Refusal at nonplastic. 30.7 ft bgs. 30.7' End of Boring.

					1								Pag		of	3	
	y/Projec					License/	Permit/	Moni	toring l	Number		Boring					
	dwin E			plex f crew chief (first, last) and Firm		Date Dri	llin ~ C'	ort - 1		ID	ate Drilli		PZ-1		D.:11	na M	thad
	_	-	Name o	r crew chief (first, last) and Firm		Date Dri	lling St	arted		Da	ite Driii	ng Con	приецеа			ng Me	
	ad Dut Idog E		ισ				8/4/	2015	5			8/5/2	015		au	llow s	stem
	idog L	7111111	15	Common Well	Name	Final Sta				Surfac	e Elevat		015	Вс	rehole		ter
				PZ-178			et (NA			42	8.45 Fe	eet (N	AVD8			3 incl	
Local	Grid Or				\boxtimes	1				_	Local C						
State	Plane			4 N, 2,382,460.67 E		La	t38			.0736"				ΙN			\square E
	1/4	of	1	/4 of Section , T N, R	la.	Long				.3248"		Fe	et 🗌	S]	Feet	□W
Facilit	ty ID			County		ate				City/ or	Village						
	1.			Randolph	1	llinois		Bai	dwin			Q - 11	D				
Sar	nple											5011	Prope	erties			
	Length Att. & Recovered (in)	ıts	eet	Soil/Rock Description							ve sf)						
r pe	Att	,our	ln F	And Geologic Origin Fo	or		S	ွ		E	essi h (t	e t		5			ents
mbe I Ty	ngth	Blow Counts	Depth In Feet	Each Major Unit			SC	Graphic	" =	Diagram	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/	Ŭ U
Number and Type	Lei Re		De				n s	Ğ	Well Nº	Dig	Co	S Z	Liquic Limit	Plastic Index	P 2	RQ	ပိ
1 SS	24 16	2 7 5 5	-	0 - 6.3' SILT: ML, brown (10YR 5/3), (10-20%), noncohesive, nonplastic, st		4											
		5	F .	(1.5->4.5 tsf) decreasing with depth, d		.											
1/			- 1	1' - 1.3' cohesive, moist.													
/	\		E														
2	24	2	2	2' yellowish brown (10YR 5/4), clay (0	0-15%). I	orown											
2 SS	19	2 7 8 6	-	and gray mottling (30-50%), dry to mo													
		Ü	-3														
<i>\\</i>			E				ML										
			-4														
3 SS	24 18	2 4 6 8	ļ .	4' dark grayish brown (10YR 4/2), dar brown (10YR 4/6) mottling, increasing													
	.0	8	F _	moist.	ciay coi	nont,											
1/			<u>-5</u>														
1	\		E														
4	24	2	-6				L										
SS	23	2 3 4 5	F	6.3 - 20' LEAN CLAY: CL, dark gray													
		-	- 7	dark brown (10YR 3/3) mottling, silt (5 cohesive, medium plasticity.	5-15%), П	noist,											
<i>\\</i>	\mathbb{I}		E	, ,													
_			-8														
5 SS	24 23	1 3 3 4	-														
		4	F ₀														
1/			- 9				CL										
1	\		-														
6	24	2	-10	10' increased silt content.													
ss	24	2 2 3 5	F														
			-11														
//	\		þ														
L			-12									<u> </u>	<u></u>				
I here	by certif	fy that	the info	ormation on this form is true and correct to	o the bes	t of my k	nowled	lge.									
Signa	ture	(1)	1.1	M // // Firm	¹ Natura	al Reso	urce T	echr	าดใดยง				Tel:	(414)	837-36	07	
		Val	m /	4 HM		Florida					WI 532	204		(414)			

Firm Natural Resource Technology Tel: (414) 837-3607
234 W. Florida St., Fifth Floor, Milwaukee, WI 53204 Fax: (414) 837-3608
Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

Boring Number PZ-178 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) In Feet Blow Counts S 2 Number and Type And Geologic Origin For Comments Moisture Plasticity Diagram Graphic Liquid Limit Depth] Each Major Unit S_{C} P 200 Well go 6.3 - 20' **LEAN CLAY:** CL, dark gray (10YR 4/1), dark brown (10YR 3/3) mottling, silt (5-15%), moist, 24 22 cohesive, medium plasticity. (continued) 13 -14 8 24 22 SS 15 16 CL 9 24 16' trace coarse sand. SS 22 17 -18 10 24 SS 20 19 20 - 24.3' LEAN CLAY: to SILT: CL, dark gray 11 24 SS 24 (10YR 4/1), dark brown (10YR 3/3) mottling, clay (40-60%), silt (40-60%), trace coarse sand, 21 cohesive, medium plasticity, moist. 21.7' - 22' sand seam (mostly sand with silt). 22 12 SS 24 CL 24 23 23' interbedded sand (mostly fine to medium sand), silt and clay layers, wet. -24 13 24 1 12 17 20 SS 18 24.3 - 26' SANDY SILT: s(ML), medium to coarse sand, moist, cohesive, nonplastic. 25 s(ML) 26 26 - 26.3' POORLY-GRADED SAND: SP, 14 24 8 16 18 25 _SP 22 yellowish brown (10YR 5/4), mostly fine sand, trace SS medium sand and silt, wet. 27 26.3 - 43.5' LEAN CLAY: CL, fine to coarse sand (5-15%), trace gravel, yellowish brown (10YR 5/4), very stiff to hard (2.5->4.5 tsf), moist. 26.6' dark gray (10YR 4/1) mottling, silt (5-15%), 15 24 increase in silt content with depth, trace very thin SS 22 sand seams, trace black fine gravel, cohesive, nonplastic, dry. 29 28' - 28.6' wet in sand seams. CL 28.6' trace sand and silt, cohesive, medium to high plasticity, moist. 16 24 30' trace fine gravel, no sand. SS 19 9 13 -31

Boring Number PZ-178

Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) In Feet Blow Counts And Geologic Origin For Number and Type Moisture Diagram Plasticity Graphic Liquid Depth] Each Major Unit OSC P 200 Limit Well go 24 26.3 - 43.5' LEAN CLAY: CL, fine to coarse sand SS 17 (5-15%), trace gravel, yellowish brown (10YR 5/4), very stiff to hard (2.5->4.5 tsf), moist. *(continued)* 33 32' increased mottling, trace fine gravel, no sand. 33' brown (10YR 4/3), no mottling, no gravel, trace silt, cohesive, very stiff, dry. 34 34' brown (10YR 5/3), yellowish brown (10YR 5/6) 18 24 20 SS mottling (5-15%). 35 -36 24 22 12 20 24 24 36' increase to yellowish brown (10YR 5/6) mottling 19 SS (30-50%), trace coarse sand, becoming laminated with depth. -37 CL 38 20 SS 24 38.3' silt seam (very soft, wet), trace sand. 39 39.6° dark gray grading to black with depth, trace olive yellow (2.5Y 6/6) mottling, silt (5-15%), dry to 40 21 SS 24 24 40' trace dark gray (10YR 4/1) and brownish yellow (10YR 6/8) mottling, no laminations, silt (5-15%), 40.1' black seam (<0.25" thick). 22 SS 7 16 50 for 5" 42' silt (30-50%), moist to dry, cohesive, nonplastic 17 17 to low plasticity. 42.2' - 42.5' mostly silt seams [brownish yellow -43 (10YR 6/6), dry]. 43.4' becoming laminated with depth. 23 50 for 1" Hollow Stem 43.5' End of Boring. 0 Auger Refusal at 43.5 ft bgs.

Facili	ty/Projec	t Nan	ne		License/	Permit/	Monito	oring 1	Numb	er	Boring		ge 1 oer	OI	<u> </u>	—
	dwin E											PZ-				
	_	-	Name o	f crew chief (first, last) and Firm	Date Dri	lling St	arted			Date Drill	ing Cor	npletec	l		ing Metho	
	ad Dut Ildog E		ıσ			7/20	/2015	τ .			7/30/2	2015			llow ste ger	m
	nuog L	/111111	ıg	Common Well Name	Final Sta				Surf	ace Eleva		2013	Bo		Diameter	
				PZ-182	Fe	et (NA	AVD8	38)	4	28.47 F	eet (N	AVD	88)	8	.3 inche	S
	Grid Or			stimated:) or Boring Location	10	ıt <u>38</u>	3° 1	1'40).2432	" Local C	Grid Lo	cation	•			
State	Plane 1/4			0 N, 2,382,412.47 E E / W /4 of Section , T N, R	Lon				4.836	_	Fe		□N □S			⊒ E ⊒ W
Facili		01	1		State					<u>– </u> or Village	г	жı _			reet [<u> w</u>
				Randolph	Illinois		Bald	win	-							
Sa	nple										Soil	Prop	erties			
	Length Att. & Recovered (in)	ts	set	Soil/Rock Description						é Œ						
r pe	Att.	,oun	ln Fe	And Geologic Origin For		S	S		я	essiv h (ts	9 ₁		<u>\$</u>		stre	3
Number and Type	ngth	Blow Counts	Depth In Feet	Each Major Unit		SCS	Graphic Log	Well	agrai	Compressive Strength (tsf)	Moisture Content	Liquid	Plasticity Index	200	RQD/ Comments	
	Lei		De			Ď	53	i ≱ i	Ö	St. St.	≱రి	Lii	Pla	P 2	N 5	;
1 SS	24 15	5 9 10 8	Ė	0 - 2' SILTY CLAY CL/ML, grayish brown (1 5/2), gravel (5-15%), cohesive, low to mediun	OYR n				Š							
)		8	-1	plasticity, dry. 0.9' - 2' yellowish brown (10YR 5/4), trace gr	av	CL/ML										
/	\		F	(10YR 6/1) mottling, silt (10-20%), medium to	high											
2	24		-2	plasticity. 2 - 4' Shelby Tube Sample.		 		Ш							ST2: 24"	•
ST	23		E.	, '											push at 550lbs.	
			_3												COOIDS.	
			E ₄													
3 SS	24 15.5	2 3 6 7	F ⁴	4 - 12' SILTY CLAY CL/ML, grayish brown (5/2), trace very dark brown (10YR 2/2) mottlin	10YR											
	10.0	7	_5	(5-15%) and gravel, trace sand, medium plas	ticity,											
/	\setminus		E	medium to very stiff (0.75-2.75 tsf), moist.												
4	24	3	_6	6' - 7.7' low to medium plasticity.												
ss	20	3 4 5 6	E	o 7.7 low to mediam plasticity.												
			7	7.21 in automatically and the second (20. 200/).	:_											
V	\		E	7.2' increase in silt content (20-30%), increase very fine sand content (5-15%).	se in											
5	24	1 3 3	- 8			CL/ML										
SS	23	3 4	_9													
1/	$\setminus \mid \cdot \mid$		þ í	9.3' sandy silt seams (sand is very fine).												
, F	1 04		E ₁₀	9.9' sandy silt seams (sand is very fine).												
6 SS	24 20.5	3 4 4	E	10' - 12' medium plasticity.												
)		4	-11													
V	\		Ė													
7	24		12	12 - 14' Shelby Tube Sample.		<u> </u>									ST7: 24'	
ST	21		F 12												push.	
			-13													
I here	by certif	v that	the info	rmation on this form is true and correct to the be	est of my k	nowled	lge.	1			1			<u> </u>	<u> </u>	
Signa	-	1/1	·	1 12	ral Reso			വിക്ക	v			Tel	: (414)	837-36	507	
	9	VIM	d	1/2 / / / / / / / / / / / / / / / / / /	V. Florida					ee, <u>WI</u> 532	204_		: (414)			
		,		17								GLOG -	Project:	BALD	WIN GINT	.GPJ

In Feet

Depth]

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

-30

-31

32

33

-34

plasticity, dry. 34' End of Boring

32.7' - 32.9' very dark gray (2.5Y 3/1), trace silt, high

Sample

Number and Type

8

SS

9

SS

10

SS

SS

13

SS

14

SS

15

SS

16

SS

17

SS

Length Att. & Recovered (in)

24

21

24

22

24

24

24

20

24

20

24

24

24

18

24

16

24

10

Blow Counts

6

6

Boring Number PZ-182 Page 2 of 2 Soil Properties Soil/Rock Description Compressive Strength (tsf) And Geologic Origin For Moisture Diagram Plasticity Graphic Liquid Each Major Unit USCLimit P 200 Well Log 12 - 14' Shelby Tube Sample. (continued) 14 - 22' SILTY CLAY CL/ML, grayish brown (10YR 5/2), trace very dark brown (10YR 2/2) mottling, silt (10-20%), gravel (5-15%), trace sand, low to medium plasticity, medium to very stiff (0.75-3.0 tsf), moist. 16' color grades to grayish brown (10YR 5/2), dark yellowish brown (10YR 4/4) mottling, medium plasticity. 16.3' - 17.4' very dark brown (10YR 2/2) mottling. CL/ML 18.4' trace coarse sand and subangular fine gravel. 20' 0-10% sand. 21.1' pocket of weak red (10R 5/4), medium sand (1" diameter). 22 - 24' Shelby Tube Sample. ST12: 24" push at 200lbs. 24 - 27' SILTY CLAY CL/ML, brown (10YR 5/3), trace very dark brown (10YR 2/2) mottling, silt (20-30%), gravel (5-15%), very fine to fine sand (10-20%), cohesive, medium to high plasticity, medium (0.5-0.75 tsf), moist to wet CL/ML 24.5' - 25.6' yellowish brown (10YR 5/6), grayish brown (10YR 5/2) mottling, trace subrounded gravel. 25.4' black (10YR 2/1) gravel (shale, 1" diameter), sand content increasing with depth. WOR = 26' decrease in very fine sand content 5-15%, Weight of medium plasticity, wet. Rods 26.6' seam of coarse sand and fine gravel. 26.7' very stiff (3.0 tsf). SW 27 - 29.1' WELL-GRADED SAND: SW, yellowish brown (10YR 5/6), trace silt, clay, and fine gravel, \ 28' - 28.1' increase in very fine sand content. s(CL)g 29.1 - 30' SANDY LEAN CLAY WITH GRAVEL: s(CL)g, yellowish brown (10YR 5/6), well-graded sand (10-20%), subangular fine gravel (5-15%), trace/ silt, wet. 30 - 34' SILTY CLAY CL/ML, brown (10YR 5/3), very dark brown (10YR 2/2) mottling, silt (20-30%), gravel (5-15%), very fine to fine sand (10-20%), CL/ML cohesive, low to medium plasticity, stiff to very stiff (1.25-4.0 tsf), moist to wet. 30.8' - 31.1' layer of coarse sand and subangular fine gravel, clay (50%). 32' - 34' silt (10-20%), subangular gravel (5-10%), very fine sand (5-10%), sand and gravel content decreasing with depth, medium to low plasticity.

APPENDIX C3 TPZ 100 SERIES BORING LOGS AND WELL DETAILS

	KELRON ENVIRONMENTAL Incorporated		LOC	G O	F PF	ROB	EHC	DLE '	TPZ	'-158 (Page 1 of 2)	
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 4" OD Geologist : Stuart Cravens (: Solid Flight Auger (CME-55LC) Ground Elevation : 453.26 d : MacroCore (60") Casing (MP) Elevation : 456.26								
Depth in Feet	DESCRIPTION		Surf. Elev. 453.26	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		: TPZ-158 .: 456.26 — Cover	
0-	Silty Loam with roots, stiff, non-plastic, p 6/3), dry	pale brown (10YR		1	60/60	2				Concrete	
-	- dark brown (10YR 3/3)			2		2.75	CL				
_	Silty CLAY, very stiff, low plasticity, gray yellowish-brown mottling, moist	(10YR 5/1) with		3		3.75					
-			- 450	4		3.5					
-										Seal Bentonite Chips	
5-	- 25-50% mottling w/ black oxidation staining- high plasticity, <25% mottling			5		4.5					
-	ingriplasticity, 12070 mottaing			6	60/60	2.5				Riser (Sch 40 PVC)	
=				7		2.5					
-				8		1.25					
-			- 445	9		1.25	CL				
-				10		1.75					
10-				11	60/60	175					
_				11	60/60	1.75				Filter Pack	
-	- trace fine-medium sand, brownish y (10YR 6/8)	vellow mottling		12		3.5					
-	trace fine-coarse sand and fine gray sub-angular)	vel (angular to		13		2.25				Screen (pre-pack) 1.25" diam; 9.06' op	
-	- few to little sand and gravel, very st mottling	iff, 50-75%	- 440	14		2.75					
-				15		2.5					

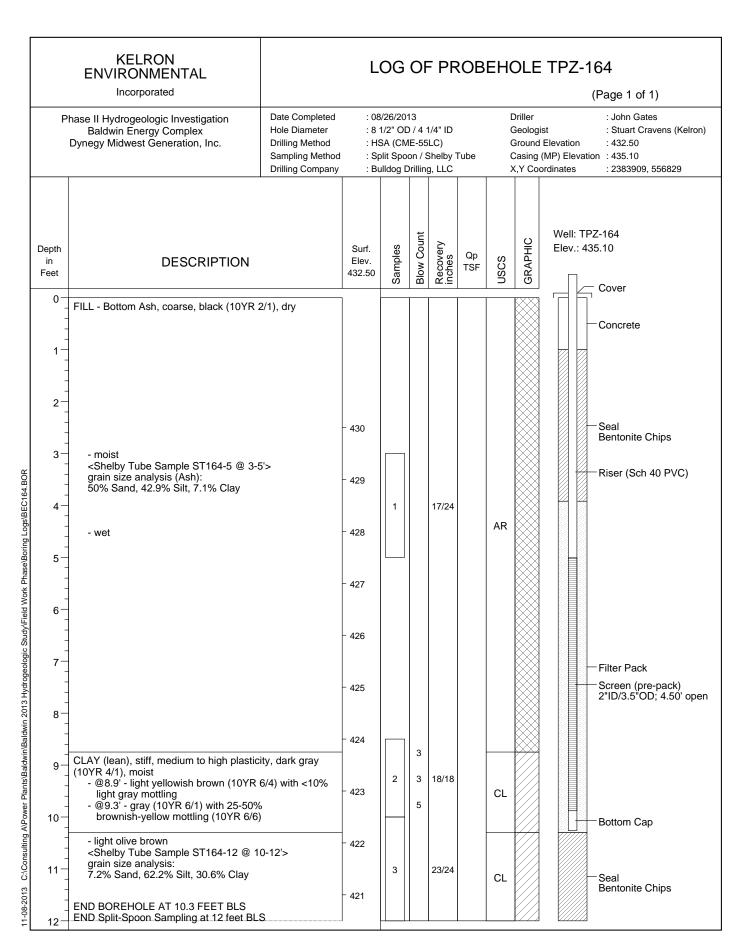
	KELRON ENVIRONMENTAL Incorporated		LOC	LOG OF PROBEHOLE TPZ-158 (Page 2 of 2)								
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/27/2013 Driller : John Gates : 4" OD Geologist : Stuart Crave : Solid Flight Auger (CME-55LC) Ground Elevation : 453.26 : MacroCore (60") Casing (MP) Elevation : 456.26 : Bulldog Drilling, LLC X,Y Coordinates : 2387752, 55									
Depth in Feet	DESCRIPTION		Surf. Elev. 453.26	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		TPZ-158 456.26		
15 -	- high plasticity			16	60/60	1.0						
-	- trace fine to medium sand, soft, ligh with 50-75% brownish-yellow mottli			17		0.75	CL					
-	Sandy CLAY (fine to medium sand) with gravel (<1"), very soft	trace fine-coarse		18						Filter Pack		
-	SAND, fine to coarse, well graded, brow 6/8), wet	nish-yellow (10YR	- 435	10			sw			Screen (pre-pack) 1.25" diam; 9.06' op		
-	Sandy CLAY (fine-coarse sand) with granon-plastic, moist	avel, hard,		19		>4.5				Bottom Cap		
20-	Silty CLAY with trace sand and gravel, har high plasticity, very pale brown (10YR 7/3)	hard, medium to 7/3)		20		>4.5	CL					
-	- very soft, high plasticity			21	60/60	<0.5						
-	SAND, fine to coarse, well graded, yello 5/8), wet	wish-brown (10YR	_	22								
-				23						Seal of MacroCore h Bentonite Chips		
-			- 430	24			SW					
-												
25-	Silty CLAY with trace fine to coarse san brownish-yellow (10YR 6/6), moist			25		4.0	CL SH					
- -	SHALE, weathered, gray (10YR 6/1), dr - platy/laminated, dark gray (10YR 4/ - top of bedrock = 24.75' bls	y at 24.75 (1), at 24.9'										
-	END BOREHOLE AT 25 FEET BLS											
-												
-			- 425									
-												
30-												

Depth in Feet	Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 4" OD : Solid : Macro	Flight /	(60")		G 5LC) G Ca	eologist round El		(Page 1 of 3) : John Gates : Stuart Cravens (Kelror: 444.69			
in Feet	DESCRIPTION				: 4" OD Geologist : Stuart Crave								
0			Surf. Elev. 444.69	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		TPZ-159 447.64 — Cover			
	FILL - Bottom Ash with some clay and silt FILL - Silty CLAY with some bottom ash, shard, low-medium plasticity, yellowish browith variable brown to gray mottling	sand, and gravel,		1	49/60		AR			Concrete			
5			- 440	2	7/42		FL/CL						
10-	- few bottom ash, very stiff, high plastic	city, moist	- 435	3	8/18	3.0				Seal Bentonite Chips Riser (Sch 40 PVC)			
15	Silty CLAY, trace fine-coarse sand, stiff, n light yellowish brown (10YR 6/4), moist	ned plasticity,	- 430	5	0/60	2.5							
-	- high plasticity, gray (10YR 5/1) with < yellowish-brown mottling	×10%		6 7 8		3.25 1.75 2.0	CL			Filter Pack			

	KELRON ENVIRONMENTAL Incorporated		LOC	9 O	F PF	ROE	BEH	OLE	TPZ-159 (Page 2 of 3)
Phase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.		Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: Solid Flight Auger (CME-55LC)					Casing (: John Gates st : Stuart Cravens (Kelron) Elevation : 444.69 MP) Elevation : 447.64 rdinates : 2383974, 558081
Depth in Feet	DESCRIPTION		Surf. Elev. 444.69	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: TPZ-159 Elev.: 447.64
20-	Silty CLAY, trace fine-coarse sand, stiff, light yellowish brown (10YR 6/4), moist	med plasticity,							
- - -				10	16/60				
- 25-	- soft to medium hardness, yellowish with black manganese staining	-brown mottling	- 420	11	32/60	1.5			Filter Pack Screen (pre-pack) 1.25" diam; 9.06' oper
- - -	- high plasticity, brown (10YR 5/3)			12		1.25			
30-	- trace fine-medium sand, very stiff, o with 10-25% yellowish-brown mottl		- 415	14		1.25 2.75	CL		Bottom Cap
- -	- no sand, brown			16	49/60	1.5			
-	- trace sand, gray (10YR 6/1) with 10)-25%		18		1.0			
- - -	yellowish-brown mottling - trace fine-coarse sand and gravel (sub-rounded)		- 410	19		2.0			
35 — - -	- stiff, medium plasticity, pale brown <10% gray mottling	(10YR 6/3) with	710	21	60/60	2.5			Seal of MacroCore h Bentonite Chips
- - -				22		2.0			
-				24		0.5			
40-	 few fine-coarse sand and fine grave yellowish brown (10YR 5/8) hard, non-plastic, dry 	el, very stiff,	- 405	25		3.0			

	KELRON ENVIRONMENTAL Incorporated		LOC	9 O	F PI	ROE	BEH(OLE	TPZ-′	159 (Page 3 of 3)
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: Macro	Flight Core	ight Auger (CME-55LC) Core (60")				it Elevation MP) Elevati	: John Gates : Stuart Cravens (Kelron) : 444.69 on : 447.64 : 2383974, 558081
Depth in Feet	DESCRIPTION		Surf. Elev. 444.69	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: T Elev.: 4	PZ-159 147.64
40	- trace sand and gravel, very stiff, hig (10YR 5/3) to pale brown (10YR 6/3	gh plasticity, brown		26	50/60		CL			
- - - 45 - - - -	SAND, fine to coarse, well graded, gree (10Y 5/1), wet (2.4 inch seam) Silty CLAY, trace sand, hard grading to plasticity grading to high plasticity, dark moist [TILL]	very stiff, low	- - - 400	29		<0.5 >4.5	SW			—Seal of MacroCore hold Bentonite Chips
			- 395	31	5/60	3.25	CL			
50 —	END BOREHOLE AT 50 FEET BLS									
- 55 — - - -			- 390							
- - - - - 60			- 385							

KELRON LOG OF PROBEHOLE TPZ-160 **ENVIRONMENTAL** Incorporated (Page 1 of 2) : 08/21/2013 **Date Completed** Driller : John Gates Phase II Hydrogeologic Investigation Hole Diameter : 4" OD Geologist : Stuart Cravens (Kelron) Baldwin Energy Complex Dynegy Midwest Generation, Inc. **Drilling Method** : Solid Flight Auger (CME-55LC) **Ground Elevation** : 428.59 Sampling Method : MacroCore (60") Casing (MP) Elevation: 431.49 **Drilling Company** : Bulldog Drilling, LLC X,Y Coordinates : 2380230, 558046 Well: TPZ-160 GRAPHIC Recovery inches Elev.: 431.49 Depth Surf. Samples Qp USCS DESCRIPTION Elev. in TSF Feet 428.59 Cover 0 Silty CLAY with grass / roots, hard, non-plastic, pale 58/60 4.5 Concrete brown (10YR 6/3), dry gray (10YR 6/1) with reddish-brown mottling and 2 3.25 black oxidation staining very stiff, low plasticity, brown (10YR 4/3), moist high plasticity, grayish brown (10YR 5/2) with 10-25% reddish-brown mottling' 3 3.0 4 3.0 425 5 2.25 Seal CL Bentonite Chips 5 11-08-2013 C:\Consulting A\Power Plants\Baldwin\Baldwin 2013 Hydrogeologic Study\Field Work Phase\Boring Logs\BEC160.BOR 6 58/60 1.5 - gray (10YR 6/1), <10% mottling Riser (Sch 40 PVC) 7 1.0 8 1.0 - 10-25% mottling, black organics 9 1.0 420 10 1.0 Sandy SILT, fine sand, very soft, non-plastic, light brownish gray (10YR 6/2), wet 11 41/60 Clayey SILT, trace fine sand, very soft, medium plasticity, ML12 <0.5 gray (10YR 6/1) 13 < 0.5 14 < 0.5 415 Silty CLAY, medium to high plasticity, gray with trace CL Screen (pre-pack) reddish-brown mottling, moist 15 1.25 1.25" diam; 9.06' open - 1-inch weathered zone with 75% yellowish-brown 15-(10YR 5/8) mottling @ 14.5' SILT, gray (10YR 7/1), wet @ 14.9' Filter Pack 16/60 16 ML 17 1.25 410 CLAY, medium hardness, brown (10YR 5/3), moist - greenish gray (Gley1 10GY 5/1) CL **Bottom Cap** 18 1.5 20


	KELRON ENVIRONMENTAL Incorporated		LOC	ΘO	F PF	ROE	BEHC	LE	TPZ-16	80 age 2 of 2)
Phase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.		Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/21/ : 4" OD : Solid : Macro : Bulldo	Flight <i>i</i> Core	(60")		asing (: John Gates : Stuart Cravens (Kelron : 428.59	
Depth in Feet	DESCRIPTION		Surf. Elev. 428.59	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: TPZ Elev.: 43	
20				19	24/60					
- - - 25 —	- gray (10YR 6/1) - very soft, brown (10YR 5/3) - soft, greenish gray		- 405	20		<0.5 1.25	CL			
- - -				22	27/60					
- - -			- 400	23 24 25 26		0.75 1.0 1.5 2.5				Seal of MacroCore Hentonite Chips
30-	Silty CLAY with fine-coarse sand and fir (sub-angular to sub-rounded), very stiff, with reddish-brown mottling [TILL]	ne gravel greenish gray		27	27/60		_			
- - - -	 very soft, high plasticity, yellowish-b medium plasticity, greenish gray wiyellowish-brown mottling, moist 	,	- 395	28 29 30		0.5 0.5	CL			
35 — - - -	Sandy CLAY, stiff, dark yellowish-brown <25% greenish-gray mottling, dry END BOREHOLE AT 35 FEET BLS	n (10YR 4/4) with	7				-CL-	\		
- - -			- 390							

KELRON LOG OF PROBEHOLE TPZ-163 **ENVIRONMENTAL** Incorporated (Page 1 of 2) Date Completed : 08/27/2013 Driller : John Gates Phase II Hydrogeologic Investigation Hole Diameter : 8 1/2" OD / 4 1/4" ID Geologist : Stuart Cravens (Kelron) Baldwin Energy Complex Dynegy Midwest Generation, Inc. **Drilling Method** : HSA (CME-55LC) **Ground Elevation** : 455.51 Sampling Method : Split Spoon / Shelby Tube Casing (MP) Elevation: 458.41 : Bulldog Drilling, LLC X,Y Coordinates : 2385507, 555798 **Drilling Company** Well: TPZ-163 **Blow Count** GRAPHIC Recovery inches Samples Elev.: 458.41 Depth Surf. Qp **USCS DESCRIPTION** Elev. in TSF Feet 455.51 Cover 0 FILL - Silty clay loam with roots, loose, pale brown FL/CL Concrete (10YR 6/3), dry (13" thick soil cover) FILL - Fly Ash, silty, loose very dark gray (10YR 3/1) <Shelby Tube Sample ST163-3 @1.5-3.5'> 1 9/24 grain size analysis (Ash - very dark brown): 51% Sand, 45.8% Silt, 3.2% Clay Seal Bentonite Chips 5 450 Riser (Sch 40 PVC) 11-08-2013 C:\Consulting A\Power Plants\Baldwin\Baldwin 2013 Hydrogeologic Study\Field Work Phase\Boring Logs\BEC163.BOR - very soft, wet 2 0 18/18 < 0.5 AR 10 445 Filter Pack 3 18/18 < 0.5 0 Screen (pre-pack) 2"ID/3.5"OD; 9.50' open 15 440 Bottom Cap Silty CLAY (lean to fat), trace fine sand, stiff, medium 4 3 17/18 2.75 to high plasticity, gray (10YR 6/1) with 10-25% yellowish-brown mottling (10YR 6/8), moist 20 435 CL/CH Seal of HSA hole Bentonite Chips 5 2 18/18 2.25 - very stiff

25

KELRON LOG OF PROBEHOLE TPZ-163 **ENVIRONMENTAL** Incorporated (Page 2 of 2) Date Completed : 08/27/2013 Driller : John Gates Phase II Hydrogeologic Investigation Hole Diameter : 8 1/2" OD / 4 1/4" ID Geologist : Stuart Cravens (Kelron) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : HSA (CME-55LC) **Ground Elevation** : 455.51 Sampling Method : Split Spoon / Shelby Tube Casing (MP) Elevation: 458.41 Drilling Company : Bulldog Drilling, LLC X,Y Coordinates : 2385507, 555798 Well: TPZ-163 **Blow Count** GRAPHIC Recovery inches Samples Elev.: 458.41 Depth Surf. Qp **USCS DESCRIPTION** Elev. in TSF Feet 455.51 25 - dark yellowish brown <Shelby Tube Sample ST163-30 @ 28-30'> grain size analysis: 6 24/24 CL/CH 10.6% Sand, 51.2% Silt, 38.2% Clay 30 425 11-08-2013 C:\Consulting A\Power Plants\Baldwin\Baldwin 2013 Hydrogeologic Study\Field Work Phase\Boring Logs\BEC163.BOR Silty CLAY with trace fine-coarse sand and fine 2 gravel, stiff to very stiff, high plasticity, brownish-yellow (10YR 6/6), moist [TILL] 7 2 18/18 2.5 5 35 Seal of HSA hole Bentonite Chips 420 - medium plasticity, pale brown (10YR 6/3) CL 8 5 18/18 3.5 - brownish-yellow (10YR 6/6) with 10-25% light 40 gray mottling (10YR 6/1) 415 SHALE, platy/laminated with weathered clay layers; hard, gray (10YR 5/1) with 25-50% olive yellow 9 7 18/18 >4.5 SH clayey layers (2.5Y 6/6) (top of bedrock = 43.5' bls) 45 END BOREHOLE AT 45 FEET BLS - 410 50

405

	KELRON ENVIRONMENTAL Incorporated		LOC	OG OF PROBEHOLE TPZ-165 (Page 1 of 1)								
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/19/2013 Driller : John Gates : 4" OD Geologist : Stuart Cravens (Filter Solid Flight Auger (CME-55LC) Ground Elevation : 396.10 : MacroCore (60") Casing (MP) Elevation : 398.85 : Bulldog Drilling, LLC X,Y Coordinates : 2380478, 555940									
Depth in Feet	DESCRIPTION		Surf. Elev. 396.10	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		TPZ-165 : 398.85 — Cover		
0- - -	FILL - Fly Ash, silty, stiff, non-plastic to I dark grayish-brown (10YR 3/2), moist	ow plasticity, very	- 395	1 2	41/60	1.75 0.75	AR			Concrete		
- - - -	FILL - Silty Clay with Fly Ash, very soft, 4/1)	dark gray (10YR		3 4 5			FL/CL			—Seal Bentonite Chips		
5	Silty CLAY (lean) with organics and root plasticity, dark gray - gray (10YR 5/1)	s, soft, high	- 390	6	60/60	1.5				Riser (Sch 40 PVC)		
- - - -	- trace sand, very dark gray brown <shelby @<br="" sample="" st165-10="" tube="">grain size analysis: 11.2% Sand, 59.2% Silt, 29.6% Clay</shelby>			9		2.752.51.25	CL					
10 — - - -			- 385	11	49/60	2.0				Filter Pack		
- - -	Silty CLAY (lean) with trace fine-coarse gravel, very soft, medium to high plastic (10YR 4/1), moist [TILL]	sand and fine ity, dark gray		13		1.0				Screen (pre-pack) 1.25" diam; 9.06' ope		
15 — - -			- 380	15 16	18/18	0.5	CL					
- - - -	LIMESTONE, hard, light gray, hammer auger refusal at 17.4' bls (top of bedrock END BOREHOLE AT 17.4 FEET BLS	refusal at 16.5', k)					LS			Bottom Cap		

	KELRON ENVIRONMENTAL Incorporated		LOC	3 O	F PF	ROE	BEHC	LE	TPZ	Z-166 (Page 1 of 2)	
Phase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.		Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: HSA (OD / (CME- oCore			Driller : John Gates Geologist : Stuart Cravens Ground Elevation : 422.33 Casing (MP) Elevation : 425.18 X,Y Coordinates : 2381183, 5555				
Depth in Feet	DESCRIPTION		Surf. Elev. 422.33	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		l: TPZ-166 /.: 425.18 Cover	
-0	FILL - Silty CLAY, trace roots, very stiff, brown gray (10YR 6/2), dry	non-plastic, light		1	60/60	2.75				Concrete	
-	- medium plasticity, pale brown (10Y manganese and iron oxide staining very stiff, yellowish brown (10YR 5/	1	- 420	2		2.75					
-	reddish-brown mottling			4		3.751.5	FL/CL				
-	- very stiff, low plasticity			5		2.75					
5- - -	- gray mottling - 1-inch silt lense with high organics, Silty CLAY, very stiff, medium plasticity, with reddish-brown mottling and mangar	gray (10YR 6/1)		6	60/60	1.5					
- - -	- medium to stiff, high plasticity, 25-5 staining	· ·	- 415	7		2.751.75				— Seal	
	- no manganese staining			9		2.5				Bentonite Chips Riser (Sch 40 PVC)	
10-				10		2.5				, , , , , , , , , , , , , , , , , , , ,	
-				11	60/60	1.5 1.5	CL				
-	- stiff, medium plasticity, yellowish br with 10-25% reddish-brown mottlin	own (10YR 5/4) g, moist	- 410	13		2.25	OL.				
-		.		14		2.0					
15-				15		2.5					
-	- very soft, high plasticity - very stiff, medium plasticity			16	60/60	3.0					
-	Silty CLAY with trace fine-coarse sand a	sand and fine grovel		18		3.0				Filter Pack	
-	very stiff, medium plasticity, yellowish br with <10% reddish-brown mottling, mois - hard, gray (10YR 6/1) with 10-25% mottling	own (10YR 5/4) t [TILL]		19		3.5	CL			Screen 2"ID, 9.45' open	

	ENVIRONMENTAL Incorporated									(Page 2 of 2)
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/16 : 8 1/2" : HSA (: Macro	OD / 4 (CME-s oCore (55LC) (60")		G G C	asing (Elevation	: John Gates : Stuart Cravens (Keln : 422.33 iion : 425.18 : 2381183, 555587
Depth in Feet	DESCRIPTION		Surf. Elev. 422.33	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: T Elev.: 4	PZ-166 425.18
20 — - - -	END BOREHOLE TPZ-166 AT 22' BLS.			21	24/24	>4.5 >4.5	CL			
- - - - - - 25	CONTINUE LOG USING URS BORING B-13-5 FROM 08/01/2013	S B-13-4 and	- 400							Filter Pack Screen 2"ID, 9.45' open Bottom Cap
- - - -			- 395				CL			
30	CUAL F. colonia of the president highly		390							
- - - 35 — - -	SHALE, calcareous, fine grained, highly weak, brown-gray to gray (top of bedroo elevation = 389.8 ft NAVD88)	weathered, very k = 32.53' bls;					SH			
- -			- 385							

	KELRON ENVIRONMENTAL Incorporated		L	OG (OF	PR	OB	EHC	DLE	TPZ	-167 (Page 1 of 3)
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 8 : H: g : Sp	3/14/20 1/2" OI SA (CN plit Spo ulldog I	0 / 4 1E-55 on / 3	SLC) Shelby		G G C	asing (Elevation	: John Gates : Stuart Cravens (Kelron)
Depth in Feet	DESCRIPTION		Surf. Elev. 438.63	Samples	Blow Count	Recovery inches	Qp TSF	nscs	GRAPHIC		TPZ-167 : 441.38 Cover
0—	FILL - Fly Ash, silty to clayey with coars size, soft, medium to high plasticity, dark 4/N), moist - very soft, non-plastic, wet	e sand grain k gray (Gley 1	- 435	1		18/18					Concrete
	- dark greenish gray (10Y 4/1)		- 430	2	2 2 1	18/18		AR		1000	— Seal Bentonite Grout — Riser (Sch 40 PVC)
10-	- silty with sand grain size, very dark gray (10Y 3/1)	greenish	- 425	3	0 0 1	18/18					
- - - 20-			- 420								Seal Bentonite Chips Filter Pack

	KELRON ENVIRONMENTAL Incorporated		L	OG	OF	PR	ОВ	EHC	DLE	TPZ-	167 (Page 2 of 3)
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 8 : H: I : Sp	3/14/20 1/2" OI SA (CN plit Spo ulldog I	0 / 4 1E-55 on / 9	SLC) Shelby	Tube	G G C	asing (Elevation	: John Gates : Stuart Cravens (Kelron : 438.63 attion : 441.38 : 2381925, 554963
Depth in Feet	DESCRIPTION		Surf. Elev. 438.63	Samples	Blow Count	Recovery inches	Qp TSF	nscs	GRAPHIC		TPZ-167 441.38
25-330-35-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3	- very dark gray brown - Sample SS167-30 @ 29-30'> grain size analysis (Ash): 1.5% Sand, 77.6% Silt, 20.8% Clay Silty CLAY (lean) with sand and trace fir angular to sub-angular), very stiff, mediu plasticity, light gray (10Y 7/N) with 15-50 brown mottling, dry [TILL] - Shelby Tube Sample ST167-34 @ 3 grain size analysis: 15.7% Sand, 52.6% Silt, 31.7% Clay	um to high 0% reddish 32-34'>	- 415 - 410	5	0 0 1 0 0 0	18/18 18/18		AR			Riser (Sch 40 PVC) Filter Pack Screen (pre-pack) 2"ID/3.5"OD; 9.50' op Bottom Cap Seal of HSA hole Bentonite Chips
- - - 40			- 400	7	3 4 6	16/18	3.5				

	KELRON ENVIRONMENTAL Incorporated		LO	OG	OF	PR	ОВ	EHC	LE	TPZ-	167 (Page 3 of 3)
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 8 : H\$: Sp	SA (CN olit Spo	D / 4 ME-55 on / 3	1/4" ID 5LC) Shelby g, LLC	Tube	Ge Gi Ca	asing (st Elevation	: John Gates : Stuart Cravens (Kelro : 438.63 ion : 441.38 : 2381925, 554963
Depth in Feet	DESCRIPTION		Surf. Elev. 438.63	Samples	Blow Count	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: T Elev.: 4	PZ-167 141.38
40 —	- soft, brownish-yellow (10YR 6/6), m - laminated, hard, non-plastic, black organic-rich layer) CLAY (lean to fat) with sand, stiff to very to high plasticity, greenish gray (10YR 6 - with sand and fine gravel (angular) SHALE, weathered; clay (laminated) with micaceous layer and limestone parting, (Gley1 4/N), dry (top of bedrock = 48.75 END BOREHOLE (Auger Refusal) at 48 END Split-Spoon Sampling at 49.15 fee	(3/4" thick y stiff, medium (1), dry th platy and dark gray bls)	- 395 - 390	9 10 11	2 2 2 5 5 5 50 50 53	18/18 18/18 3/3 5/5		CL/CH			—Seal of HSA hole Bentonite Chips
			- 385 - 380								

KELRON LOG OF PROBEHOLE TPZ-168 **ENVIRONMENTAL** Incorporated (Page 1 of 2) Date Completed : 08/15/2013 Driller : John Gates Phase II Hydrogeologic Investigation Baldwin Energy Complex Hole Diameter : 8 1/2" OD / 4 1/4" ID Geologist : Stuart Cravens (Kelron) Dynegy Midwest Generation, Inc. Drilling Method : HSA (CME-55LC) **Ground Elevation** : 454.93 Sampling Method : Split Spoon / Shelby Tube Casing (MP) Elevation: 457.53 : Bulldog Drilling, LLC X,Y Coordinates : 2383585, 554314 **Drilling Company** Well: TPZ-168 Blow Count GRAPHIC Recovery inches Elev.: 457.53 Depth Surf. Qр USCS **DESCRIPTION** Elev. in TSF Feet 454.93 Cover 0 FILL - Fly Ash, silt size, greenish gray (10Y 5/1), moist Concrete <Shelby Tube Sample ST168-5 @ 3-5'> 1 21/24 grain size analysis: 450 5 29.4% Sand, 50.2% Silt, 20.4% Clay Seal Bentonite Grout - wet 2 18/18 445 10 Riser (Sch 40 PVC) 11-08-2013 C:\Consulting A\Power Plants\Baldwin\Baldwin 2013 Hydrogeologic Study\Field Work Phase\Boring Logs\BEC168.BOR Seal Bentonite Chips - silty with coarse sand grain size, greenish black 3 AR 16/18 (1ÓY 2.5/1) 15 440 4 0/24 435 Filter Pack Screen (pre-pack) 2"ID/3.5"OD; 9.50' open 5 3/18 430 25 **Bottom Cap** Silty CLAY, medium to stiff, high plasticity, light gray 6 18/18 2.0 (10YR 7/1) with 10-50% reddish-brown mottling 30 425 Seal of HSA hole CL Bentonite Chips 420 35 CL 7 18/18 3.5 415 40

	KELRON ENVIRONMENTAL Incorporated		L(JG	UΗ	· PK	KOB	⊨H(JLE	E TPZ-	·168 (Page 2 of 2)
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 8 : H ^l d : S _l	SA (CN olit Spo	D / 4 //E-55 oon / 3	1/4" ID 5LC) Shelby g, LLC	Tube	(Casing	d Elevation	: John Gates : Stuart Cravens (Keln : 454.93 ation : 457.53 : 2383585, 554314
Depth in Feet	DESCRIPTION		Surf. Elev. 454.93	Samples	Blow Count	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: T Elev.: 4	PZ-168 457.53
40	Silty CLAY, trace sand and fine gravel (sub-angular), stiff to very stiff, 10-25% mottling, moist [TILL]	angular to eddish-brown									
45 <u> </u>			- 410								
50	- light yellowish-brown (10YR 6/4) wi gray mottling Clay, black (1/2" thick organic-rich layer surrounded by highly weathered zone w reddish-brown mottling)	- 405	8	3 7 10	18/18	3.5				
55 <u> </u>			- 400					CL			Seal of HSA hole Bentonite Chips
60-	- medium to stiff, high plasticity, yello (10YR 5/4) - with 25-50% light gray mottling	wish brown	- 395	9	3 4 8	18/18	2.0				
65 —			- 390								
70-	- with sand seams, very stiff, medium gray (10YR 4/1) SHALE, laminated, hard, dark gray (top (69.6' bls) END BOREHOLE AT 70 FEET BLS		- 385	10	10 16 18	18/18	>4.5	SH			
75 —			- 380								

APPENDIX C4 MW 200 SERIES BORING LOGS AND WELL DETAILS

KELRON ENVIRONMENTAL **LOG OF BORING MW-252 INCORPORATED** (Page 1 of 1) : 09/22/10 Ash Pond System Monitoring Well Network Date Completed Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 422.27 Location: Twp 04S, Rng 07W, 16 SE, NE, NE Sampling Method : MacroCore (60") Top of Casing Elevation 425.07 **Drilling Company** : PSC X,Y Coordinates : 2382784, 553904 Well: MW-252 GRAPHIC Samples Elev.: 425.07 Depth Surf. Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF Feet 422.27 Cover 0 422 Concrete Continuous boring - no soil sampling conducted. Refer to boring log for adjacent nested well MW-352 for a description of subsurface materials. 5 417 10 412 15 407 Grout 20 402 Bentonite Slurry 25 397 Riser (Sch 40 PVC) 30 392 c:\powerp~1\baldwin\ashmon~1\bec252~1.bor 35 387 40 382 Seal Bentonite Chips 45 377 Filter Pack 01-14-2011 Screen (pre-pack) END BOREHOLE AT 49.54 FEET BLS Bottom Cap 50

KELRON ENVIRONMENTAL LOG OF BORING MW-253 **INCORPORATED** (Page 1 of 2) Ash Pond System Monitoring Well Network Date Completed : 09/20/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 442.70 Location: Twp 04S, Rng 07W, 15 SW, SW, NE Sampling Method : MacroCore (60") Top of Casing Elevation 445.84 **Drilling Company** : PSC X,Y Coordinates : 2384430, 553298 Well: MW-253 GRAPHIC Elev.: 445.84 Depth Surf. Samples Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF 442.70 Feet Cover 0 SILTY CLAY, trace gravel, hard, light brown, dry Concrete 442 25/48 4.5+ 2 4.5-- hard, medium plasticity, gray (2.5Y 6/1) with yellow-brown mottling (10YR 5/6), moist 5 3 47/60 4.5 CL 437 4 4.5 5 4.5 Riser (Sch 40 PVC) 10 6 53/60 4.5 432 CLAY (fat) with SAND, trace gravel, dark yellow brown Grout 7 4.0 with light gray mottling, mottling decreases with depth Bentonite Slurry grain size analysis @ 11 - 12 ft: 0.7% gravel, 16.4% sand, 41.4% silt, 41.4% clay 8 4.0 c:\powerp~1\baldwin\ashmon~1\bec253~1.bor 9 3.0 15 10 52/60 4.5 СН 427 11 3.5 12 3.5 - soft 13 2.0 01-14-2011 CLAY (lean) with SAND, trace gravel, stiff to hard, CL medium plasticity, dark yellow brown 14 60/60 20

KELRON ENVIRONMENTAL LOG OF BORING MW-253 **INCORPORATED** (Page 2 of 2) Ash Pond System Monitoring Well Network Date Completed : 09/20/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID : Brendon Wilder (PSC) **Baldwin Energy Complex** Geologist Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 442.70 Location: Twp 04S, Rng 07W, 15 SW, SW, NE Sampling Method : MacroCore (60") Top of Casing Elevation 445.84 **Drilling Company** : PSC X,Y Coordinates : 2384430, 553298 Well: MW-253 GRAPHIC Elev.: 445.84 Depth Surf. Samples Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF 442.70 Feet 20 grain size analysis @ 19 - 19.5 ft: 0.7% gravel, 26.9% sand, 38.1% silt, 34.3% clay 422 14 60/60 CL Grout Bentonite Slurry Riser (Sch 40 PVC) 25 - small fine sand seams from 25 to 27 feet 417 15 60/60 Seal Bentonite Chips CLAY (fat), shaley, platy/laminated, soft, low plasticity, light yellow brown (10YR 6/4) 16 3.5 - stiff to very stiff, light olive brown (2.5Y 5/4) - grain size analysis @ 29 - 30 ft: 17 3.0 6.7% sand, 21.6% silt, 71.7% clay 30 18 60/60 4.5 412 СН Filter Pack 19 3.5 Screen (pre-pack) c:\powerp~1\baldwin\ashmon~1\bec253~1.bor 20 3.0 - Drove split-spoon 2-inches into bedrock: 34.5 to 34.7 feet bls 21 2/2 LIMESTONE with SHALE LS/SH **Bottom Cap** Auger refusal at 35.0 feet END BOREHOLE AT 35.0 FEET BLS - 407 01-14-2011 40

	KELRON ENVIRONMENTAL Incorporated		LOC	G O	F PI	ROE	BEHC)LE (OW-256 (Page 1 of 2)
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/22 : 8 1/2" : HSA (: Macro : Bulldo	OD / 4 CME-5 Core (55LC) 60")		G G C		Elevation : 425.20 MP) Elevation : 427.70
Depth in Feet	DESCRIPTION		Surf. Elev. 425.20	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: OW-256 Elev.: 427.70
0-	Continuous boring to 13.5 feet below granger Refer to boring log for adjacent well OW	ound surface. -156.	- 425						Concrete
- - - 5 - - - -			- 420				CL		
- 10 — - - -			- 415						Seal Bentonite Chips Riser (Sch 40 PVC)
- - 15 — - -	CLAY (lean), very stiff, high plasticity, pa 6/3),moist - 25% reddish-brown mottling with bl staining - light gray (10YR 7/1) with 10-25% r	ack manganese	- 410	2 3	60/60	3.0 2.25 2.0	CL		
-	Silty CLAY, trace fine to coarse sand [T	ILL]	_	5	60/60	1.75	CL		

	ase II Hydrogeologic Investigation Baldwin Energy Complex									(Page 2 of 2)
	ynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/22/ : 8 1/2" : HSA (: Macro	OD / 4 CME- Core	55LC) (60")		Ge Gi Ca		evation IP) Elevat	: John Gates : Stuart Cravens (Kelro : 425.20 ction : 427.70 : 2381947, 558054
Depth in Feet	DESCRIPTION		Surf. Elev. 425.20	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		OW-256 427.70
20			405	8		1.0 1.75				
- - - -	- trace fine-coarse gravel (angular to	sub-angular;		10		1.75	CL			—Seal Bentonite Chips
25	granite piece of 1 1/4"), 50-75% yel (10YR 6/8) mottling - few sand and gravel, stiff, high plas 6/1) with 25-75% mottling - <25% mottling - with sand (fine-medium)		- 400	12	60/60	2.0				
-		nish vellow (10YR	_	13		1.0				Riser (Sch 40 PVC
_ 6 	Silty CLAY (lean) with sand (fine-mediur medium plasticity, brownish yellow, wet		_	15	35/60		SW			
30		v (10VP 6/2)	- 395	17		>4.5				Filter Pack
-	 hard, non plastic, light brownish gramoist [Vandalia Till @ 31.5'] little sand (fine-coarse) and gravel (sub-angular to sub-rounded), low to gray (10YR 5/1) 	fine-coarse,		19		Z4.0	CL			Screen (pre-pack) 2"ID/3.5"OD; 4.50'c
	SHALE and CLAY, semi-competent, lam		-	20	54/60	3.0				Bottom Cap
	up to 1/2-inch thick layers of hard shale, of weathered bedrock at 33.9 feet below		- 390	22		4.0	SH/CL			Seal of HSA hole Bentonite Chips
- 8	SHALE with intermittent clay layers, hard	d, gray		23		>4.5 >4.5	SH		<i>V/////</i>	<u> </u>
-				25		>4.5	JI1			

	KELRON ENVIRONMENTAL Incorporated		LOC	3 O	F PI	ROE	BEHC)LE (OW-29	5 7 Page 1 of 2)
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/16 : 8 1/2" : HSA (: Macro	OD / 4 CME-5 Core (55LC) (60")		G G	riller eologist round El asing (M Y Coord	evation IP) Elevatio	: John Gates : Stuart Cravens (Kelro : 428.17 n : 431.02 : 2382572, 556198
Depth in Feet	DESCRIPTION		Surf. Elev. 428.17	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: O Elev.: 4	31.02
0	Continuous boring to 18.5 feet below gr Refer to boring log for adjacent well OW	ound surface. /-157.								─ Cover ─ Concrete
- - - - 5			- 425							
-										
10			- 420				CL			
-										─Seal Bentonite Grout ─Riser (Sch 40 PVC
15—			⁻ 415							
- - -										
-	Silty CLAY, trace sand and gravel, stiff, gray (10YR 6/1) with 25-50% reddish-br moist [TILL]	high plasticity, own mottling,	- 410	1	56/60	3.0	CL			

	KELRON ENVIRONMENTAL Incorporated		LOC	O ė	FPI	≺OE	3EHC)LÉ (OW-2	257 (Page 2 of 2)
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/16/ : 8 1/2" : HSA (: Macro : Bulldo	OD / 4 CME- Core	55LC) (60")		G G C	riller eologist round El asing (M Y Coord	evation P) Elevati	: John Gates : Stuart Cravens (Kelru : 428.17 on : 431.02 : 2382572, 556198
Depth in Feet	DESCRIPTION		Surf. Elev. 428.17	Samples	Recovery inches	Qp TSF	USCS	GRAPHIC		OW-257 431.02
20 — - - -	- >50% mottling - Sandy CLAY with gravel (fine-coarse, so piece of 1.5"), brownish yellow (10YR 6/	ub-angular; granite /6), wet		3		2.75 2.5	CL			
- - -	Silty CLAY, trace sand and gravel, soft, yellowish brown (10YR5/6) with 10-25% - very soft, brownish yellow with <10	light gray mottling	- 405	5	60/60	1.5				
25 — -	- with trace pyrite crystals	76 Motuling		7		1.0				Seal Bentonite Grout
-	- medium hardness grading to stiff			9		2.0				
- -			- 400	10	60/60	3.25 1.5	CL			Riser (Sch 40 PVC
30-	- stiff, high plasticity, gray with <10% mottling, moist	reddish-brown		12		3.5 2.75				— Seal Bentonite Chips
- -	- very stiff, dark gray (10YR 4/1)			14		2.0				
- - -			- 395	15	60/60	2.0				
35- - -	- low plasticity, very dark gray (10YR			17		2.0				Filter Pack
- - -	SHALE and CLAY (fat), intermittent lam dark gray, moist [note: top of weathered feet below ground surface]	ination, hard, very bedrock at 36.3		19		3.0	SH/CL			Screen (pre-pack) 2"ID/3.5"OD; 4.50
-			- 390	21	13/13	77.0	5. ,, 52			Bottom Cap

	KELRON ENVIRONMENTAL Incorporated		LOC	G O	F PI	ROE	BEHC	DLE	MW	-262 (Page 1 of 3)
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: HSA (OD / CME- Core			G G Ca	asing (Elevation	: John Gates : Stuart Cravens (Kelron: 430.86 vation: 433.21 : 2379193, 555729
Depth in Feet	DESCRIPTION		Surf. Elev. 430.86	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC		: MW-262 :: 433.21 — Cover
0-	Silty Clay with gravel, roots, stiff, non-pla (10YR 6/3), dry	astic, pale brown	430	1	60/60	2.5				Concrete
-			430	2		>4.5				
_	- brownish yellow (10YR 6/6), moist			3		3.25				
-				4		2.5				
5-				5		2.25	CL			
-	- medium stiff, high plasticity		- 425	6	42/42	1.5				
-				7		1.75				
-				8		2.0				
-	SILT, very soft, non-plastic, light yellowi 6/4), moist [LOESS]			9	60/60	1.0				
10-	 clayey, soft to medium hardness, lo plasticity 	w to medium		10		1.5				Riser (Sch 40 PVC)
-			- 420	11		1.25				Bentonite Grout
-				12		1.5	ML			
-				13		1.5	IVIL			
- - - , _	- soft, yellowish brown (10YR 5/4) - non-plastic			14	60/60	1.0				
15 - -			- 415	15		1.25				
-				17		1.25				
-	Sandy CLAY (lean), medium hardness, plasticity, yellowish brown, moist	low to medium		18		2.0	CL			
-	SILT, very soft, non-plastic, brownish ye	ellow (10YR 6/6),		19	60/60	2.0	B 41			
-	moist	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		19	60/60	2.0	ML			

	KELRON ENVIRONMENTAL Incorporated		LOC	9 O	F PI	ROE	BEHC	DLE	MW-2	262 (Page 2 of 3)
	nase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/19/ : 8 1/2" : HSA (: Macro	OD / 4 CME-5 Core (55LC) 60")		Ge Gr Ca	asing (Elevation	: John Gates : Stuart Cravens (Kelror : 430.86 tion : 433.21 : 2379193, 555729
Depth in Feet	DESCRIPTION		Surf. Elev. 430.86	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: N Elev.:	//W-262 433.21
20			- 410	20 21 22			ML			
- - -	Silty CLAY, very soft, low plasticity - medium plasticity, wet			23	60/60	0.75 0.75				
25 — - - -	- high plasticity, yellowish brown (10Y	′R 5/4)	- 405	25 26 27		0.75 0.75	CL			
- - -	- moist			28	53/60	1.25				—Seal Bentonite Grout
30-	- with fine sand		- 400	30		0.75				Riser (Sch 40 PVC)
- -	SAND, fine to medium grained, with clay (10YR 5/6), wet - light brownish gray CLAY (fat), trace fine to medium sand, h			32			SW/SC			
35-	brownish gray <sample -="" 33.5="" 35.5'="" @="" st262-35=""> grain size analysis: 13.1% Sand, 33.2% Silt, 53.7% Clay</sample>			34	24/24					
- - -	- very stiff, greenish gray (Gley1 10Y	6/1)	- 395	36	16/36	2.75	СН			
- - -	- medium plasticity			38	56/60	2.75				Seel
40-				40		0.75				Seal Bentonite Chips

	KELRON ENVIRONMENTAL Incorporated		LOC	G O	F PI	ROE	BEHC	DLE	MW-2	262 (Page 3 of 3)
	hase II Hydrogeologic Investigation Baldwin Energy Complex Dynegy Midwest Generation, Inc.	Date Completed Hole Diameter Drilling Method Sampling Method Drilling Company	: 08/19 : 8 1/2" : HSA (: Macro	OD / 4 CME-9 Core (55LC) (60")		Ge Gi Ca	asing (I	t Elevation	: John Gates : Stuart Cravens (Kelro : 430.86 ion : 433.21 : 2379193, 555729
Depth in Feet	DESCRIPTION		Surf. Elev. 430.86	Samples	Recovery inches	Qp TSF	nscs	GRAPHIC	Well: M Elev.: 4	/IW-262 433.21
40	- with <10% reddish-brown mottling SAND with Silt, fine grained, poorly grad (10YR 6/4), wet Sandy SILT	ded, light brown	- 390	41 42 43		0.75 1.25 1.5	CH SP/SM ML			Seal Bentonite Chips Riser (Sch 40 PVC)
 45 - - -	Silty CLAY with fine sand, very soft, bro (10YR 6/6) SAND, fine grained, poorly graded SAND, fine to coarse grained, well grad Silty CLAY with trace and and gravel, st light yellowish brown (10YR 6/4), moist	led, trace gravel	- 385	44 45 46 47	60/60	0.75 0.75 1.25 3.0	CL SP SW			Screen 2"ID/3.5"OD; 4.50' o Filter Pack Bottom Cap
- - - 50 - -	- trace reddish-brown mottling SHALE, clay partings, laminated, gray, (top of bedrock = 50.4' bls)		- 380	48 49 50 51	30/30	2.252.252.253.5	CL			
	END BOREHOLE AT 51 feet BLS		- 375							
- - - -										

APPENDIX C5 MW 300 SERIES BORING LOGS AND WELL DETAILS

SOIL BORING LOG INFORMATION

T	/D :	. 3.7						1.	(D)	0.1.	. ,	. T 1		ъ :	Pag		OI	0	
Facility	_		_{1е} у Соп	anlay				License/Permit/Monitoring Number						Boring Number MW-304					
					nief (first. l:	ast) and Firr	n	Date Dr	illing St	tarted		I	Date Drill	ng Cor			Drill	ing Met	thod
_	ı Gate	-			1101 (11150, 10								21111		nprotee.	-		1/4 HS	
	ldog I		ng						10/9	/2015	5			10/20/	2015			d rota	
						Com	mon Well Name	Final Sta	atic Wa	ter Lev	/el	Surf	ace Eleva	tion		Во		Diamet	
							MW-304	Fe	et (Na	AVD8	38)	4	53.03 F			88)	8	.3 incl	nes
Local (Boring Lo		1.	at38	3° 1	1' 17	.9952	Local C	Grid Lo	cation				
State I					2,386,608		E/Ŵ					12.39				N		.	Е
Facility	1/4 v ID	OI	1	/4 of Sec	County ,	T	N, R	Lon State	<i>-</i>				- r Village	Fe	et L	S		Feet	□ W
1 401110	, 12				Randolp	oh		Illinois		Balc		C10,7 C	. , mage						
Sample													Soil	Prop	erties				
	•				5	Soil/Rock D	escription												
	tt. & d (ii	unts	Fee			nd Geologic	=						sive (tsf)						ts
ype	th A vere	Col	l In		7 11	Each Maj	_		S	nic .		E	gth	are int	7	city	_		nen
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Lacii iviaj	or Cint		SC	Graphic I og	Well 7	Diagram	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/	omr
Zä	L R	В		0 - 5 8	8' SILTY C	LAY CL/M	<u> </u>		n	9 -			S S	20	1 1	P	Ь	0-35.4	<u>.</u>
			_	0 0.0	0.2110	,21. 02,11.	- •											Blind	
			-1									\bowtie						Drilled log	
			E															MW-10	
			-2															descrip	ption
			F															details	·-
			_3						CL/ML										
			F "						OLIVIE										
			_4																
			-4																
			F _																
			<u>-5</u>																
			E						L										
			-6	5.8 -	13.5' FAT (CLAY: CH.													
			F																
			- 7																
			E																
			-8																
			F "																
			F ₀																
			- 9						СН										
			E																
			_10																
			_																
			-11																
			E																
			_ 12																
I hereb	v certif	v that	1	rmation	on this forr	n is true and	correct to the be	est of my k	nowled	ge.			ı	ı	1	1		I	
Signate						10 a do une		iral Reso			10100	FX7			Tel	: (414)	837 24	507	
_	The	Frad	Rus	hz	_		11411	II al-Reso V. Florida					e. WI 532	04		· (414) · (414)			

Natural Resource Technology
234 W. Florida St., Fifth Floor, Milwaukee, WI 53204
Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

Boring Number MW-304

Page 2 of 8

Sample		Borning realineer 17177 301	Τ					Soil	Prope	erties	01	
		Soil/Rock Description							liopi			
tt. & d (ir mts	Feet	And Geologic Origin For					ive tsf)					s
ype h At	l li		S	ic.	an l		ress gth (ure	_	city		nent
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic Log	Well Diagram)	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Z E Z Z E	Ă	E O 40 FI FAT OLAW, OLL (continued)	ר	5 7	ß Ä		<u>2</u> 2	ΣŬ	드디	P. I	Ъ	<u> </u>
	F	5.8 - 13.5' FAT CLAY: CH. (continued)										
	_ 13		СН									
	- 13		L									
	-	13.5 - 15' LEAN CLAY: CL.										
	- 14		CL									
	E		CL									
	15	15 - 23.5' SILTY CLAY CL/ML.	<u> </u>									
	F											
	-16											
	E											
	- - 17											
	- *′											
	F											
	-18											
	E											
	-19											
	L		CL/ML									
	-20											
	F		CL/ML									
	E 21											
	L											
	-22											
	F											
	23											
	L	23.5 - 24.5' SANDY FAT CLAY: s(CH).	<u> </u>									
	-24	23.3 - 24.3 SANDT FAT CLAT. S(CIT).	s(CH)									
	F		S(Cn)									
		24.5 - 27.3' POORLY-GRADED SAND : SP.										
	- 23											
	-			375								
	-26		SP	53								
	E											
	27											
	_	27.3 - 30' SILTY CLAY CL/ML.										
	-28											
	E											
	-29		CL/ML									
	<i>ــُـرُ</i> ا											
	F											
	-30	30 - 35.4' SHALE : BDX (SH).										
	É											
	-31		BDX (SH)									
	þ		(30)									
	-32											
•												

Boring Number MW-304 Page 3 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts And Geologic Origin For Comments Number and Type Moisture Diagram Plasticity Content Graphic SCS Liquid Each Major Unit 200 Well Log 30 - 35.4' SHALE: BDX (SH). (continued) 33 BDX 35 1 CORI 35.4 - 41.3' **LEAN CLAY:** CL, gray, 2" of wood on 60 top of unit, stiff, dry. 36 36.3' stiff to very hard, dry. 36.7' trace chert gravel. CL 39 40 60 40.2' dry. COR 59.5 41.3 - 46.8' SHALEY LIMESTONE: BDX (LS/SH), thinly to medium bedded with shale, intensely to moderately fractured (extremely narrow apertures). 41.6' - 42' vertical fracture. BDX (LS/SH) 3 CORI 45.4' intensely fractured. Core 3, 63 RQD=75% -46 46.8 - 55.6' **SHALE**: BDX (SH), gray, trace chert gravel, thickly bedded, highly to moderately decomposed, intensely fractured. BDX (SH) Core 4, 50.4' moderately fractured. COR 65 RQD=95% -51

Boring Number MW-304

Page 4 of 8

Cor	nnla			Boring Number IVI VV - 3U4	Т					Soil	Pa	ge 4 erties	of	8
Sai	nple									3011	Пор	Tues		-
	8 (ii)	ıts	eet	Soil/Rock Description					sf)					
be 'r	Att	mo ₂	In F	And Geologic Origin For	\sigma	ွ		되	essi th (t	it e		ity		ents
mbe I Ty	ngth	Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic	~ =	Diagram	mpr	Moisture Content	Liquid Limit	Plasticity Index	00	RQD/ Comments
Number and Type	Length Att. & Recovered (in)	BIC	De		i i	Gre	Log	Dis	Compressive Strength (tsf)	ŏ̃ Š	Liquid Limit	Plastic Index	P 200	RQ Co.
			_	46.8 - 55.6' SHALE : BDX (SH), gray, trace chert gravel, thickly bedded, highly to moderately										
			<u> </u>	decomposed, intensely fractured. (continued)										
			-53											
			E		BDX									
			_54		(SH)									
			_	54.4' intensely fractured.										
			-55											
5	60		E		L									Core 5,
CORE	57		- 56	55.6 - 60.2' LIMESTONE : BDX (LS), shaley, thickly bedded, fossiliferous, unfractured to slightly										RQD=95%
				fractured.										
			- 57											
			<u>57</u>											
			_		BDX									
			-58		(LS)			S						
			E					396						
			_59					200						Bedrock
			_											corehole
			-60											reamed 6" in diameter
6	60		E	60.2 - 81.6' SHALEY LIMESTONE : BDX (LS/SH),										to 59' for well
CORE	64		- 61	medium bedded, mostly fossiliferous limestone, highly decomposed dark gray shale beds, intensely										installation.
			- 01	to moderately fractured.										Core 6, RQD=73%
														1100 7070
			- 62											
			<u>-</u>											
			-63											
			E											
			-64											
			Ė											
			-65			\vdash	1							
7 CORE	60 66		E											Core 7, RQD=64%
00111			- 66		BDX									1100 0170
			F		(LS/SH	1)								
			□ 67											
			- 07											
			F											
			68											
			E											
			69			H								
1			Ė			\vdash								
L			70			H								
8 COR	60 63		F	70.3' thickly bedded with dark gray shale.		H								Core 8,
CORE	63		- 71			H								RQD=88%
1			Ē			H								
1			_ 72			H								
	1 1		. =	ı	1	1	1	1	1 1		I	T	'	T.

Boring Number MW-304 5 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts And Geologic Origin For Comments Number and Type Moisture Diagram Plasticity SCS Content Graphic Liquid Each Major Unit Limit 200 Well Log 60.2 - 81.6' SHALEY LIMESTONE: BDX (LS/SH), medium bedded, mostly fossiliferous limestone, highly decomposed dark gray shale beds, intensely to moderately fractured. (continued) 75' diagonal fracture (narrow aperture). 60 75.3' intensely fractured. Core 9. COR RQD=50% 60 BDX (LS/SH) 80 10 60 80.3' moderately fractured. Core 10, COR RQD=43% 81 81.6 - 91.9' **SHALE:** BDX (SH), gray, highly decomposed, intensely fractured. 11 CORI 85.4' moderately to highly decomposed, intensely Core 11, 65 RQD=57% to moderately fractured. 86 BDX (SH) 89 12 CORE 60 Core 12, 90.5' extremely narrow to very narrow apertures. 61.5 RQD=50% -91

Boring Number MW-304 Page 6 of 8 Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts And Geologic Origin For Comments Moisture Diagram Plasticity USCS Content Graphic Each Major Unit Liquid Limit 200 Well Log 91.9 - 115.3' SHALEY LIMESTONE: BDX (LS/SH), thinly to medium bedded with shale, slightly to moderately decomposed shale, intensely to moderately fractured (extremely narrow to narrow apertures). (continued) 95 13 COR 95.3' tight to very narrow apertures. Core 13, 62 RQD=48% 100 14 CORI Core 14, 100.4' thickly bedded, moderately fractured. RQD=65% 101 BDX 102 103 105 15 60 105.3' medium bedded, slightly fractured (very Core 15, COR 60 RQD=98% narrow apertures). 106 107 108 109 110 60 110.3' moderately fractured. 16 Core 16, CORI RQD=91% -111

Boring Number MW-304

Page 7 of 8

	, 1			Bornig Number 1V1 VV - 304		_				σ.		ge /	01	0
Sar	nple									Soi	Prop	erties		4
	Length Att. & Recovered (in)	Ş	et	Soil/Rock Description					o a					
o)	λtt.	unt	l Fe	And Geologic Origin For					Ssiv			>		ıts
ber Гур	th /	ŭ	h Ir	Each Major Unit	CS	hic		Lan	pres	sture ent	<u>1</u>	icit		mei
Number and Type	eng	Blow Counts	Depth In Feet	J	S	Graphic	Log	Diagram	Compressive Strangel (165)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u> </u>	L W	<u></u>		91.9 - 115.3' SHALEY LIMESTONE : BDX	n	10,	- ≥	Д	0 0	1 2 0		P II	Ь	
			E	(LS/SH), thinly to medium bedded with shale,		\Box								
			-113	slightly to moderately decomposed shale, intensely to moderately fractured (extremely narrow to narrow		H								
				apertures). (continued)		Ħ	_							
			F		BDX (LS/SH	oxdot								
			114		(LO/OI1	Н								
			E			H								
			-115			П								
17 CORE	60		L i	115.3 - 135.4' LIMESTONE : BDX (LS),		H	I							Core 17,
CORIL	60.5		-116	fossiliferous, thinly to medium bedded, slightly fractured (narrow apertures).			I							RQD=100%
			F	nacial ca (namen apontalico).			Τ							
			- 117				Т							
			117			\Box								
			E			H	÷							
			_118			H	_							
			⊨ I				-							
			-119											
			F			Н								
			120			H								
Ļ			- 120			E,	I							
18 CORE	60 59		<u> </u>	120.4' trace cherty limestone, slightly to moderately fractured (extremely narrow to very narrow		lт¦	Ι							Core 18, RQD=97%
COM	55		121	apertures).										1100-3770
			F				Т							
			-122			H	\top							
			E			H								
			-123			Ħ								
			123											
			F ,,,		BDX (LS)	Ш								
			124		(20)	Н								
			E			Н	_							
			125			H								
19 CORE	60		-	125.3' slightly fractured (very narrow to narrow		H	Ι							Core 19,
CORE	60.5		-126	apertures).		П	I							RQD=98%
			F			Щ	I							
			127				T							
			- 12/			Н	Т							
			L			H	Т							
			128											
			F			Ħ								
			129			H	+							
			<u> </u>			H	+							
1			-130			片	_							
20	60		F	130 4' year parrow aparturas		H								Core 20,
20 CORE	60		131	130.4' very narrow apertures.		H	\perp							RQD=98%
			-131			H	\Box							
1			<u> </u>			T,	\Box							
1	1		-132											

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-304 Page 8 of 8 Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet RQD/ Comments And Geologic Origin For Moisture Content Plasticity Index Well Diagram USCS Graphic Log Liquid Limit Each Major Unit P 200 115.3 - 135.4' **LIMESTONE**: BDX (LS), fossiliferous, thinly to medium bedded, slightly fractured (narrow apertures). *(continued)* 133 BDX (LS) -134 135 135.4' End of Boring.

LOG OF BORING MW-306

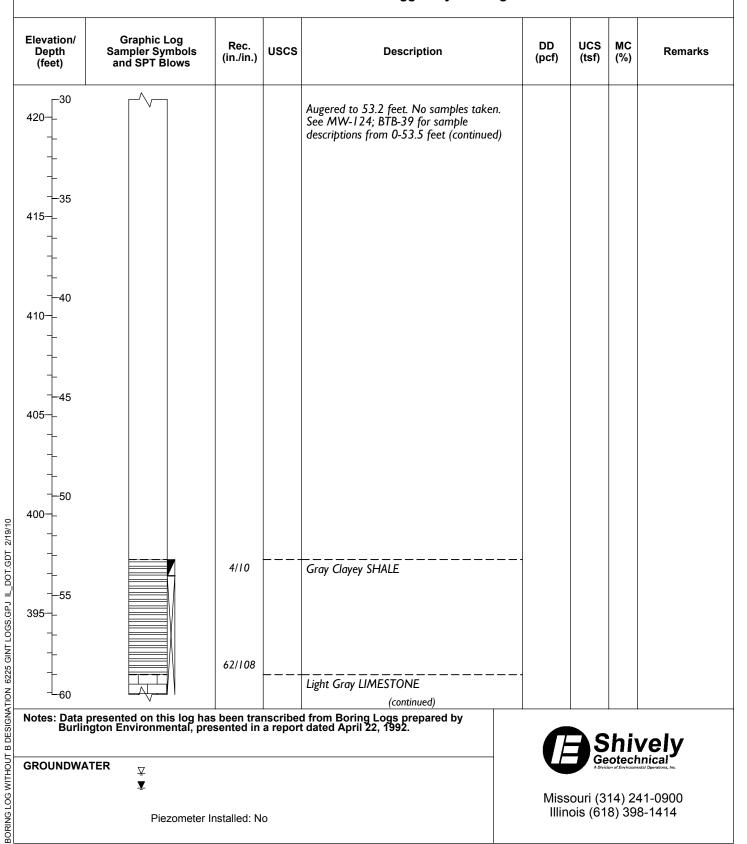
Project Name: SDR Landfill Project Date Drilled: 09/25/91

Project Location: Baldwin Energy Complex, Baldwin, IL Drilling Contractor: Burlington Environmental

Project Number: 6225 Elevation: 450.9 Feet

Drilling Method: H.S.A. & NX Rock Core **Logged By: Burlington Environmental**

Elevation/ Depth (feet)	Graphic Log Sampler Symbols and SPT Blows	Rec. (in./in.)	uscs	Description	DD (pcf)	UCS (tsf)	MC (%)	Remarks
450				Augered to 53.2 feet. No samples taken. See MW-124; BTB-39 for sample descriptions from 0-53.5 feet				
-10 440								
15 435								
 25 425 								
Notes: Data pr	resented on this log has ton Environmental, pre	been trans	scribed report	(continued) d from Boring Logs prepared by dated April 22, 1992.		\	hiv	velv
GROUNDWAT	ER	nstalled: No			Miss Illin	ouri (3	14) 24	yely inical nati Operations, Inc. 41-0900 8-1414


LOG OF BORING MW-306 (Cont.)

Project Name: SDR Landfill Project Date Drilled: 09/25/91

Project Location: Baldwin Energy Complex, Baldwin, IL Drilling Contractor: Burlington Environmental

Project Number: 6225 Elevation: 450.9 Feet

Drilling Method: H.S.A. & NX Rock Core Logged By: Burlington Environmental

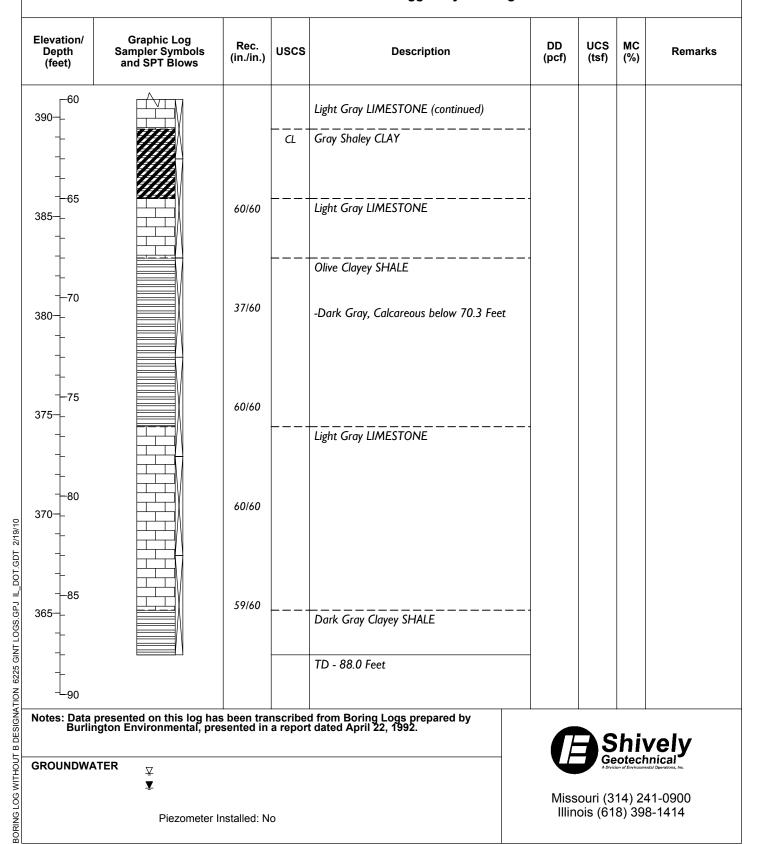
GROUNDWATER

 ∇ Ţ

Piezometer Installed: No

Missouri (314) 241-0900 Illinois (618) 398-1414

LOG OF BORING MW-306 (Cont.)

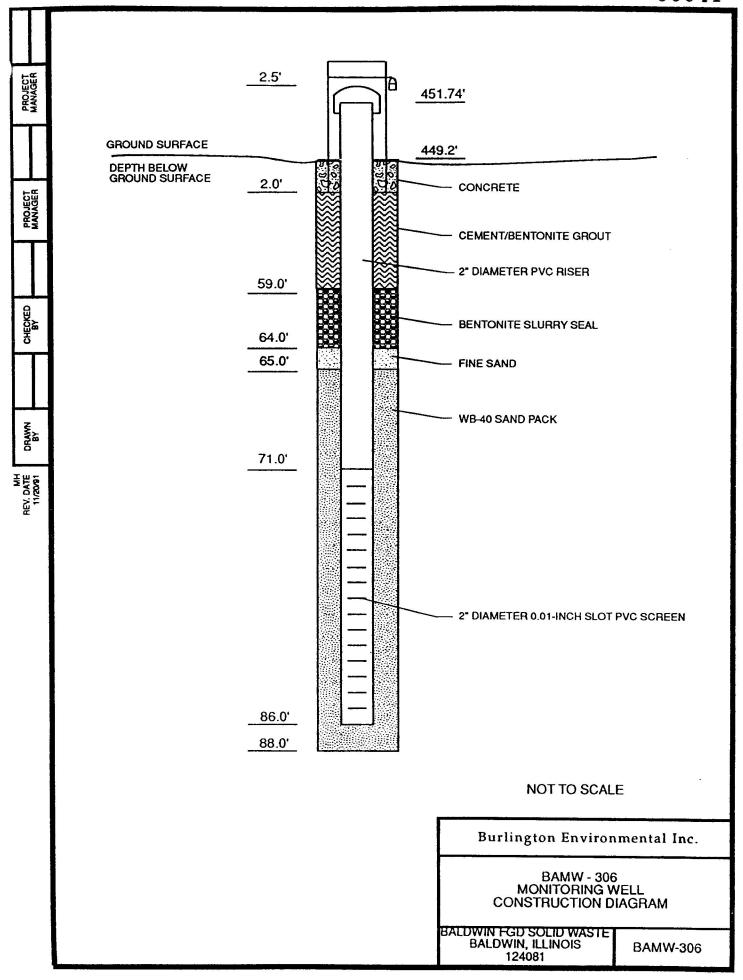

Project Name: SDR Landfill Project

Date Drilled: 09/25/91

Project Location: Baldwin Energy Complex, Baldwin, IL Drilling Contractor: Burlington Environmental

Project Number: 6225 Elevation: 450.9 Feet

Drilling Method: H.S.A. & NX Rock Core Logged By: Burlington Environmental


GROUNDWATER

 ∇ Ţ

Piezometer Installed: No

Missouri (314) 241-0900 Illinois (618) 398-1414

Missouri (314) 241-0900 Illinois (618) 398-1414

LOG OF BORING MW-124

Project Name: SDR Landfill Project Date Drilled: 09/19/91

Project Location: Baldwin Energy Complex, Baldwin, IL Drilling Contractor: Burlington Environmental

Project Number: 6225 Elevation: 451.0 Feet Drilling Method: Hollow Stem Auger Logged By: Burlington Environmental

Elevation/ Depth (feet)	Graphic Log Sampler Symbols and SPT Blows	Rec. (in./in.)	uscs	Description	DD (pcf)	UCS (tsf)	MC (%)	Remarks
450— + + + 5		47/60	CL	Dark Brown Silty CLAY -2" Silt Seam at 0.2 Feet -Gray-Brown below 0.5 Feet				
445		60/60	CH	Gray-Brown CLAY, with Silt, Sand				
+10 440- + +		60/60						
-15 435 - -	abla	50/60	CL	Brown Silty CLAY				Hit water at 17.0 feet.
+20 430+ +		60/60		-Gray-Brown from 19.5 to 20.0 Feet -Dark Gray-Brown with Sand, Trace Gravel below 20.0 Feet -1" Sand Seam at 21.3 Feet				
-25 425- - -		60/60		-2" Gravel Seam at 26.7 Feet				
⊥_30			<u></u> -	(continued)				

BORING LOG WITHOUT B DESIGNATION 6225 GINT LOGS.GPJ IL_DOT.GDT 2/19/10

GROUNDWATER

Ţ

Piezometer Installed: No

LOG OF BORING MW-124 (Cont.)

Project Name: SDR Landfill Project

Project Location: Baldwin Energy Complex, Baldwin, IL Drilling Contractor: Burlington Environmental

Project Number: 6225 Elevation: 451.0 Feet

Date Drilled: 09/19/91

Missouri (314) 241-0900 Illinois (618) 398-1414

Drilling Method: Hollow Stem Auger Logged By: Burlington Environmental

Elevation/ Depth (feet)	Graphic Log Sampler Symbols and SPT Blows	Rec. (in./in.)	uscs	Description	DD (pcf)	UCS (tsf)	MC (%)	Remarks
-30 420- - - -		60/60	CL	Dark Gray-Brown Silty CLAY, with Sand, Trace Gravel				
+35 415- -		60/60		Dark Gray-Brown CLAY, with Silt, Sand				
410—				Dark Gray-Brown Weathered SHALE -Gray-Brown below 39.0 Feet				
+ + + +45		60/60		TD - 45.0 Feet				
405-				1D - 43.0 Feet				
400— +								
+ + + + + + + + + + + + + + + + + + + +								
6 0				d from Boring Logs prepared by dated April 22, 1992.				

BORING LOG WITHOUT B DESIGNATION 6225 GINT LOGS.GPJ IL_DOT.GDT 2/19/10

GROUNDWATER

Ţ

Piezometer Installed: No

KELRON ENVIRONMENTAL **LOG OF BORING MW-350 INCORPORATED** (Page 1 of 2) Ash Pond System Monitoring Well Network Date Completed : 09/07/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID: 3 7/8" rock Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 394.11 Location: Twp 04S, Rng 07W, 16 SE, NW, NE Sampling Method : MacroCore (60")/NX Core Top of Casing Elevation 396.80 **Drilling Company** : PSC X,Y Coordinates : 2379410, 554568 Well: MW-350 GRAPHIC Elev.: 396.80 Depth Surf. Samples Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF Feet 394.11 Cover 394 CLAY, very stiff to hard, brown, grayish-brown (10YR 5/2) mottled yellowish brown (10YR 5/8), dry 19/54 4.5 Concrete 2 2.25 3 4 5 47/60 4.5 389 - grain size analysis @ 5 - 6 ft: СН 5 2.3% sand, 42.4% silt, 55.3% clay 3.5 6 3.25 7 4.0 8 60/60 2.75 10 384 9 2.75 CLAY, brown to olive brown, moist 10 grain size analysis @ 11 - 12 ft: 8.4% sand, 39.3% silt, 52.3% clay Grout 11 1.75 Bentonite Slurry CL/CH 12 20 Riser (Sch 40 PVC) 15 379 CLAY, soft, high plasticity, dark yellow brown, moist; c:\powerp~1\baldwin\ashmon~1\bec350~1.bor 1-2" sand seams at 17' and 19' 13 45/60 - grain size analysis @ 18 - 20 ft: 1.8% sand, 21.9% silt, 76.3% clay - very stiff to hard, high plasticity 20 374 СН 14 60/60 01-14-2011 15 23/23 25

KELRON **LOG OF BORING MW-350 ENVIRONMENTAL INCORPORATED** (Page 2 of 2) Ash Pond System Monitoring Well Network Date Completed : 09/07/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID: 3 7/8" rock Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 394.11 Location: Twp 04S, Rng 07W, 16 SE, NW, NE : MacroCore (60")/NX Core Top of Casing Elevation 396.80 Sampling Method **Drilling Company** : PSC X,Y Coordinates : 2379410, 554568 Well: MW-350 GRAPHIC Elev.: 396.80 Depth Surf Samples Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF Feet 394.11 25 `⊢ 369 Grout 15 23/23 CL Bentonite Slurry - Auger refusal at 26.4 feet bgs LIMESTONE and SHALE, interbedded, banded, solid, LS/SH very soft, light to dark gray; slightly weathered LS LIMESTONE, banded, medium bedded, solid, hard, medium gray; unweathered LIMESTONE and SHALE, interbedded; limestone is banded, medium bedded, hard, medium gray; shale is very soft to medium soft, dark gray 30 364 Borehole diameter from 26.4 to 46.7 feet bgs = 3 7/8" 16 116/120 Seal LS/SH Bentonite Chips RQD for 26.4 - 36.4' = 72% (Fair) Recovery = 116/120" 35 359 SHALE, banded, medium bedded, solid, soft to medium Riser (Sch 40 PVC) soft, dark gray SH 40 354 LIMESTONE, banded, massive, solid, hard to very hard, light to medium gray 17 118/120 c:\powerp~1\baldwin\ashmon~1\bec350~1.bor -Filter Pack LS RQD for 36.4 - 46.4' = 96% (Excellent) 45 Screen (pre-pack) 349 Recovery = 118/120" Bottom Cap **END BOREHOLE AT 46.7 FEET BLS** 01-14-2011 50

KELRON ENVIRONMENTAL **LOG OF BORING MW-352 INCORPORATED** (Page 1 of 3) Ash Pond System Monitoring Well Network Date Completed : 09/16/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID: 3 7/8" rock Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 422.36 Location: Twp 04S, Rng 07W, 16 SE, NE, NE Sampling Method : MacroCore (60")/NX Core Top of Casing Elevation 425.04 **Drilling Company** : PSC X,Y Coordinates : 2382789, 553901 Well: MW-352 GRAPHIC Samples Elev.: 425.04 Depth Surf. Recovery inches Qp **USCS** in **DESCRIPTION** Elev. TSF 422.36 Feet Cover SILTY CLAY, very stiff to hard, yellow brown (10YR 422 Concrete 5/6), dry 1 46/48 4.5+ CL 2 60/60 3.5 CLAY, trace sand and fine gravel, very stiff, high 417 3 4.0 plasticity, few black organic material 4 2.75 5 3.0 60/60 2.75 10 - medium hard 412 CL 7 2.0 - soft 8 1.0 Grout Bentonite Slurry 9 1.25 Riser (Sch 40 PVC) 10 15 60/60 1.5 407 - medium hard 11 2.5 c:\powerp~1\baldwin\ashmon~1\bec352~1.bor SAND, poorly graded, loose, wet (4-inch thick) 12 2.75 SANDY CLAY, trace fine gravel, yellow brown to olive brown (2.5Y 5/3) 13 3.5 20 14 60/60 4.5+ 402 CL 15 2.5 16 2.5 17 01-14-2011 2.75 18 48/60 2.5 25

KELRON ENVIRONMENTAL **LOG OF BORING MW-352 INCORPORATED** (Page 2 of 3) Ash Pond System Monitoring Well Network Date Completed : 09/16/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID: 3 7/8" rock Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 422.36 Location: Twp 04S, Rng 07W, 16 SE, NE, NE Sampling Method : MacroCore (60")/NX Core Top of Casing Elevation 425.04 **Drilling Company** : PSC X,Y Coordinates : 2382789, 553901 Well: MW-352 GRAPHIC Elev.: 425.04 Depth Surf Samples Recovery inches Qp in **DESCRIPTION** Elev. TSF Feet 422.36 25 397 CL - grain size analysis @ 26.5 - 27.5 ft: 33.7% sand, 27.1% silt, 39.2% clay 18 48/60 2.5 SP SAND with few gravel, yellow brown CLAY, some sand and fine gravel, hard to very hard, high plasticity, dark yellow brown (10YR 4/6) CL 19 60/60 3.0 30 CLAY, lean to fat 392 20 3.0 21 - grain size analysis @ 32 - 33 ft: 3.5 13.2% sand, 43.9% silt, 42.8% clay 22 3.0 23 35 48/60 1.5 387 - medium hard, high plasticity, gray brown to light olive brown (2.5 Y 5/2-5/3) 24 1.5 - trace silt, dark yellow brown (10YR 4/4) Grout 25 1.75 Bentonite Slurry CL/CH 26 1.5 Riser (Sch 40 PVC) 27 40 54/60 1.75 382 28 2.0 c:\powerp~1\baldwin\ashmon~1\bec352~1.bor 29 2.5 30 2.5 31 57/60 2.0 45 32 377 1.75 33 1.75 CLAY, medium hard, low plasticity, olive brown (2.5Y 5/4) 34 2.5 CL 35 1.75 01-14-2011 36 3/3 50

KELRON ENVIRONMENTAL **LOG OF BORING MW-352 INCORPORATED** (Page 3 of 3) Ash Pond System Monitoring Well Network Date Completed : 09/16/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID: 3 7/8" rock Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 422.36 Location: Twp 04S, Rng 07W, 16 SE, NE, NE : MacroCore (60")/NX Core Top of Casing Elevation 425.04 Sampling Method **Drilling Company** : PSC X,Y Coordinates : 2382789, 553901 Well: MW-352 GRAPHIC Samples Elev.: 425.04 Depth Surf. Recovery inches Qp in **DESCRIPTION** Elev. TSF 422.36 Feet 50 372 CL - Auger refusal at 53.7 feet bgs LIMESTONE, weathered, thinly laminated, medium 37 5/5 hard to hard, gray 38 8/27 55 LS 367 Grout Bentonite Slurry SHALE, clayey, gray SH LIMESTONE, occasional shale partings 39 19/60 60 362 LS Riser (Sch 40 PVC) - laminated, fossiliferous, medium gray Seal 40 54/60 Bentonite Chips SHALE, soft, dark gray 65 357 SH c:\powerp~1\baldwin\ashmon~1\bec352~1.bor LIMESTONE, medium hard to hard, light gray 41 59/60 -Filter Pack 70 Borehole diameter from 53.7 to 73.8 feet bgs = 3 7/8" 352 LS RQD for 53.8 - 73.8' = 57% (Fair) Screen (pre-pack) Recovery = 173/240" 42 33/34 Bottom Cap 01-14-2011 END BOREHOLE AT 73.8 FEET BLS

75

KELRON ENVIRONMENTAL LOG OF BORING MW-355 **INCORPORATED** (Page 1 of 2) Ash Pond System Monitoring Well Network Date Completed : 09/14/2010 Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID; 3 7/8" rock Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 390.82 Location: Twp 04S, Rng 07W, 09 SW, SE, SW : MacroCore (60")/NX Core Top of Casing Elevation 393.69 Sampling Method **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2378145, 555980 Well: MW-355 GRAPHIC Elev.: 393.69 Depth Surf. Samples Recovery inches Qp **USCS DESCRIPTION** Elev. TSF 390.82 Feet Cover Continuous boring to 20 feet below ground surface. Concrete Refer to boring log for adjacent well MW-155 for 390 description of subsurface materials to 20 feet. 5 385 10 Grout 380 Riser (Sch 40 PVC) 15 375 c:\powerp~1\baldwin\ashmon~1\bec355~1.bor 20 CLAYEY SAND, poorly graded, dark yellow brown, wet SC 370 23/23 3.5 CLAY, lean, very stiff, gray with yellow-brown mottling CL - Auger refusal at 22.1 feet bgs LIMESTONE, lightly weathered, fine grained, slightly fossiliferous, medium soft, light gray banded with light Seal red staining along horizontal fractures; three small **Bentonite Chips** 2 108/124 LS 01-14-2011 shale lenses within 31 inch interval - coarse grained, medium soft to hard Filter Pack 25

KELRON ENVIRONMENTAL LOG OF BORING MW-355 INCORPORATED (Page 2 of 2) : 09/14/2010 Ash Pond System Monitoring Well Network Date Completed Driller : Matt Cooper Hole Diameter : 8 1/2"OD / 4 1/4" ID; 3 7/8" rock Geologist : Brendon Wilder (PSC) **Baldwin Energy Complex** Dynegy Midwest Generation, Inc. **Drilling Method** : Hollow-Stem/Rotary (CME-550) Land Surface Elevation: 390.82 Location: Twp 04S, Rng 07W, 09 SW, SE, SW Sampling Method : MacroCore (60")/NX Core Top of Casing Elevation 393.69 **Drilling Company** : Terra Drill, Inc. X,Y Coordinates : 2378145, 555980 Well: MW-355 GRAPHIC Samples Elev.: 393.69 Depth Surf. Recovery inches Qp in **DESCRIPTION** Elev. TSF 390.82 Feet 25 365 Riser (Sch 40 PVC) - fine grained, slightly fossiliferous, light gray Borehole diameter from 22.1 to 32.6 feet bls = 3 7/8" 2 LS 108/124 -Filter Pack RQD for 22.1 - 32.6' = 57% (Fair) 30 Screen (pre-pack) 360 Bottom Cap END BOREHOLE AT 32.6 FEET BLS 35 - 355 40 - 350 c:\powerp~1\baldwin\ashmon~1\bec355~1.bor 45 - 345 01-14-2011 50

SOIL BORING LOG INFORMATION

E Tr D : AN		T . /T		N. 4. 1.		NT 1	1	D :	Pag		of	8
Facility/Project Name Baldwin Energy Complex		License/F	Permit/	Monit	oring	Num	ber	Boring	Numb MW	er 7-356		
Boring Drilled By: Name of crew chief (first, last) and Firm		Date Dril	ling St	arted			Date Dril	ling Cor	npleted		Drill	ing Method
John Gates											4	1/4 HSA
Bulldog Drilling			9/28					10/1/2	2015			d rotary
	n Well Name	Final Stat					rface Elev					Diameter
Local Grid Origin (estimated:) or Boring Locat	IW-356 ion ⊠	Fee	et (NA	AVD	88)		425.18 F	Grid Lo		38)	8	.3 inches
	E/W)	Lat	t38	3°1	1' 50	6.266	2" Locai	GHa Lo		7.57		
	N, R	Long			<u> 52' 1</u>	0.480	8"	Fe]N]S		☐ E Feet ☐ W
Facility ID County		tate					or Village	;				
Randolph]	Illinois		Balo	lwin			G 11	<u> </u>			ı
Sample								Soil	Prope	erties		
⊗ (fi) s to Soil/Rock Desc	=						ે હ					
And Geologic Or	rigin For					п	SSiv	. e .		25		ints
Number And Geologic Or Each Major I Each Maj	Unit		SCS	phic .	. _	grar	npre	stu	pi ti	Plasticity Index	200	D/
Number Number Soil/Rock Desc And Geologic Or Each Major of Ea			S O	Graphic	Well	Diagram	Compressive Strength (1st)	Moisture Content	Liquid Limit	Plastic Index	P 2(RQD/ Comments
0 - 10' SILTY CLAY CL/ML.						M						0-37.3'
												Blind Drilled. See
-1												logs
												OW-156 and
-2												OW-256 for
												soil description.
_5			CL/ML									
-6												
_8												
_9												
10 - 17.7' LEAN CLAY WITH	SAND: (CL)s.											
-11			(CL)s									
			` / -									
-12												
I hereby certify that the information on this form is true and co	orrect to the best	t of my kn	owled	ge.			•	•				
Signature D D D	Firm Natur	al Reso	urce '	Tech	nolo	gy			Tel	: (414)	837-36	507
Signature Brad Rucker	234 W	. Florida S	St., Fift	h Floo	or, Mi	lwauk	ee, WI 53	204		: (414)		

Boring Number MW-356

Page 2 of 8

Sample		Boing Name 17177 220						Soil	Prope	erties		
		Soil/Rock Description										
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet	And Geologic Origin For					Compressive Strength (tsf)					ts
ber Yype Vere Co	l In	Each Major Unit	S	hic	am		gth	ture	<u>ت</u> . ر	city		nen
Number and Type Length At Recovered	eptl	Each Major Offic	USCS	Graphic Log	Well Diagram		omp	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Z g J M B		10 - 17 7' I FAN CI AY WITH SAND : (CL)s)	0 7	> 0		OS	20	7 7	P II	Ь	- R
	_	10 - 17.7' LEAN CLAY WITH SAND : (CL)s. (continued)										
	-13											
	-											
	14											
	- 14											
	<u> </u>											
	-15		(CL)s									
	E											
	_16											
	F											
	_17											
	E											
	-18	17.7 - 27.3' SILTY CLAY CL/ML.										
	F											
	_ 19											
	F 19											
	-											
	20											
	E											
	21											
	-											
	-22											
	E		CL/ML									
	-23		CL/IVIL									
	<u>-</u> 24											
	- 24											
	-25											
	E											
	-26											
	F											
	_27											
	F	27.3 - 28.6' POORLY-GRADED SAND: SP.										
	-28		SP									
	E		L									
	- -29	28.6 - 33.9' SILTY CLAY CL/ML.										
	F											
	-30											
	-30		CL/ML									
	- -		OL/IVIL									
	-31											
	E											
	-32			[/.]]		1						

Boring Number MW-356 Page 3 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts And Geologic Origin For Comments Moisture Diagram Plasticity Graphic Content SCS Liquid Each Major Unit Limit 200 Well Log 28.6 - 33.9' SILTY CLAY CL/ML. (continued) 33 CL/ML 33.9 - 35.7' **LEAN CLAY:** to **SHALE:** CL. CL 35 35.7 - 37.3' SHALE: BDX (SH). -36 BDX (SH) 37.3 - 53.8' SHALE: BDX (SH), weathered shale 1 CORI 28 Core 1, and clay, brown to dark gray, soft, slightly fractured. 24.5 RQD=92% 38 - 39 2 COR 39.6' light to dark gray to tan. 60 Core 2, 40 RQD = 58% 57 42 42.3' - 43.2' limestone. 43 43.2' light to dark gray/tan, very weak. BDX 3 CORI 60 45 Low 45' - 50' dark gray, intensely fractured. recovery, possible washout. -46 Core 3, RQD = 18% 50 4 CORI Core 4, RQD=92% 36 50' - 53.1' thin beds of limestone, limestone is more 36 competent, slightly fractured, wet. -51

Boring Number MW-356 8 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Blow Counts Depth In Feet Strength (tsf) Compressive And Geologic Origin For Comments Number and Type Moisture Diagram Plasticity Graphic Content Liquid Each Major Unit SC Index 200 Well Limit Log 37.3 - 53.8' SHALE: BDX (SH), weathered shale and clay, brown to dark gray, soft, slightly fractured. (continued) BDX 53 (SH) 53.1' - 53.8' intensely fractured. 24 Core 5. COR 21.5 RQD=58% 53.8 - 55.4' LIMESTONE: BDX (LS), white, thickly bedded, moderately fractured (moderately wide to very narrow apertures). BDX (LS) -55 60 Core 6 COR 60.5 RQD=84% 55.4 - 57.2' **SHALE**: BDX (SH), dark gray, trace limestone beds, moderately fractured. 56 BDX (SH) 56.8' soft, highly weathered bed, decomposed. 57.1' soft, highly weathered bed. 57.2 - 60' LIMESTONE: BDX (LS), trace shale beds, moderately fractured (moderately wide to very wide apertures). BDX (LS) 59 59.4' - 59.7' vertical fractures with pyrite mineralization. 60 Core 7 60 - 65.8' SHALE: BDX (SH), gray, moderately COR 61 RQD=75% fractured. 61 61' -62' dark gray. 62 62' - 62.4' soft, clayey. **BDX** (SH) 60 65' dark gray, narrow to moderately wide apertures. Core 8, COR 61.5 65.3' - 65.8' fossiliferous. RQD=67% 65.8 - 68.8' SHALEY LIMESTONE: BDX (LS/SH), 66 fossiliferous, slightly to moderately fractured. BDX 68.8 - 70' SHALE: BDX (SH), gray, fossiliferous, Bedrock moderately fractured (moderately wide to narrow corehole **BDX** reamed 6" apertures). (SH) in diameter 60 70 - 75' SHALEY LIMESTONE: BDX (LS/SH), to 69' for COR 61 well gray to dark gray, fossiliferous, medium bedded, installation. moderately fractured (narrow apertures). BDX -71 Core 9, (LS/SH RQD=87%

Boring Number MW-356

				Boring Number MW-356				1			ge 5	of	8
San	nple								Soil	Prop	erties		_
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
10 CORE	60 60	1	-73 74 75 76 77	70 - 75' SHALEY LIMESTONE : BDX (LS/SH), gray to dark gray, fossiliferous, medium bedded, moderately fractured (narrow apertures). (continued) 75 - 75.9' SHALE : BDX (SH), dark gray, soft, moderately fractured (narrow to moderately narrow apertures). 75.9 - 76.2' SHALEY LIMESTONE : BDX (LS/SH), fossiliferous, narrow to moderately narrow apertures. 76.2 - 101.8' LIMESTONE : BDX (LS), light gray, fossiliferous, thickly bedded, narrow to moderately narrow apertures.	BDX (LS/SH BDX (SH) BDX (LS/SH							<u> </u>	Core 10, RQD=95%
11 CORE	60 60.5			80' light gray to gray, unfractured.									Core 11, RQD=100%
12 CORE	60 61.5				BDX (LS)								Core 12, RQD=100%
13 CORE	60 59.5												Core 13, RQD=100%

Boring Number MW-356 6 8 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Comments Moisture Plasticity Diagram Graphic Content SCS Liquid Each Major Unit Index 200 Well Log 76.2 - 101.8' LIMESTONE: BDX (LS), light gray, fossiliferous, thickly bedded, narrow to moderately narrow apertures. (continued) Core 14, COR 61 RQD=100% BDX 99.7' slightly weathered, decomposed. 100 Core 15, RQD=100% 15 60 100' gray, no fossils. CORI 59.5 101 101.8 - 106.5' SHALE: BDX (SH), dark gray, thickly bedded, slightly fractured. 103 BDX (SH) 105 16 COR 60 Core 16, 58.5 RQD=56% 106 106.2' weathered, decomposed. 106.5 - 108.4' **LIMESTONE:** BDX (LS), light gray 107 to green, highly decomposed, intensely fractured. BDX (LS) 108 108.4 - 109.8' **SHALE**: BDX (SH), dark reddish-brown, highly decomposed. BDX (SH) 109.8 - 111.1' **LIMESTONE**: BDX (LS), gray, highly disintegrated (healed dissolution cracks with green highly decomposed infilling). 109.9' - 110.7' angular gravel-sized fragments. 17 COR 60 Core 17, 55 RQD=49% BDX (LS) 110.7' moderately decomposed, very intensely \fractured.

BDX (SH)

Boring Number MW-356

San	nple								Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
18 CORE	60 61			111.1 - 114' SHALE : BDX (SH), dark gray, moderately to highly decomposed, moderately fractured. <i>(continued)</i> 114 - 116.3' LIMESTONE : BDX (LS), gray, moderately fractured. 116.3 - 116.7' SHALEY LIMESTONE : BDX (LS/SH), intensely fractured. 116.7 - 119.7' SHALE : BDX (SH), gray, slightly decomposed, intensely fractured.	BDX (SH) BDX (LS) BDX (LS/SH								Core 18, RQD=61%
19 CORE	60 64		-119 -120 -121 -122 -123	119.7 - 120.9' SHALEY LIMESTONE : BDX (LS/SH), gray, slightly decomposed, intensely fractured. 120.9 - 122.2' SHALE : BDX (SH), dark gray, moderately fractured. 122.2 - 126.1' LIMESTONE : BDX (LS), gray, moderately fractured.	BDX (LS/SH								Core 19, RQD=86%
20 CORI≟	48 48			123.3' - 123.4' fossiliferous. 124.1' - 124.1' fossiliferous. 124.7' - 124.8' fossiliferous. 126.1 - 127.6' SHALE: BDX (SH), dark gray, slightly decomposed. 126.7' - 127' limestone, gray. 127' moderately decomposed.	BDX (LS)								Core 20, RQD =88%
21 CORE	12 12 60 60			129.2 - 130' SHALE : BDX (SH), gray, intensely fractured. 130 - 130.4' SHALEY LIMESTONE : BDX (LS/SH), fossiliferous, moderately fractured. 130.4 - 131' LIMESTONE : BDX (LS), gray, fossiliferous, moderately fractured. 131 - 134' SHALEY LIMESTONE : BDX (LS/SH), fossiliferous, moderately fractured.	BDX (LS) BDX (SH) BDX LS/SH								Core 21, RQD=0% Core 22, RQD=94%

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-356

				Boring Number MW-356							ge 8	of	8
Sam	nple								Soil	Prope	erties		
	& (n)	S		Soil/Rock Description				0.0					
2)	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And Geologic Origin For				Compressive Strength (tsf)			_		ıts
ber ype	th A vere	, Co	h In	Each Major Unit	S)	hic	ram	pres	ture	₂ _	icity		/ men
Number and Type	eng	low	eptl	Zava Major Car	USC	Graphic Log	Well Diagram	om)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u> </u>	L	В	Д	131 - 134' SHALEY LIMESTONE : BDX (LS/SH),)	57	≯ □	OS	20	7 7	P	Ь	<u> </u>
				fossiliferous, moderately fractured. (continued)									
			- 133		BDX								
			- 133		(LS/SH)								The casing dropped 3"
			-			\Box							during
			134	134 - 135' LIMESTONE : BDX (LS), gray, thickly	<u></u>								drilling.
			-	bedded, moderately fractured.	BDX (LS)								
Ц			135	135' End of Boring.	(LS)								
				133 End of Borning.									

SOIL BORING LOG INFORMATION

Facility/Pr	oject N	Name				License/	Permit	/Monit	oring 1	Numbe	r	Boring	Numb		OI	4	
Baldwi	n En	ergy	Con						J					-366			
_		-	ame of	f crew chief (first, last) and Fire	n	Date Dri	lling S	tarted		D	ate Drilli	ng Cor	npleted		Drill	ing Me	thod
Jim Dit							10/0	1001	_			10111	.015		- 1	1/4 H	
Bulldo	g Dri	lling	5	Com	mon Well Name	Final Sta		/201.		Curfe	ce Eleva	12/4/2	2015	Do		d rota Diame	
				Com	MW-366		et (N				22.54 F		AVDS			.3 inc	
Local Grid	l Origi	n [] (es	stimated: or Boring Lo		1	-		-			Grid Lo		,0)		.5 1110	1105
State Plan	ne 5	55,5	81.80	0 N, 2,381,171.15 E	E/W	La	it38			.8876'				N			\square E
	1/4 of		1.	/4 of Section , T	N, R	Lon	g <u>-89</u>			0.4414'		Fe	et 🗌	S		Feet	\square W
Facility ID)			County		State			Town/ lwin	City/ o	Village						
Sample	<u> </u>	T		Randolph		Illinois		Баю	IWIII			Soil	Prope	erties			
				C 11/D 1 D									Порс	lucs			
t. &	i) l	nts	eet	Soil/Rock D	=						ive tsf)						S
er ype h At	erec	Co Co	II.	And Geologic	=		S	.c		띭	ress rth (ure	_	ity			ent
Number and Type Length Att. &	Recovered (in)	Blow Counts	Depth In Feet	Each Maj	or Unit		SC	Graphic	Well Well	Diagram	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	200	ROD/	Comments
Z g Z	<u>~</u>	m	Ω	0 - 5.6' FILL, SILTY CLAY	CL/MI		D	0			<u> </u>	Σŭ		Pl	Ь	0-33'	
		E		0 - 5.0 TILL, SILTI CLAT	CL/IVIL.					\rangle						Drille	d. See
		þ	-1							$\langle \langle$						logs TPZ-	166
		E														and B	-13-4
		F	-2													descr	
		F	_														
		E	-3				(FILL) CL/ML										
		þ															
		E	_4														
		F	7														
		F	_														
		E	-5														
		þ		5.6 - 33' SILTY CLAY CL/I	 ML.												
		F	-6														
		E															
		þ	-7														
		F															
		E	-8														
		F															
		þ	-9				CL/ML	-									
		F															
		E	-10														
		E	10														
		F															
		F	-11														
		E															
			-12														
=				rmation on this form is true and													
Signature	Bra	1	Ru	per	Firm Natu	ral Reso	urce '	Tech	nolog	y woulse	WII 522	04		: (414) : (414)			

Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

Boring Number MW-366

Page 2 of 4

	1.		1	Boring Number 1V1 VV - 300	T					C = :1	Duna		OI	1
San	nple									Soil	Prope	erties		1
	1 × (1)		+	Soil/Rock Description										
	tt. 2	ints	1 3	And Geologic Origin For					ive					, so
r ye	A 1	G	면		S	. <u>.</u> 2	E E		ess th	ire l		ity		ent
åÇ.	igth cove	```) th	Each Major Unit	C	liphi ?	gra		npr	istu	uid rit	stic ex	00	
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		USCS	Graphic	Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
				5.6 - 33' SILTY CLAY CL/ML. (continued)	+-		ÍΪ		0 01					
			L											
			-13											
			- 13											
			F											
			-14											
			F											
			F											
			15											
			L											
			-16											
			F											
			- 17											
			F											
			F											
			18											
			L											
			-19											
			-											
			-20											
			F		CL/ML									
			F											
			-21											
			F											
			-22											
					CL/ML									
			L											
			_23											
			F											
			F											
			24											
			F											
			-25											
			F											
			ļ.											
			_26											
			Ė.											
			-27											
			L											
			L											
			_28											
			E											
			- 20											
			-29											
			F											
			-30											
			ļ .											
			<u> </u>											
			31											
			F											
			L 22											
			-32		1	1				l	I		l	I

Boring Number MW-366 Page 3 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts And Geologic Origin For Comments Number and Type Moisture Diagram Plasticity Graphic Content SCS Liquid Each Major Unit Limit Index 200 Well Log 5.6 - 33' SILTY CLAY CL/ML. (continued) CL/ML 33 33 - 35.6' LEAN CLAY: to SHALE: CL, gray, 23 SS 18 residual soil, hard (>4.5 tsf). 34 CL 35 35.6 - 39.3' **SHALE**: BDX (SH), gray, highly 60 Core 1, COR 54 36 RQD=54% decomposed, moderately fractured. 37 BDX (SH) 38.4' limestone layer (approximately 2.5"). - 39 39.3 - 42.3' **LIMESTONE**: BDX (LS), cherty, intensely fractured. 2 COR 60 Core 2, 47 RQD=32% BDX 42 42.3 - 42.9' **SHALE:** BDX (SH), dark gray, BDX intensely fractured. (SH) 42.9 - 43.7' SHALEY LIMESTONE: BDX (LS/SH), intensely fractured. BDX (LS/SF 43.7 - 49.8' **SHALE**: BDX (SH), dark gray, moderately fractured. 60 Core 3, COR RQD=73% -46 BDX (SH) 49 49.8 - 54.3' SHALEY LIMESTONE: BDX (LS/SH), fossiliferous, slightly fractured. 60 Core 4, COR 49 RQD=96% BDX -51 (LS/SH

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-366

Page 4 of 4

				Boring Number MW-366							e 4	of	4
San	nple								Soil	Prope	rties		_
	(n)		ب ا	Soil/Rock Description									
	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And Geologic Origin For				Compressive Strength (tsf)					23
er ype	h A ere	Ç	In		S	.c	II II	ress zth (ure	_	ity		leni
Number and Type	ngtl	ΜC	pth	Each Major Unit	SC	Graphic Log	Well Diagram	eng	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
a N	Le	BI	De		Þ	Grap Log	N G	Co	Σိ ပိ	<u>Ē</u> Ĕ	Pla Inc	P 2	∑ S C C
			_	49.8 - 54.3' SHALEY LIMESTONE : BDX (LS/SH),		HH							
			_	fossiliferous, slightly fractured. (continued)		\Box							
			53	52.8' - 53.1 shale bed.	BDX	口口							
			_	53.1' fossiliferous.	(LS/SH	++							
			- 54			\Box							
				54.3' End of Boring.			10021						Bedrock corehole
				34.3 Life of Borning.									reamed 6"
Ш													in diameter
													to 54' for well
													installation.

SOIL BORING LOG INFORMATION

						1						-	Pag		of	4
	y/Proje			amlos:		License/I	Permit/	Monit	oring	Numbe	er	Boring		er -369		
	lwin I			of crew chief (first, last) and Firm		Date Dri	Iling St	arted		Ιī	Date Drill				Drill	ing Method
-	k Bae	•	variic 0	refewemen (first, fast) and Firm		Date Dill	illing St	arteu			Jak Dilli	ing Con	приска			1/4 HSA
Bul	ldog I	yc Irillin	σ				11/17	7/201	5			1/18/	2015			d rotary
	14051	7111111	5	Common	Well Name	Final Sta				Surf	ace Eleva		2010	Во		Diameter
				MV	V-369	Fee	et (NA	AVD	88)	4	20.49 F	eet (N.	AVD8	38)	8	.3 inches
				stimated: or Boring Location		1 -	20	00 1	11.40	1406	Local C	Grid Lo	cation			
State	Plane	557,			. / (W)	1	t38			9.1496	_			N		☐ E
	1/4	of	1		I, R	Long	g <u>-89</u>)° 5		2.9288	_	Fe	et [S		Feet W
Facilit	y ID			County		State				•	r Village					
Con	1.			Randolph	-	Illinois		Вак	lwin			C = :1	D	4:		
San	nple											5011	Prope	rues		
	Length Att. & Recovered (in)	ıts	eet	Soil/Rock Descri	_						st.					
r pe	Length Att. & Recovered (in	Blow Counts	Depth In Feet	And Geologic Orig	gin For		S	0		я	Compressive Strength (tsf)	8 T		ty		ents
nbe Ty	gth	```	oth]	Each Major Ui	nit		C	hihdi.		gra	npr	istu	uid nit	Plasticity Index	00) D
Number and Type	Len	Blo	Dep				n S	Graphic	Well	Diagram	Cor	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments
				¬ 0 - 0.2' SILT : ML.			\ ML			M						0-43' Blind
			_	0.2 - 2' SILTY CLAY CL/ML.												Drilled. See log PZ-169
			-1				CL/ML									for soil
			F													description.
			-2	2 - 4' Shelby Tube Sample.			<u></u>		Ш							
			E	2 - 4 Chelby Tube Cample.												
			_3													
			-													
			F ,													
			E-4	4 - 10' SILTY CLAY CL/ML.			Γ									
			L													
			- 5													
			F													
			-6													
			E													
			<u> </u>													
			⊨ ′				CL/ML									
			۲,													
			- 8													
			F													
			- 9													
			L													
			-10	 			L									
			F	10 - 12' SILTY CLAY to LEAN	CLAY: CL/M	IL.										
			F													
			<u></u> 11				CL/ML									
			F													
			 12	<u> </u>			<u> </u>	r /								
	٠.	y that t	the info	ormation on this form is true and corr												
Signat	ure	11	1	1/1/	Firm Natur	ral Reso	urce '	Гесh	nolog	gy				: (414)		
	<u> </u>	m	<u> </u>	ngeld		7. Florida S					e, WI 532	04	Fax	(414)	837-36	508

Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

Boring Number MW-369 Page 2 of 4 Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts RQD/ Comments And Geologic Origin For Number and Type Plasticity Index Moisture Content Graphic Log Well Diagram USCS Each Major Unit Liquid Limit P 200 12 - 14' Shelby Tube Sample. -13 14 - 20' **LEAN CLAY**: CL. - 15 CL -18 19 20 - 22' **SILTY CLAY** CL/ML. -21 CL/ML -22 22 - 24' Shelby Tube Sample. -23 24 - 28' LEAN CLAY WITH SAND: (CL)s. -25 -26 (CL)s -27 28 - 30' **SILTY CLAY** CL/ML. -29 CL/ML 30 - 32' LEAN CLAY: to SILTY CLAY CL. _31 CL

TECHNOLOGY Boring Number MW-369 Page 3 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Comments Number and Type Moisture Diagram Plasticity Graphic Content SCS Liquid Each Major Unit Index 200 Well Log 32 - 38' LEAN CLAY: CL. 35 38 - 40' No Recovery. - 39 40 - 42' **LEAN CLAY:** CL. CL 42 42 - 45' No Recovery. 43 24 10 18 30 40 SS 0 45 - 45.3' **LEAN CLAY:** CL, dark brown (10YR 3/3), 30-50% pale brown (10YR 6/4) and brown (10YR 4/3) mottling, trace subrounded fine gravel, 2 SS 5 50/5" CL 9 46 cohesive, low plasticity, moist. 45.3 - 48.7' SHALE: BDX (SH), dark grayish brown, highly decomposed. BDX 50/5" 3 SS 5 47' trace clay layers (< 1" thick), highly (SH) 8 decomposed, very weak. Core 1, 66 48.7 - 50.8' LIMESTONE: BDX (LS), white, COR RQD=17% fossiliferous, intensely fractured (extremely narrow to narrow apertures), microcrystalline, slightly to moderately decomposed. BDX 50.8 - 53.4' **SHALE**: BDX (SH), dark gray, intensely fractured (extremely narrow to narrow BDX apertures), highly decomposed, very weak. (SH)

installation.

TECHNOLOGY Boring Number MW-369 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Comments Moisture Plasticity Graphic Diagram Content Liquid Each Major Unit SC Limit Index 200 Well Log 50.8 - 53.4' SHALE: BDX (SH), dark gray, intensely fractured (extremely narrow to narrow apertures), highly decomposed, very weak. BDX (SH) (continued) 60 2 53.4 - 59.3' **LIMESTONE**: BDX (LS), white, Core 2, COR 46 moderately fractured (very narrow to narrow RQD=83% apertures), fossiliferous, microcrystalline, slightly decomposed, very strong, pitted, trace mineralization. BDX (LS) 58.4' mud in fracture. 3 CORI 60 - 59 64 Core 3, 59.3 - 64.9' SHALEY LIMESTONE: BDX (LS/SH), RQD=63% dark gray, medium bedded shale, intensely fractured (extremely narrow to narrow apertures), fossiliferous, microcrystalline, decomposed, very weak to weak, weathered, highly weathered shale cementing segments together. BDX (LS/SH) 60 Core 4, COR RQD=79% 62 64.9 - 68.8' **LIMESTONE**: BDX (LS), white, slightly fractured (tight to narrow apertures), fossiliferous, microcrystalline, slightly decomposed, slightly disintegrated, pitted. BDX 68.8 - 70.7' Overdrilled for Well Installation. Bedrock corehole reamed 6" 70.7' End of Boring. in diameter to 70.7' for well

SOIL BORING LOG INFORMATION

	-													Pag		of	4	
Facility Bald	-			mplex	Lic	cense/Pe	ermit/	Moni	torin	ıg Nu	ımber		Boring	Numb MW	er -370			
				of crew chief (first, last) and Firm	Dat	te Drilli	ing St	arted			Da	te Drilli	ng Cor			Drill	ing Meth	nod
Mar	k Bae	tie														4	1/4 HS	A
	dog I		ıg			1	1/20)/201	15			1	1/24/	2015			d rotar	
				Common Well Na	me Fin	nal Statio	c Wa	ter Le	vel		Surfac	e Eleva	tion		Во	rehole	Diamete	r
				MW-370		Feet	t (NA	AVD	88)		418	3.67 Fe	eet (N	AVD8	38)	8	.3 inch	es
Local (estimated: or Boring Location	I	т.	39	0	11'	44.1	702 "	Local C	irid Lo	cation				
State F				50 N, 2,381,936.14 E E/W			<u>-89</u>				084"		_		N			Е
Facility	1/4	of		1/4 of Section , T N, R County	State	Long						Village	Fe	et _	S		Feet	□ W
1 delite)	, ID			Randolph		nois		Bal			cyr or	v mage						
Sam	ple												Soil	Prope	erties			
	n)		یا	Soil/Rock Description														
	tt. 2 d (i	unts	Fee	And Geologic Origin For								sive (tsf)					;	rs.
ype	th A	Ĉ	l I	Each Major Unit			S	nic .		am.		gth	ure int	7	city	_		nen
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Lacii Major Cint			USC	Graphic	Log	wen Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/	.om
~ ~	<u> </u>		-	0 - 2' SILTY CLAY CL/ML.					ĪŔ	1 🕏		0 01	20		H		0-28' BI	lind
			F														Drilled. log PZ-	
			-1				CL/ML										for soil	
																	descrip	tion.
			<u>_</u> 2	L														
			⊢	2 - 4' Shelby Tube Sample.														
			-															
			-3															
			F															
			- 4	4 - 8' SILTY CLAY CL/ML.														
			E	4-0 SIETT GEAT GEAME.														
			L -5															
			<u> </u>															
			- 6			c	CL/ML											
			F															
			- 7															
			E															
				L														
			_ °	8 - 10' SILTY CLAY to LEAN CLAY: C	L/ML.													
			L															
			- 9				CL/ML											
			F															
			-10	10 - 12' LEAN CLAY : CL.					Щ									
			F	10 - 12 LEAN CLAY: CL.														
			F ,,															
			- 11				CL											
			F															
			-12	<u> </u>		<u></u>												
	-	y that t	the info	formation on this form is true and correct to the														
Signatu	ire	11	1	////// Firm N	Vatural I	Resou	rce '	Гесh	nol	ogy					(414)			
	-JA,	m	<u> </u>	mge ex 2	34 W. Flo	orida St.	., Fift	h Flo	or, N	/lilwa	ukee,	WI 532	04		(414)			T ODY
	, ,	•		IV					1	empl	ate: ILL	TMOI2 F	SOKINO	ı LOĞ -	Project:	RALD,	VIN GIN	i.GPJ

Boring Number MW-370 Page 2 of 4 Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Comments Number and Type Moisture Diagram Plasticity SCS Graphic Content Liquid Each Major Unit Limit Index 200 Well Log 12 - 14' Shelby Tube Sample. 13 14 - 24' **SILTY CLAY** CL/ML. 15 18 - 19 CL/ML -21 22 24 - 26' Shelby Tube Sample. -26 26 - 28' **SILTY CLAY** CL/ML. 27 CL/ML 28 - 28.4' **LEAN CLAY:** CL, yellowish brown (10YR 5/4), trace angular limestone gravel, soft, medium plasticity, moist. 1 SS 10 CL 10 BDX 60 29 Core 1, 28.4 - 28.9' SHALE: BDX (SH), gray, highly (SH)COR 18.5 RQD=51% decomposed, very weak. 28.9 - 38.1' SHALEY LIMESTONE: BDX (LS/SH), light gray to gray, intensely fractured (extremely narrow to moderately narrow apertures), medium to BDX thickly bedded, microcrystalline, moderately (LS/SH decomposed, very strong. -31

Boring Number MW-370 Page 3 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Blow Counts Depth In Feet Compressive Strength (tsf) And Geologic Origin For Comments Number and Type Moisture Plasticity Graphic Diagram Content Liquid Each Major Unit SC Index 200 Well Log 28.9 - 38.1' SHALEY LIMESTONE: BDX (LS/SH), light gray to gray, intensely fractured (extremely narrow to moderately narrow apertures), medium to 33 thickly bedded, microcrystalline, moderately decomposed, very strong. (continued) 33.9' - 38.1' gray, greenish gray in fractures, trace fossils, moderately to highly decomposed, slightly to 51.5 34 Core 2. COR RQD=0% moderately disintegrated, clay in shoe with a hard, reddish brown inclusion. 35 BDX 36 36' - 37.9' vertical fracture. 37 38.1 - 44' SHALE: BDX (SH), bluish gray, 24 3 Core 3 COR 25 intensely fractured (extremely narrow to narrow RQD=40% apertures), highly decomposed, weak. - 39 40 24 Core 4, COR 11 RQD=0% 40.6' - 40.8 shaley limestone layer, light gray to gray, microcrystalline, moderately decomposed, BDX 36 very strong. 41.1' - 43.2 gray, moderately to highly Core 5. (SH) COR 32 RQD=78% decomposed. 44 - 45.7' SHALEY LIMESTONE: BDX (LS/SH), Core 6, 28 light gray to gray, intensely fractured (extremely RQD=29% narrow to narrow apertures), thin to medium bedded, microcrystalline, slightly decomposed, clay BDX cement in apertures, very strong. Core 7, 45 45' shale layer, bluish gray, moderately fractured COR RQD=65% 27 (extremely narrow to narrow apertures), highly 46 decomposed, weak. 45.7 - 52.2' SHALE: BDX (SH), bluish gray, moderately fractured (tight to narrow), highly decomposed, weak. RDX 49 (SH) 24 Core 8. COR 30 RQD=78% -51 Core 9, COR RQD=0% 24

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-370 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Number and Type Comments Moisture Diagram Plasticity Content Graphic SCS Liquid Each Major Unit Limit Index 200 Well Log 52' clay cement. 52.2 - 61.7' SHALEY LIMESTONE: BDX (LS/SH), light gray to gray, intensely fractured (very narrow to narrow), thin to medium bedded, microcrystalline, 53 10 COR slightly decomposed, cemented clay in apertures, 24 Core 10, very strong.
52.7' - 53' clayey sand in aperture.
53' - 53.1 shale bed, bluish gray, fossiliferous, 36 RQD=0% moderately fractured (very narrow to narrow), highly decomposed, weak. 55 53.1' white to bluish gray, gray in the fractures (extremely narrow to moderately narrow apertures), thinly to medium bedded, slightly to moderately 11 CORI Core 11, 24 disintegrated. 30 RQD=18% 55.7' moderately disintegrated. BDX (LS/SH 58 12 COR Core 12, 30 58.1' highly decomposed. 27 RQD=39% - 59 13 CORI 36 Core 13, RQD=89% 61.7 - 65.3' **LIMESTONE**: BDX (LS). BDX (LS) 65.3 - 66' Overdrilled for Well Installation. 66 66' End of Boring. Bedrock corehole reamed 6" in diameter to 66' for well installation.

SOIL BORING LOG INFORMATION

														Pa		of	6
	lwin E	Energ	y Con				License/	Permit/	Monit	oring	Numb	er	Boring		er 7-373		
Boring	Drille	d By:	Name o	f crew chief ((first, last) and Fir	m	Date Dri	lling St	arted		1	Date Drill	ing Cor	npleted		Drill	ing Method
	ı Gate																1/4 HSA
Bull	ldog I	Orillir	ıg					10/2					10/28/	2015			d rotary
					Com	mon Well Name	Final Sta					ace Eleva					Diameter
T 1.	2:10					MW-373	Fe	et (NA	AVD	88)	3	88.80 F			38)	8	.3 inches
Local C State I) or Boring Lo 9,186.06 E		La	ıt38	3° 1	1' 2	26.613	" Local	Grid Lo		_		_
State	1/4			/4 of Section		E/Ŵ N, R	Lon	0.0			5.3282		Fe]N]S		☐ E Feet ☐ W
Facility				Cou	nty		State				•	or Village					
				Ra	ndolph		Illinois		Balo	lwin							ı
San	nple												Soil	Prop	erties		
	& (in)	S	et		Soil/Rock D	Description						9.0					
o	λtt. ed (unt	Fe I		And Geologic	e Origin For						ssiv (tsl			>		ıts
lber Typ	gth /	v Co	Th Ir		Each Maj	jor Unit		CS	hic	_	ran	pre	stur tent	E E	icit	0	me.
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet					USC	Graphic	Well	Diagram	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			_	0 - 2' No F	Recovery. Grave	l Pad.				M	N						0-13.4'
																	Blind Drilled. See
			-1								X						log PZ-173
			_														for soil description
			-2	2 - 10 0'	SILTY CLAY CL/					п							detail.
			E	2 - 10.9	SILIT CLAT CLA	IVIL.											
			-3														
			F ,														
			- 4														
			E														
			_5														
			_														
			-6														
			_					0. 44									
			F _					CL/ML									
			- 7														
			E														
			-8														
			_														
			_9														
			-														
			- 10														
			-10														
			E														
			-11	10.9 - 13.	4' SILT : ML.				$\dagger \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	7							
			Ė					ML									
			- 12														
I hereb	y certif	y that	the info	rmation on th	nis form is true and	d correct to the be	st of my ki	nowled	ge.				_				
Signatu	ıre	D	1/1	Ruches		Firm Natu	ıral Resc	urce '	Tech	nolo	gy			Tel	: (414)	837-36	507
	1	Dros	e p	Woo		234 V	V. Florida	St., Fift	h Floc	or, Mil	lwauke				: (414)		
										Ten	nplate:	ILLINOIS	BORING	G LOG -	Project:	BALDV	WIN GINT.GPJ

Boring Number MW-373 Page 2 of 6 Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts And Geologic Origin For Comments Number and Type Moisture Plasticity Graphic Diagram Content Liquid Each Major Unit SC Limit Index 200 Well go 10.9 - 13.4' SILT: ML. (continued) ML 13 13.4 - 14.7' LIMESTONE: BDX (LS), fossiliferous, 23 Core 1, COR extremely fractured, thickly bedded. RQD=65% - 14 BDX (LS) 14.7 - 15.5' **SHALE:** BDX (SH), gray, trace 15 **BDX** limestone, highly decomposed. (SH) 58.2 Core 2, 15.5 - 16.6' SHALEY LIMESTONE: BDX (LS/SH). COR 42 RQD=52% fossiliferous, intensely fractured. BDX (LS/SH 16.6 - 17.3' **SHALE:** BDX (SH), gray, highly BDX decomposed. (SH) 17.3 - 18.8' LIMESTONE: BDX (LS), thickly bedded. BDX (LS) 18.8 - 20.2' **SHALE:** BDX (SH), highly 19 decomposed. BDX (SH) 20 20.2 - 20.8' SHALEY LIMESTONE: BDX (LS/SH), 60 Core 3, BDX COR intensely fractured, tight diagonal fracture. 56 RQD=57% LS/SH 21 20.8 - 21.5' SHALE: BDX (SH), gray, highly decomposed. BDX 21.5 - 24.9' SHALEY LIMESTONE: BDX (LS/SH), (SH) intensely fractured, extremely narrow to narrow 22 apertures. 23 BDX (LS/SH) 24.9 - 29.1' **SHALE:** BDX (SH), highly 60 Core 4, decomposed. COR 55 RQD=65% 25.1' - 25.4' limestone, fossiliferous. 25.4' gray, fossiliferous, thickly bedded, hard. -26 BDX 27 (SH) 29 29.1 - 48.3' LIMESTONE: BDX (LS), fossiliferous, thickly bedded. 30 5 60 30' - 35.1' moderately fractured, extremely narrow Core 5, COR RQD=95% 60 apertures. BDX (LS) -31

6

Boring Number MW-373

Page 3 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Comments Number and Type Moisture Well Diagram Plasticity Content USCS Graphic Each Major Unit Liquid Limit 200 Log 29.1 - 48.3' LIMESTONE: BDX (LS), fossiliferous, thickly bedded. (continued) 33 Bedrock corehole reamed 6" - 34 in diameter to 33.3' for well installation. 35 6 COR 60 35.1' - 40' slightly fractured, narrow apertures. Core 6, 58 RQD=96% -36 -37 - 39 40 BDX (LS) Core 7, RQD=100% 60 40' - 45.1' moderately fractured, extremely narrow COR 60 to narrow apertures. 41.3' - 41.6' vuggy. 42 43 45 8 CORE 60 45.1' - 48.3' moderately fractured. Core 8, 61.5 RQD=63% -46 48.3 - 57' SHALE: BDX (SH), gray, thin limestone beds. 50 60 49.9' moderately decomposed. Core 9, BDX COR 63 RQD=57% -51

Boring Number MW-373 4 6 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts And Geologic Origin For Number and Type Comments Moisture Diagram Plasticity Content Graphic SCS Liquid Each Major Unit Limit Index 200 Well Log 48.3 - 57' SHALE: BDX (SH), gray, thin limestone beds. (continued) BDX (SH) 54.7' - 55' fossiliferous. 55 10 CORI 60 Core 10, RQD=35% 46 57 - 58.3' LIMESTONE: BDX (LS), intensely fractured, decomposed green infilling. BDX (LS) 58.3 - 60' **LEAN CLAY**: CL, greenish gray to reddish brown. -59 58.7' reddish brown. CL 60 - 65.2' SHALE: BDX (SH), intensely fractured, 11 CORI 60 Core 11, thickly bedded, decomposed. 55 RQD=51% 62 BDX 62.8' gray. 12 65.2 - 66.5' SHALEY LIMESTONE: BDX (LS/SH), 60 Core 12, COR 58 intensely fractured, thinly bedded. RQD=67% BDX 66 66.5 - 68.8' SHALE: BDX (SH), gray. BDX (SH) 68.8 - 70.7' SHALEY LIMESTONE: BDX (LS/SH), moderately fractured, decomposed (greenish gray). BDX (LS/SH 13 46 Core 13. COR 48 RQD=60% 70.7 - 80.1' SHALE: BDX (SH), dark gray, thickly bedded. BDX

(SH)

Boring Number MW-373 Page 5 of 6 Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Comments Number and Type Moisture Diagram Plasticity Content Graphic SCS Liquid Each Major Unit Limit 200 Well Log 70.7 - 80.1' SHALE: BDX (SH), dark gray, thickly bedded. (continued) 14 CORI 12 11 Core 14, RQD=91% 15 60 Core 15, COR 62 RQD=61% BDX 76.1' dark to light gray, intensely fractured, highly (SH) decomposed. 77.5' dark gray, moderately fractured. 78.7' highly fractured, decomposed. 79 16 60 Core 16, COR 80.1 - 83.3' SHALEY LIMESTONE: BDX (LS/SH), 64 RQD=61% fossiliferous, moderately fractured. BDX LS/SH 82 83.3 - 85.4' **SHALE**: BDX (SH), dark gray, intensely fractured. BDX (SH) 17 CORI 60 Core 17, RQD=87% 60 85.4 - 88.4' SHALEY LIMESTONE: BDX (LS/SH), thickly bedded, fossiliferous. 86 BDX LS/SH 88.4 - 88.8' **SHALE**: BDX (SH), dark gray, BDX intensely fractured. (SH) 88.8 - 94' LIMESTONE: BDX (LS), thickly bedded. 18 60 Core 18, BDX COR 59 RQD=88%

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-373

Page 6 of 6 Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts RQD/ Comments And Geologic Origin For Number and Type Plasticity Index Moisture Content Well Diagram USCS Graphic Log Liquid Limit Each Major Unit P 200 88.8 - 94' LIMESTONE: BDX (LS), thickly bedded. (continued) BDX (LS) 93 94 - 95.1' **SHALEY LIMESTONE:** BDX (LS/SH), moderately fractured. BDX (LS/SH -95 95.1' End of Boring.

SOIL BORING LOG INFORMATION

Facilit	y/Projec	et Nam	e			License/F	Permit/	Monito	oring N	Jumber		Boring	Numb		OI	3	
-	lwin E			nplex										-374			
				f crew chief (first, last) and Firm		Date Dril	ling St	arted		Da	ate Drilli				Drill	ing Me	thod
Jim	Dittm	aier													4	1/4 H	SA
Bull	ldog I	Drillin	g					/2015				11/9/2	2015			d rota	
					Well Name	Final Stat					e Eleva					Diame	
<u> </u>	0:10				V-374	Fee	et (NA	AVD8	(8)	39	8.41 Fe			38)	8	3 inc	hes
	Grid Or			stimated: \square) or Boring Location 5 N, 2,379,766.63 E	n ⊠ ./(W)	Lat	38	3° 1	<u>1 ' 22.</u>	8546"	Local	Grid Lo		_			_
State	1/4				, R	Long				.0706"		Fe]N]S		Feet	□ E □ W
Facility		01	1	County		State	, —				Village	1.6	Ci _		-	reci	
•	,			Randolph		Illinois		Bald		-	Ü						
San	ıple			1								Soil	Prope	erties			
	, (i)			Soil/Rock Descri	ption												
	tt. 8 d (i	unts	Fee	And Geologic Orig	_						sive (tsf)						ts
er ype	th A vere	Co	l In	Each Major Ur			CS	nic	1 5		gth	ure	7	city	_		nen
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Lucii Major Of	iii.		S	Graphic Log	Well Diagram	iag.	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	200	6	Comments
<u>Z </u>	R	В	Д	0 - 2' TOPSOIL : ML.			n	9 7	\ <u>\rightarrow</u>	3	OS	20	7 7	P	Ь	0-23.€	. .
			_	0 2 TOT GOIL. WIL.												Blind	
			-1				ML			\langle						Drilled log PZ	1. See Z-174
			F				IVIL	\ \ \ \ \								for soi	il
								\ \ \								descri	puon.
				2 - 4' No Recovery.													
			F _														
			-3														
			E														
			-4	4 - 23.6' LEAN CLAY: CL.													
			-														
			-5														
			E														
			-6														
			F 0														
			_														
			- 7						411								
			F														
			-8				CL										
			_9														
			F .														
			F 10														
			- 10						411								
			-11														
			-														
			-12														
	-	y that t	he info	rmation on this form is true and corr		st of my kn	owled	ge.									
Signat	ure	2 /	Ru	her		ral Resor								(414)			
	16	roo	0		234 W	/. Florida S	t., Fift	h Floo	r, Milv	vaukee,	WI 532	.04	Fax	(414)	837-36	808	

Boring Number MW-374 Page 2 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Comments Moisture Diagram Plasticity SCS Graphic Content Each Major Unit Liquid 200 Well Log 4 - 23.6' LEAN CLAY: CL. (continued) 13 15 CL 18 - 19 -21 -22 23 1 SS 24 0.4 50/5" 23.6 - 24.1' SILTY CLAY CL/ML, brown, 3" of CL/ML shale at bottom of sample. Core 1, 18 24.1 - 27.5' LIMESTONE: BDX (LS), fossiliferous, RQD=89% COF 16 thickly bedded, moderately fractured (very narrow to moderately narrow apertures). Core 2, 60 BDX -26 COF (LS) RQD=61% 27.5 - 37.2' SHALEY LIMESTONE: BDX (LS/SH), decomposed, thickly bedded. 29 BDX 3 COR 38 30 Core 3, 29.7' moderately fractured. 30 RQD=67% -31

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-374 Page 3 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts And Geologic Origin For Comments Moisture Diagram Plasticity SCS Content Graphic Each Major Unit Liquid Limit Index 200 Well Log 27.5 - 37.2' SHALEY LIMESTONE: BDX (LS/SH), decomposed, thickly bedded. (continued) 4 COR Core 4, RQD=56% 30 33 27 -34 BDX 35 5 COR 59 59 Core 5, 35.4' - 36.2' fossiliferous. RQD=100% -36 36.2' increase in shale content. 37 37.2 - 40.3' **SHALE**: to **LIMESTONE**: BDX (SH), gray, limestone content decreasing with depth, thickly bedded, moderately fractured. BDX - 39 (SH) 39.6' dark gray, no limestone. 40 6 COR 25 25 40.3 - 42.3' LIMESTONE: BDX (LS), fossiliferous, Core 6, RQD=100% slightly fractured. BDX (LS) -42 41.9' very narrow diagonal fracture. Bedrock 42.3' End of Boring. corehole reamed 6" in diameter to 42' for well installation.

SOIL BORING LOG INFORMATION

							Page 1 of 4									4			
Facility/Project Name							License/Permit/Monitoring Number							Boring Number					
Baldwin Energy Complex													D :11:	MW-375					
Boring Drilled By: Name of crew chief (first, last) and Firm							Date Drilling Started Date Dr						Drilli	ng Con	npieted			ing Method	
Jim Dittmaier Bulldog Drilling							11/3/2015						11/6/2015				4 1/4 HSA and rotary		
Common Well Name												rface I					Borehole Diameter		
MW-375													20.50 Feet (NAVD88)					.3 inches	
Local Grid Origin (estimated:) or Boring Location							1		Local Grid Location										
State Plane 554,434.97 N, 2,380,838.70 E E/®								Lat38°11' _20.					— ⊔N					□ E	
1/4 of 1/4 of Section , T N, R								Long <u>-89°</u> <u>52'</u> <u>24.6</u>						Fe	ß		Feet W		
								ate Civil Town/City/ or Village											
*							Illinois	linois Baldwin										T	
Sam	Sample							Soil Pro								perties			
	& jn)	S	et		Soil/Rock Descrip	otion							e (
	Att. ed (Junc	ı Fe		And Geologic Orig	in For					_	-	SSiv ı (tsi	۵		>		nts	
Typ	gth,	Č	th Ir		Each Major Ur	nit		CS	hic	_	gran		npre ngth	stur	it d	ticit	0)/ ime	
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet					S U	Graphic	Well	Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments	
			E -	0 - 0.	9' SILT: ML.				liiii	īka	ঝ		<u> </u>					0- 44.8'	
			<u>_</u> 1	L				ML_										Blind Drilled. See	
			- 1	0.9 -	5.4' LEAN CLAY : CL.													log PZ-175	
			\mathbb{E}_2															for soil description	
			E															details.	
			_3																
			Ė					CL											
			- 4																
			- -																
			F ⁵					L											
			<u>-</u> 6	5.4 -	13.5' SILT : ML.														
			E																
			<u>-</u> 7																
			F																
			- 8																
			E .																
			F-9																
			E ₁₀					ML											
			F 10																
			-11																
			F																
			-12																
			E																
			-13																
			E 14	13.5	- 22.3' LEAN CLAY: CL.														
			14																
			-15					CL											
			F																
I hereb	y certif	y that	the info	rmation	on this form is true and corr	ect to the bes	st of my kn	owled	ge.										
Signature Brad Rocks 234 W						ural Resource Technology Tel: (414) 83													
Brook Proof 234 W. Florida St., Fifth Floor, Milwaukee							ee, W	T 5320	04	Fax	: (414)	837-36	508						

Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

Boring Number MW-375

Page 2 of 4

Sample	Borning Number 11111 313												
									5011	Prope			
[ij &	ts	set	Soil/Rock Description					e C					
ed ed	unc	ı Fe	And Geologic Origin For			_		SSiv (ts	۱,		<u></u>		ıts
ber Typ	, C	h Ir	Each Major Unit	() ()	hic	2 2		pre	tur ent	<u> </u>	icit		/ mei
Number and Type Length Att. & Recovered (in)	Blow Counts	Depth In Feet		SC	Graphic Log	Well	o i	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Z g J Z	В		42.5. 00.0H.FAN.OLAV.OL. (sautisus d)	n	0 7	≯ ∩)	S	≥ ບ	רב	P] In	Ь	R
		16	13.5 - 22.3' LEAN CLAY : CL. <i>(continued)</i>										
		-											
		<u>-</u> 17											
		-											
		18											
		10											
		-19		CL									
		Ė											
		E-20											
		-21											
		E 22											
		-22	 	L									
		<u> </u>	22.3 - 26' SILT : ML.										
		23											
		24											
		⊢ I		ML									
		25											
		E _											
		26		L	ЩЩ								
			26 - 28' LEAN CLAY : to SILT : CL.										
		<u> </u>		CL									
		-		02									
		-28	28 - 28.4' SANDY SILT: s(ML).		hini								
		Ė i	28.4 - 31.3' LEAN CLAY : CL.	\ <u>s(ML</u>)									
		E-29											
		Ε											
		30		CL									
		31	21 2 21 FI WELL CRAPED SAND WITH	L									
			31.3 - 31.5' WELL-GRADED SAND WITH GRAVEL: (SW)g.	(SW)g									
		E 🧏	31.5 - 43.8' LEAN CLAY: CL.										
		Ľ ₃₃											
		32 -33 -34											
		34											
		Ė											
		35											
		Ė											
		36											
				CL									
		37											
		- I											
		38											
		- -39											
		- -40											
		- 41											
		l [*]			///	_ •	7						

Boring Number MW-375 3 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Comments Number and Type Moisture Plasticity Graphic Diagram Content Liquid Each Major Unit SC Index 200 Well go 31.5 - 43.8' LEAN CLAY: CL. (continued) 42 CL 43 43.8 - 44.8' **SANDY LEAN CLAY WITH** GRAVEL: s(CL)g. s(CL)g 44.8 - 45.3' WELL-GRADED GRAVEL: GW, gray, 60 Core 1, 50 for 5" 42 5 5 <u>G</u>W mostly limestone cobbles. COR RQD=86% Broken 45.3 - 49.3' SILTY CLAY CL/ML, dark yellowish 46 SS limestone in brown (10YR 4/6). split spoon at 45'. 47 CL/ML 48 49 49.3 - 50.1' **LEAN CLAY:** CL, dark gray (10YR 4/1). CL 50 24 50.1 - 51.3' SHALE: BDX (SH), highly Core 2, COR 18 BDX RQD=33% decomposed. (SH) 51.3 - 62.8' SHALEY LIMESTONE: BDX (LS/SH), gray, thickly bedded, fossiliferous, moderately 52 fractured. 36 Core 3, COR 30.5 RQD=85% -53 55 60 Core 4, COR 55 RQD=95% 57 BDX (LS/SH 58 - 59 60 60 Core 5, 59.9' very narrow to narrow apertures. COR 62 RQD=94% 62.8 - 84.7' LIMESTONE: BDX (LS), fossiliferous, thickly bedded, slightly fractured (extremely narrow to moderately narrow apertures). 65 BDX 64.9' very narrow apertures. Core 6, (LS) RQD=100% COR 55

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-375 Page 4 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Comments Number and Type Moisture Well Diagram Plasticity USCS Graphic Content Liquid Limit Each Major Unit 200 Log 62.8 - 84.7' LIMESTONE: BDX (LS), fossiliferous, thickly bedded, slightly fractured (extremely narrow to moderately narrow apertures). *(continued)* 68 69 7 COR 60 69.5' slightly to moderately fractured (very narrow Core 7, to moderately narrow apertures). RQD=95% 63 Bedrock corehole -71 reamed 6" in diameter to 70' for 72 well installation. 8 CORI 75 Core 8, 74.9' extremely narrow apertures. RQD=100% BDX 78 80 9 CORI Core 9, RQD=100% 60 80.2' unfractured, cherty. 56 -81 82 83 84.7' End of Boring.

-	- ·												.	Pag		of	4	
	y/Projed Win H			anlay			License/I	Permit	/Monito	oring N	umber		Boring	Numb MW				
					rst, last) and Fir	m	Date Dri	lling St	tarted		Da	te Drilli				Drill	ing Me	thod
_	Dittm	-		(,,			8						-F			1/4 HS	
	ldog I		ıg					10/29	9/201:	5			11/2/2	2015			d rota	
					Com	mon Well Name	Final Sta					e Eleva					Diamet	
	~					MW-377	Fee	et (Na	AVD8	38)	418	3.75 Fe			38)	8	.3 incl	nes
				stimated: [] 6 N, 2,381	or Boring Lo ,923.68 E	E/W		t38		1' 18.1	.896"	Local (Grid Lo]N			□ E
	1/4	of	1	/4 of Section	, T	N, R	Long	<u>-89</u>	9°5	<u>2' 11.0</u>			Fe		s		Feet	$\overline{\square}$ W
Facilit	y ID			Count	•		State		Civil T		ity/ or `	Village						
			1	Ran	dolph		Illinois		Bald	win		1	G '1					
San	nple												Soil	Prope	erties		-	
	. & (in)	ıts	eet		Soil/Rock D	=						e G						
r pe	Att	uno;	n Fe		And Geologic	Origin For		S	0	8		essi h (ts	5 T		ty			ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Each Ma	or Unit		SCS	Graphic Log	Well Diagram	,	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	8	<u> </u>	nmc
Nu and	Leı Rec	Blc	De					S D	Grap Log	Well Diagr		Col	S K	Liquic Limit	Plastic Index	P 200	RQD/	<u> </u>
			F	0 - 4' TOPS	OIL: ML.				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3						0-28.5 Blind	'
			1						\ \ \ \								Drilled	
			- 1						\ \ \ \	,							log PZ for soi	:-177 I
			_2						↓								descri	
								ML	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
			-						∤ , ↓	/								
			_3						\ \ \ \ \									
			L .						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
			- 4	4 - 19.3' LE	AN CLAY: CL.													
			E															
			-5															
			E															
			-6															
			F															
			- 7							411								
			F															
			-8															
			E					CL										
			_9					CL										
			F															
			- -10															
			F 10															
			- -11															
			_ 11															
			<u>ا</u>															
			-12							41								
			F															
<u></u>		1	13			1			/ /									
I hereb Signat	-	-			s form is true and	d correct to the be												
Signat	uie	B	16	Rucher			ıral Reso					М Л 522	04		(414)			
		NO VOV			<u> </u>	234 V	W. Florida S	οι., F1f1	ın Flooi						Project:		WIN GIN	IT CPI

Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GF

Boring Number MW-377 2 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet RQD/ Comments And Geologic Origin For Number and Type Moisture Plasticity Diagram SCS Graphic Content Each Major Unit Liquid Limit 200 Well Log 4 - 19.3' LEAN CLAY: CL. (continued) - 14 _15 16 CL -- 17 - 19 19.3 - 22' **SILT:** ML. -20 ML-22 22 - 28.5' **LEAN CLAY**: CL. -23 -24 -25 CL 26 -27 -28 28.5 - 30.8' LEAN CLAY: CL, brownish yellow 24 SS 29 (10YR 6/6), gray (10YR 5/4) mottling, hard (4.5 tsf). CL -30 12 20 27 30 2 SS 30.8 - 34.9' SHALE: BDX (SH), gray, moderately 12 -31 to highly decomposed. 31.7' grayish brown mottling, thickly bedded. -32 COR 51 Core 1. BDX RQD=92% -33 (SH)

Boring Number MW-377 Page 3 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Comments Moisture Diagram Plasticity Graphic Content Liquid Each Major Unit SC Limit Index 200 Well Log 35 34.9 - 35.3' **LIMESTONE**: BDX (LS), cherty, moderately decomposed, reddish gray mottling, 55.8 Core 2, BDX COR RQD=25% 16 (LS) \moderately fractured. -36 35.3 - 46.4' SHALE: BDX (SH), gray, moderately to highly decomposed. 38 39 60 39.7' - 40.4' gray and brown mottling, highly Core 3, COR 64.2 decomposed, blocky structure. RQD=75% 40.4' - 43.1' highly decomposed, moderately BDX fractured. 43 44 60 Core 4, COR 58 RQD=12% 46 46.4 - 51.1' SHALEY LIMESTONE: BDX (LS/SH), intensely fractured (narrow apertures). 48 BDX 49 49.5 - 49.9' vertical fracture. 60 Core 5. COR 50 RQD=58% 51.1 - 55.5' **SHALE**: BDX (SH), gray, thickly bedded. 52 -53 BDX (SH) 60 Core 6, COR 41 RQD=61% 55.5 - 58.2' SHALEY LIMESTONE: BDX (LS/SH), BDX 56 fossiliferous, moderately fractured. (LS/SH)

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-377

				Boring Number MW-377								ge 4	of	4
San	ple									Soil	Prope	erties		
	& in)	s	et	Soil/Rock Description					e (
o.	λtt. ed (ount	Fe	And Geologic Origin For			_		ssiv (tsf	0		>		ıts
lber Typ	gth /	v Cc	th Ir	Each Major Unit	CS	hic	ran		pre:	sture	<u>بر ورا</u>	icit	0)/
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	_	S D	Graphic Log	Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	I			55.5 - 58.2' SHALEY LIMESTONE : BDX (LS/SH),	+-				0 01	20				
			_57	fossiliferous, moderately fractured. (continued)		Ш								
			E		BDX (LS/SH									
			-58		Ì		2000							D - d d-
				58.2' End of Boring.										Bedrock corehole
														reamed 6" in diameter
														to 58' for
Ш														well installation.
														inotaliation.
ı			I	I	I	I	I	I	I	I	I	l	I	I

-	m :					Tr						.	Pag		of	4	
Facility	-			malar.		License/	Permit	'Monit	oring l	Number		Boring					
				nplex		Data Dai	11: C			ID.	4- D.:11		MW		D.:11	· N/-	411
_		-	Name o	of crew chief (first, last) and Firm		Date Dri	lling S	tartea		Da	te Drilli	ing Con	npietea			ing Me	
	Dittm						11/1/)/ 2 01	_		1	11/04/	2015			1/4 H	
Bui	ldog I	rillin	g	Comm	on Well Name	Final Sta	11/19			Cymfo	e Eleva	11/24/	2015	Do		d rota Diame	
					MW-382		et (N				8.67 Fe		MANDO			.3 inc	
Local	Grid Or	ioin		stimated: or Boring Loca		· .				_		Grid Lo		00)	0	.5 IIIC	1168
State 1	Plane	556,	440.8	86 N, 2,382,404.51 E	E/W	I				0.344"	Locar			N			□ E
T	1/4	of	1	1/4 of Section , T	N, R		g89	<u>) </u>		.9578"	X 7'11	Fe	et _	S		Feet	□ W
Facility	y ID			County		State				City/ or	Village						
	1		ı	Randolph		Illinois		Вак	lwin			G '1	D.				
San	nple											Soil	Prope	erties			
	& in)	\mathbf{z}	et	Soil/Rock Des	scription] e (
e	Att. ed ()mn(l Fe	And Geologic C	Origin For					_	ssiv (ts	0		>			nts
ıber Гур	th /	ŭ	h Ir	Each Major	Unit		CS	hic		ran	pre.	stur	E E	icit	0	>	me
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				USC	Graphic	Well Ne	Diagram	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200		Comments
	I F			0 - 2' SILTY CLAY CL/ML.			+-			₹ -		20	1	H		0-34'	Blind
			_							\rangle						Drilled	l. See
			-1													log Pz	Z-182 r soil
			<u> </u>				CL/ML									descri	ption
			_													details	S.
			-2	2 - 4' Shelby Tube Sample.													
			_	,													
			_3														
			F .														
			Ε.														
			- 4	4 - 12' SILTY CLAY CL/ML.			_		П								
			_														
			<u>-</u> 5														
			F														
			F,														
			-6														
			F														
			- 7														
			F														
			F ₀														
			-8				CL/ML										
			F														
			<u>-</u> 9														
			F														
			F														
			-10														
			F														
			-11														
			E														
			12	L	. 		L										
I hereb	v certif	v that	1.2	ormation on this form is true and c	correct to the bea	st of my kr	nowled	oe.									
Signati					Firm Natu	-		_	nolos	rs 7			Та1.	(414)	927 24	507	
5	B	ad	Ruc	frez	234 W	rai Keso /. Florida S	St., Fift	th Floo	norog or. Mil	sy waukee.	WI 532	04		(414)			

	Boring Number MW-382										Pag	ge 2	of	4
San	nple									Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram)	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
				12 - 14' Shelby Tube Sample.										
			13											
			-14 - - -15	14 - 22' SILTY CLAY CL/ML.										
			16											
			17											
			-18		CL/ML									
			-19 -20											
			20											
				22 - 24' Shelby Tube Sample.										
			23											
			24	24 - 27' SILTY CLAY CL/ML.										
			25 26		CL/ML									
			_ 27	27 - 29.1' WELL-GRADED SAND : SW.										
					sw									
			29	29.1 - 30' SANDY LEAN CLAY WITH GRAVEL : s(CL)g.	s(CL)g	0								
			-30 -31	30 - 34' SILTY CLAY CL/ML.										
			-32		CL/ML									

Boring Number MW-382 Page 3 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts And Geologic Origin For Comments Number and Type Moisture Diagram Plasticity Graphic Content Liquid Each Major Unit SC 200 Well Log 30 - 34' SILTY CLAY CL/ML. (continued) 33 CL/ML 34 34 - 36' **SILTY CLAY** CL/ML, dark gray (10YR 4/1), dark yellowish brown 10YR 4/6 mottling, highly 23 20 12 20 25 50 for 5" SS decomposed shale at bottom of spoon, hard (>4.5 35 CL/ML 36 - 38.3' SHALE: BDX (SH), gray, highly Core 1, COR 48.5 decomposed. RQD=94% 37 BDX (SH) 38.3 - 40' LIMESTONE: BDX (LS), thinly laminated, intensely fractured (extremely narrow 39 apertures). BDX (LS) 40 40 - 44.5' SHALE: BDX (SH), gray, highly decomposed. 60 Core 2, 24.5 COR RQD=51% 42 BDX (SH) 43 44.5 - 45.4' LIMESTONE: BDX (LS), thinly BDX (LS) 45.4 - 58.4' **SHALE:** BDX (SH), gray, highly 54 3 Core 3, decomposed. COR 35 RQD=51% -46 BDX (SH) 50 24 50.1' - 51.2' reddish brown and dark gray mottling. Core 4, COR 23.5 RQD=19% -51 51.2' - 52.1' limestone, intensely fractured.

Boring Number MW-382 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Number and Type Comments Moisture Diagram Plasticity Graphic Content Each Major Unit SCS Liquid Limit Index 200 Well Log 45.4 - 58.4' SHALE: BDX (SH), gray, highly 41 Core 5, decomposed. (continued) COR RQD=63% 52.1' gray. 55 BDX (SH) 6 30 Core 6. 25 COR RQD=50% 56 55.9' gray to dark gray, intensely fractured, few medium limestone beds. 30 Core 7, COR 30 RQD=53% 58.4 - 62' LIMESTONE: BDX (LS), cherty, moderately fractured. 59 59.5' - 59.9' vertical fracture. 60 60' shale (2" layer). BDX (LS) 8 60 60.4' - 61.4' shaley, intensely fractured. Core 8, COR 59 RQD=70% 61 62 - 67.1' SHALE: BDX (SH), gray, hard, slightly fractured. BDX (SH) 9 60 Core 9, COR RQD=88% 59 66 67.1 - 70.6' SHALEY LIMESTONE: BDX (LS/SH), fossiliferous, slightly fractured, (very narrow apertures). BDX (LS/SH) Bedrock corehole reamed 6" in diameter to 69' for well 70.6' End of Boring. installation.

E31	/D:-	-4 NI					T:	D '4	N 1 '4 -		ΛT1		D'	Pag		of	<u> </u>	
	ty/Projed dwin I			nplex			License/	Permit	Monito	ring i	Numbe	r	Boring		er 7-383			
Borin	g Drilled	l By:	Name o	f crew chief ((first, last) and Fir	m	Date Dri	lling St	arted		D	ate Drill	ing Con	npleted		Drill	ing Me	thod
	n Dittm															- 1	/4 H	
Bu	lldog I	Drillir	ıg			XX7 11 XY	F' 10		/2015		10 6		12/21/	2015	ъ		d rota	
					Com	mon Well Name MW-383	Final Sta		ter Leve AVD8			ce Eleva 57.18 F		A V/D		rehole	.3 inc	
Local	Grid Or	igin	☐ (es	stimated:) or Boring Lo		1					Local (Grid Lo		50)	0.	3 1110	1105
	Plane	556	,586.0	4 N, 2,38	5,208.26 E	E/W		t			.6862 '				N			□ E
Facili	1/4	of	1	/4 of Section		N, R	Long				.8296'		Fe	et _	S]	Feet	□ W
raciii	ty ID			Cour	ndolph		State Illinois		Bald		City/ O	Village						
Saı	nple			Ka	паогри		mmois		Daid	VV 1111			Soil	Prope	erties			
	T				Soil/Rock D	Description												
	tt. &	unts	Fee		And Geologic	=						sive (tsf)						ts
ber Jype	th A	Ş	h In		Each Ma	_		() ()	hic			pres	ture	<u>ر</u> قا	icity		/-	men
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			,		USC	Graphic Log	Well	Diagram	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	σò	Comments
1	24		-	0 - 16' FIL	L, ASH (Coal):	black (10YR 2/1)	and		0 1	VÍ Ì	-	0 01	20		H	Щ	I	<u> </u>
SS	/	4 2 2 4	E			R 4/4), mostly sa 6 silt-sized ash, v					\mathbb{R}							
			-1	(0 tsf).	770 Ciride13, - 107	o one oized doil, v	Cry Soit			N I	×							
V	\		F															
2	24	1	-2															
2 SS	-	1 3 2 3	F															
		3	_3															
V	\setminus		E															
_	1		<u>-</u> 4															
3 SS	24 18	1 2 3 7	F															
		7	E_5															
V	\setminus		F 3															
1			F,					(511.1)										
4 SS	24 18	2 11 11 7	- 6					(FILL)										
33	10	7	<u> </u>															
II.			E 7															
V			-															
5	24	7	-8	8' mostly l	black (10YR 2/1)	١.												
SS	17	7 4 3 2	E															
)			-9															
1	\		F															
6	24	2	-10															
SS	18	2 4 4 4	F															
		·	-11															
/			E															
			-12															
I here	by certif	y that	the info	rmation on th	nis form is true an	d correct to the be	st of my kr	nowled	ge.				,					
Signa	ture	D	d Ja	her		Firm Natu	ıral Reso	urce '	Гесhn	olog	y			Tel	: (414)	837-36	07	
		Dra	d m	april 1		234 V	V. Florida S	St., Fift	h Floor	, Milv	waukee	, WI 532	04		: (414)			TTT CD-

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-383

Page 2 of 5

	1.			Boring Number IVI W - 363	1		1			0 - 1	Pa		of	3
San	nple									Soil	Prop	erties		-
	(ii)	z,	et	Soil/Rock Description					e (
a)	ed (un(l Fe	And Geologic Origin For			_		ssiv (ts			_		ıts
ber Syp	th /	Ω̈́	h In	Each Major Unit	S	hic	ram		pres gth	ture ent	<u> </u>	icit.		mer
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Zuen majer eine	SC	Graphic Log	Well Diagram)	Compressive Strength (tsf)	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
<u> </u>	24			0. 161 FILL ACH (Cool): block (10VD 2/1) and	ר	0 7	≥ □		S	20	ברב	P. H	Ь	<u> </u>
7 SS //	24	2 3 4 1	Ē	0 - 16' FILL, ASH (Coal): black (10YR 2/1) and dark yellowish brown (10YR 4/4), mostly sand-sized										
IV		1	_ 12	ash, 30-50% cinders, >15% silt-sized ash, very soft										
ΙΛ			-13	(0 tsf). (continued)										
/\														
<u> </u>	24	1	- 14	14' clay (2" thick layer).	(FILL)									
8 SS	24	1 2 1 2	F	14 clay (2 trick layer).										
IV		2	_ 15											
ΙΛ			- 13											
/\			E											
9 F	24	WOH	-16	16 - 18' LEAN CLAY: CL, gray (5Y 5/1), stiff (1.75										
9 SS	10	WOH WOH 2 2	L	tsf).										WOH=weight
IV		2	- - 17											of hammer
1/			_ ''		CL									
/\														
10	24	WOH	-18	18 - 40' SILTY CLAY CL/ML, gray (10YR 6/1),										
10 SS	14	WOH 2 2 2	_	yellowish brown (10YR 5/6) mottling, stiff to very										
ΙÝ		2	- 19	stiff (1.0-3.0 tsf), low plasticity.										
1/														
/ \			_											
11	24	WOH	-20											
11 SS		WOH 2 2 2	Ė											
I Y		2	-21											
1/			_											
/ /			Ε											
_			-22											
			F											Blind drill
			_23											22-24' bgs
			E											during casing
_			-24											install.
13 SS	24 13	1		24' gray (10YR 5/1), dark yellowish brown (10YR										Permanent 6" PVC
33	13	3 3		4/6) mottling.										casing was
lλ			-25		CL/ML									installed to
//			_											22.5' bgs.
L			-26	001 L L (40) (7 5 (0)										
14 SS	24 12	1 1 2 3	_	26' dark gray (10YR 5/6) mottling.										
00		3	F											
Įλ			-27											
/\			F											
15	24	2	-28											
15 SS	23	2 4 4 6	F											
1		6	E 20											
lγ			-29											
/\			E											
16	24	4	_30											
16 SS	24 27	4 4 2 7	_											
Į¥		/	-31											
\			Ė į	31' trace oxidation staining.										
/\			F											
	1		-32					7	[

Boring Number MW-383 3 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Blow Counts Depth In Feet Compressive Strength (tsf) And Geologic Origin For Comments Number and Type Moisture Plasticity Diagram Content Liquid Each Major Unit Graphi SC200 Well Index go 18 - 40' **SILTY CLAY** CL/ML, gray (10YR 6/1), yellowish brown (10YR 5/6) mottling, stiff to very stiff (1.0-3.0 tsf), low plasticity. *(continued)*32' light brownish gray (10YR 6/2), yellowish brown 17 24 SS 33 (10YR 5/6) mottling, very stiff (3.0 tsf). 34 34' gray (10YR 5/1), dark yellowish brown (10YR 18 24 26 SS 4/6) mottling, very stiff (2.0 tsf). 35 36 CL/ML 19 24 36' very soft to stiff (0-1.75 tsf). SS 14 37 38 20 38' strong brown (7.5YR 4/6), gray (10Y R5/1) 24 SS 12 mottling, trace sand, very stiff (3.5 tsf). 39 40 - 41' LEAN CLAY WITH SAND: (CL)s, gray 21 24 22 (10YR 5/1), dark yellowish brown (10YR 4/6) (CL)s mottling, moderately stiff (0.75 tsf). 41 - 42' SILTY SAND: SM, yellowish brown (10YR 5/6), mostly medium sand, trace coarse SM sand, soft. 42 42 - 44' SILTY CLAY CL/ML, brown (10YR 5/3), >15% sand, moderately stiff (0.75 tsf), nonplastic. 22 SS 24 5 8 9 10 24 43 CL/ML 44 - 50' LEAN CLAY: CL, yellowish brown (10YR 24 20 5/6), trace black oxidation staining, very stiff to hard (3.25-4.5+ tsf), plastic. 46 24 24 SS 16 CL 48 48' brown (10YR 5/3), hard (4.25-4.5+), low 25 24 SS 19 plasticity. 49 50 26 24 50 - 53.1' SHALE: BDX (SH), light olive gray (5Y Core 1. SS 60 6/2), hard, highly decomposed, dry. RQD=60% **BDX** COR -51 (SH)

Page 4 of 5

Sample Soil Properties Soil Properties	RQD/ Comments
	RQD/ Comments
And Geologic Origin For Compress: Compress: Compress: Compress: Compress: Compress: Compress: Compress: Compress: Conferd (If Plasticity Index of the property of the	RQD/ Comments
Additional desired by the state of the state	RQD/ Comme
N N N N N N N N N N	RQ Cor
27 24 8 50 - 53 1' SHAI F : RDY (SH) light alive gray (5V	
27 24 8 50 - 53.1' SHALE : BDX (SH), light olive gray (5Y	
SS 15 6/2), hard, highly decomposed, dry. (continued) BDX (SH)	
53.1 - 55.1' SHALEY LIMESTONE : BDX (LS/SH),	
moderately fractured.	
H	
(LS/SH)	
2 60 55.1 - 58.6' LIMESTONE : BDX (LS), slightly fractured.	Core 2, RQD=82%
- Hactured.	RQD-62%
■	
58.6 - 59.5' SHALE: BDX (SH), thinly bedded with BDX BDX BDX	
┃┃	
59.5 - 70.1' SHALE: BDX (SH), gray, moderately decomposed.	
3 60 60' intensely to moderately fractured.	Core 3,
	RQD=31%
63 63' moderately fractured.	
BDX BDX (SH)	
4 H 60 65 (SH) (SH) (SH)	Core 4, RQD=49%
4 CORE 60 (SII)	RQD=49%
5 CORE 34 70.1 - 73' LIMESTONE: BDX (LS), unfractured.	Core 5,
CORE	RQD=100%
BDX (LS)	

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-383 Page 5 of 5 Soil Properties Sample Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts RQD/ Comments Number and Type And Geologic Origin For Moisture Content Plasticity Index Well Diagram Graphic USCS Liquid Limit Each Major Unit P 200 70.1 - 73' LIMESTONE: BDX (LS), unfractured. BDX (LS) (continued) -73 73' End of Boring. Bedrock corehole reamed 6" in diameter to 73' for well installation.

													Pag		of	<u> </u>	
	ity/Proje ldwin I			nplex	I	License/	Permit/	Monitori	ng Nu	mber		Boring		er -384			
Borin	g Drille	d By:	Name o	of crew chief (first, last) and Firm	I	Date Dri	lling St	arted		Da	te Drilli	ng Con	npleted		Drill	ing Me	thod
Ch	ad Dut	ton													4 1	1/4 HS	SΑ
Bu	lldog I	Orilli	ng				12/7/	2015			1	2/16/	2015		an	d rota	ry
				Common Well Nar	ne I	Final Sta	tic Wat	er Level	5	Surfac	e Elevat	tion		Во	rehole	Diame	er
				MW-384		Fe	et (NA	VD88)	456	5.70 Fe			38)	8.	3 incl	nes
	Grid O			stimated: or Boring Location or Boring Location		, ,	t38	° 11'	30.43	308 "	Local C	Grid Lo	cation				
State	Plane 1/4			1 N, 2,384,518.72 E E/W 1/4 of Section , T N, R		Long	00		38.5			Fe]N]S	,	Feet	□ E □ W
Facili		OI		County	Sta		> —	Civil To			Village	1.0	сı <u> </u>			reet	w
	.,			Randolph		linois		Baldw		<i>J</i> -							
Sa	mple			Tumuo.pn								Soil	Prope	erties			
	T			Cail/Daals Description									<u>F</u>				
	t. & I (in)	nts	eet	Soil/Rock Description							ive tsf)						· •
er 75	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And Geologic Origin For			S	္က	됩		ess th (ıre l		ity			ent
du Ţ	ngth) M	pth	Each Major Unit			SC	Graphic	well Diagram		lmpi eng	Moisture Content	Liquid Limit	Plasticity Index	200	/Qi	шш
Number and Type		Bla	De				n	Grap Log	Well Diagr		Compressive Strength (tsf)	ည် သိ	Ľ. Ľ.	Pla Ind	P 2	RÇ	Comments
1 SS	24 8	2 3 4 6	-	0 - 2.5' FILL, ASH (Coal) : very soft to m stiff (0-0.75 tsf).	odera	itely			1 13								
33	∥ ° ∣	6	ļ.	Still (0-0.75 tSI).				\mathbb{R}	7 K								
	λl		-1				(FILL)	_	4 74								
1	\		ļ.				()										
,	1	,	-2														
2 SS	24 19	2 4 3 6	F				L										
	/	6	F ₂	2.5 - 4' FILL, SILTY CLAY CL/ML, stron													
	۱ ا		-3	(7.5YR 4/6), trace gravel, very soft to ver (0-3.5 tsf).	ry Sun		(FILL) CL/ML										
/	1		F				CL/IVIL										
3	24	1	-4	4 - 18' FILL, ASH (Coal): yellowish red	(5YR .	4/6)	<u></u>	<u> </u>									
ss	10	1 2 3 4	E	to reddish black (10R 2.5/1), sand-sized	ash a	nd											
	/	4	_5	cinders, very soft to stiff (0-1.5 tsf).													
	\																
1	1		<u> </u>														
4	24	2	-6														
SS	/	2 2 2 2	-														
	Y I	_	- 7														
1/	\		F														
1			F .				/EII I \										
5 SS	24	1 2	- 8				(FILL)										
SS	Л	2 1 1	E														
	X I		_9														
/	\		-														
	1		-10														
6 SS	24	1 2 1 1	10														
	/	i	ļ.														
	\		-11														
/			F														
	-		-12														
I here	by certif	fy that	the info	ormation on this form is true and correct to the	e best	of my kr	nowledg	ge.									
Signa	ture	11 1	1100	Firm N	atura	l Reso	urce [Гесhnо	logy				Tel	(414)	837-36	07	
	Th	mdh	nfeld	23	84 W. I	Florida S	St., Fift	h Floor, l	Milwa				Fax	(414)	837-36	08	
								-	Templa	te: ILI	INOIS E	BORING	LOG -	Project:	BALDV	VIN GI	VT.GPJ

Page 2 of 6

Sar	nple			Borning realmoor 17177 201						-	Soil	Prop	erti	ies		
V Number and Type	t. &	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram	Compressive Strength (1sf)		Content		ity		P 200	RQD/ Comments
7 SS	24	1 5 10 10	-13	4 - 18' FILL, ASH (Coal) : yellowish red (5YR 4/6) to reddish black (10R 2.5/1), sand-sized ash and cinders, very soft to stiff (0-1.5 tsf). <i>(continued)</i>												
8 SS	24 14	5 10 11 11	14	14' wet.	(FILL)											
9 SS	24 14	5 8 14 15	-16 -17													
10 SS	24 16	2 2 3 4	18	18 - 22' SILTY CLAY CL/ML, gray (5Y 6/1), organic odor, stiff to very stiff (1.25-3.75 tsf), wet.			8									
11 SS	24 18	2 2 6 4	20 21		CL/ML											
12 SS	24 16	4 4 5 4	-22 -23	22 - 24' SILT: ML, very dark gray (10YR 3/1), dark yellowish brown (10YR 3/6) mottling, hard (4.25-4.5 tsf).	ML		 									
13 SS	24 22	1 2 5 7	-24 25	24 - 42.4' SILTY CLAY CL/ML, gray (10YR 5/1) with yellowish brown (10YR 5/8), oxidation staining, very soft to hard (<0.25-4.5+ tsf).												Permanent 6" PVC casing set
14 SS	24 21	3 4 5 7	26 27	26' yellowish brown (10YR 5/4), trace yellowish brown (10YR 5/8) and very dark gray (10YR 3/1) mottling, 15-30% silt, 5-15% fine sand, trace fine gravel, stiff to very stiff (1.25-2.5 tsf), low to medium plasticity, moist.												at 25' bgs.
15 SS	24 21	3 4 5 6	-28 -29	28' color grades to gray (10YR 5/1), 30-50% silt, soft to stiff (0.5-1.25 tsf).	CL/ML											
16 SS	24 17.5	1 5 5 7	-30 -31 -32	30' yellowish brown (10YR 5/8) mottling (15-30%), trace very dark gray (10YR 3/1) mottling, no gravel, very soft to very stiff (<0.25-2.5 tsf), medium plasticity.												

Boring Number MW-384 Page 3 of 6 Sample Soil Properties Soil/Rock Description Blow Counts Depth In Feet Compressive Strength (tsf) Length Att. Recovered And Geologic Origin For and Type Comments Moisture Diagram Number Content Liquid Each Major Unit Graphi SC200 Well go 17 24 - 42.4' SILTY CLAY CL/ML, gray (10YR 5/1) 24 with yellowish brown (10YR 5/8), oxidation staining, very soft to hard (<0.25-4.5+ tsf). (continued) 32' trace yellowish brown (10YR 5/8) and very dark SS 20.5 33 gray (10YR 3/1) mottling, 15-30% silt, stiff to very stiff (1.75-3.5 tsf). 34 34' yellowish brown (10YR 5/8) mottling (15-30%), trace very dark gray (10YR 3/1) mottling, stiff to 18 24 22 SS very stiff (1.5-2.5), dry to moist. 35 35.3' yellowish brown (10YR 5/8), trace gray (10YR 5/1) and very dark gray (10YR 3/1) mottling. 36 36' gray (10YR 5/1) mottling (15-30%), silt content 19 24 SS 21 increasing with depth, moderately stiff to stiff (0.75-1.25 tsf), low plasticity, moist. 37 CL/ML 38 38' grayish brown (10YR 5/2), trace gray (10YR 5/1), trace strong brown (7.5YR 4/6) mottling, 30-50% silt, soft to very stiff (0.5-3.75 tsf). 20 24 SS 39 38.7' - 40' very dark gray (10YR 3/1) mottling (5-15%), 5-15% fine gravel. 40 40' sand (5-15%), trace gravel, very stiff to hard 21 24 25 (3.5-4.5+ tsf). 40.3' wet. 41 40.8' very stiff to hard (3.5-4.5+ tsf), moist. 41.8' fine sand seam (1/4" thick). 42 22 SS 24 42' - 42.4' fine gravel, 30-50% clay, trace sand, 20 42.4 - 44.3' **CLAYEY SILT** ML/CL, gray (10YR 5/1) to grayish brown (10YR 5/2), 30-50% clay, 43 5-15% fine sand, trace subrounded gravel, very stiff to hard (3.5-4.5+), nonplastic to low plasticity, moist. ML/CL 43.5' - 44.3' very dark grayish brown (10YR 3/2), 24 8 10 14 brownish yellow trace (10YR 6/6) mottling, trace 44.3 - 56' **LEAN CLAY**: CL, brownish yellow trace 45 (10YR 6/6), trace light brownish gray (10YR 6/2) mottling, 15-30% silt, 5-15% gravel, trace gravel-sized oxidation-stained nodules, very stiff 46 24 24 (2.5-3.0 tsf), low to medium plasticity, moist to dry. SS 16 46' decreasing silt content, trace gravel, clay becoming laminated with depth, very stiff (2.25-3.0 tsf). 48 25 24 6 8 12 22 48' silt (5-15%), trace shale gravel, very stiff (3.0 CL SS tsf), medium plasticity, dry. 13.5 49 49.2' gravel (2" diameter). 50 26 50' very dark grayish brown (10YR 3/2) to dark 24 grayish brown (10YR 4/2), trace silt, very stiff (3.5 SS 16 tsf), medium to high plasticity, highly weathered -51 shale (residual soil).

Boring Number MW-384 6 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Blow Counts Depth In Feet Compressive Strength (tsf) And Geologic Origin For Number and Type Comments Diagram Moisture Plasticity Graphic Content Liquid Each Major Unit SC 200 Well Limit Index go 44.3 - 56' LEAN CLAY: CL, brownish yellow trace 24 13 14 9 14 SS (10YR 6/6), trace light brownish gray (10YR 6/2) mottling, 15-30% silt, 5-15% gravel, trace 53 gravel-sized oxidation-stained nodules, very stiff (2.5-3.0 tsf), low to medium plasticity, moist to dry. (continued) 52' - 54' clay is fractured, light brownish gray (10YR -54 CL 28 24 12 12 14 22 6/2) to light yellowish brown (10YR 6/4) in fractures. 24 SS 54' trace very dark brown (10YR 2/2) laminations, hard (>4.5 tsf). 55 56 56 - 58.2' SHALE: BDX (SH), very dark gray 3" steel SS 20 (10YR 3/1), highly weathered, fissile, totally healed casing set fractures, very weak, highly decomposed [light brownish gray (10YR 6/2) in fractures], very at 57.7 ft 57 BDX bgs. 24 intensely fractured (closed to narrow apertures). (SH) Core 1. COF 40 57' light yellowish brown (10YR 6/4) to very dark gray (10YR 3/1) layers, thinly bedded, highly RQD=36% decomposed to residual soil. 58.2 - 60.8' LIMESTONE: BDX (LS), light greenish gray (GLEY 1 7/10Y), microcrystalline, - 59 60 trace fossils, moderately strong to strong, medium Core 2, COR RQD=73% 64 bedded, slightly to moderately decomposed, BDX moderately fractured. (LS) 60.8 - 64' SHALEY LIMESTONE: BDX (LS/SH), 61 weak, thin to medium bedded, moderately decomposed, slightly to moderately disintegrated. BDX LS/SH 3 60 64 - 82.6' SHALE: BDX (SH), greenish gray Core 3, COR 73 (GLEY 1 5/10Y), very weak, thinly bedded, highly to moderately decomposed, slightly to moderately RQD= 58% disintegrated, intensely fractured (very narrow to moderately narrow apertures). 66 BDX 67.9' - 68.8' shale clasts within decomposed shale (SH) 68.8' - 69.2' light yellowish brown (10YR 6/4), trace 69 dark yellowish brown (10YR 3/6) layers. 60 Core 4. 69.2' - 74' intensely fractured (extremely narrow to CORI 63 RQD=46% narrow aperture).

Core 8.

RQD=49%

Boring Number MW-384 Page 5 of 6 Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Blow Counts Depth In Feet Strength (tsf) Compressive And Geologic Origin For Comments Number and Type Diagram Moisture **Plasticity** Graphic Content Liquid Each Major Unit SC 200 Well Limit Log 64 - 82.6' SHALE: BDX (SH), greenish gray (GLEY 1 5/10Y), very weak, thinly bedded, highly to moderately decomposed, slightly to moderately disintegrated, intensely fractured (very narrow to moderately narrow apertures). (continued) 5 60 74' - 79' intensely to very intensely fractured. Core 5. COR 20 RQD=0% Bedrock BDX corehole (SH) reamed 6" in diameter to 77' for well installation. 6 60 79' - 82.6' intensely fractured. Core 6, COR RQD=64% 64 82.6 - 83.9' SHALEY LIMESTONE: BDX (LS/SH), light greenish gray (GLEY 1 7/10Y), fossiliferous, intensely fractured (extremely narrow to narrow BDX (LS/SH apertures), slightly decomposed. 83.9 - 85.6' **SHALE:** BDX (SH), greenish gray Core 7, (GLEY 15/10Y), very weak, medium bedded, highly COR RQD=15% to moderately decomposed, slightly to moderately BDX disintegrated, intensely fractured (extremely narrow (SH) to narrow apertures). 85.6 - 88.7' SHALEY LIMESTONE: BDX (LS/SH), 86 light greenish gray (GLEY 1 7/10Y), shaley, fossiliferous, intensely fractured (extremely narrow to narrow apertures), slightly decomposed. 86.4' - 87' SHALE layer, greenish gray (GLEY 1 BDX 5/10Y), very weak, medium bedded.

> BDX (SH)

88.7 - 94.1' SHALE: BDX (SH), greenish gray (GLEY 1 5/10Y), very weak, medium bedded, highly

to narrow apertures).

to moderately decomposed, slightly to moderately

disintegrated, intensely fractured (extremely narrow

60

50

COR

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-384

Page 6 of 6

				Boring Number MW-384							ge 6	of	6
Sam	ple								Soil	Prope	rties		
	æ (<u>□</u>		×	Soil/Rock Description				n ~					
	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And Geologic Origin For				Compressive Strength (tsf)					ts .
ype	h A	Ō	I.	Each Major Unit	S	ij.	am	ress	ure	_	city		nen
Number and Type	ngtl cov	ΜO	pth	Each Major Unit	SC	Graphic Log	Well Diagram	duo.	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
ğ ğ	Re Le	Bl	De		Þ	Grap Log	Ď.	Str	ž č	<u> </u>	Ple	Ъ) X 0
			_	88.7 - 94.1' SHALE : BDX (SH), greenish gray (GLEY 1 5/10Y), very weak, medium bedded, highly									
				to moderately decomposed, slightly to moderately									
			-93	disintegrated, intensely fractured (extremely narrow	BDX								
				to narrow apertures). (continued) 92.5' - 93.2' light greenish gray (GLEY 1 7/10Y),	(SH)								
			-94	shaley, fossiliferous, intensely fractured, slightly									
				decomposed.									
				94.1' End of Boring.									
	l												

Facil	ty/Proje	act Mar	ma		License/	Dormit	Monito	ring M	ımbar		Boring	Pag		of	5
			gy Cor	nplex	Licenser	reminu	ivioiiito	ing ivi	illibei			MW			
				of crew chief (first, last) and Firm	Date Dri	lling St	tarted		Da	te Drilli				Drill	ing Method
	ırk Ba	-										•		1	1/4 HSA
	lldog l		ng				/2015				2/16/	2015			d rotary
				Common Well Name	Final Sta					e Eleva					Diameter
Loop	Crid C	Nai ai n		MW-385 stimated: □) or Boring Location ⊠	Fe	et (NA	AVD88	8)	454	1.82 Fe			38)	8	.3 inches
	Plane			stimated:) or Boring Location 2 N, 2,382,285.24 E E/W	La	it38	3°11	30.2	244 "	Local	Grid Lo		7.57		
State		of		1/4 of Section , T N, R	Long	g89	9° 52	.' 6	.492"		Fe]N]S		□ E Feet □ W
Facil		. 01			State	5 —	Civil To			Village	10				
				Randolph	Illinois		Baldy	win							
Sa	mple										Soil	Prope	erties		
	a (ii)			Soil/Rock Description											
6)	od (i	unts	Fee	And Geologic Origin For						sive (tsf			_		sts
ber	th A	၂ ပိ	h In	Each Major Unit		CS	hic	ram		pres	ture	p 1	icity	0	mer
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			N S (Graphic Log	Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	24	_	-	0 - 0.3' FILL, ASH (Coal): dark yellowish bro	own	(FILL)		VA K		0 01	20	1 1	H	Щ	<u> </u>
SS	13	2 3 3 5	Ē	(10YR 4/6), sand and silt-sized ash, dark gra	ay /										
			_1	0.3 - 19.7' FILL, LEAN CLAY: CL, brown (1				Y Y	1						
V	\		Ē	5/3) to yellowish brown (10YR 5/4) inside, 10	0-30%										
2	24	1	-2	silt, cohesive, stiff to hard (1.0-4.5 tsf), mediuplasticity, moist.	um										
ss	9	1 2 2 3	-	2' dark gray (10YR 4/1) mottling (15-30%), r	moist.										
			_3												
V	\		E												
3	24	1	<u>-</u> 4	4' trace sand, trace dark yellowish brown (1)	0VP										
ss	15	1 3 4 5	-	4/6) oxidation staining, moist to dry.	0110			9 8							
		5	-5					6							
/	\		E												
. [1		<u>-</u> 6												
ss	24 16	1 3 5 6	Ē	6' dry to moist.		(FILL)									
		6	L ₇			`CL									
1/	\mathbb{I}		F												
			E_8												
5 SS	24	WOH 1	F °	8' increased dark gray (10YR 4/1) mottling 2 dry to moist.	20-30%,			4							WOH=weight
33		3 4	E ₀	dry to moist.											of hammer
1	\l		- 1												
V	1		F 10												
6	24	1 2 3 5	- 10	10' moist.											
SS	13	3 5	L					8							
			F11												
V	1		E												
7	24	WOH 2	-12	12' moist to dry.											
SS	18	2 5 7	E	12.3' mostly dark gray (10YR 4/1), no mottlii	ng.										
			- 13												
I here	by certi	fy that	the info	ormation on this form is true and correct to the bes	t of my kn	nowled	ge.								

Firm Natural Resource Technology

234 W. Florida St., Fifth Floor, Milwaukee, WI 53204 Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

Tel: (414) 837-3607

Fax: (414) 837-3608

				Boring Number MW-385							Pag		of	5
San	nple							-		Soil	Prope	erties		_
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
8 SS	24 12	WOH WOH 3 3	-14 15	0.3 - 19.7' FILL, LEAN CLAY: CL, brown (10YR 5/3) to yellowish brown (10YR 5/4) inside, 10-30% silt, cohesive, stiff to hard (1.0-4.5 tsf), medium plasticity, moist. (continued) 13' mostly brown (10YR 4/3), dark gray (10YR 4/1) mottling. 14' some dark gray (10YR 4/1) mottling, trace yellowish brown (10YR 5/6) oxidation staining, trace very dark grayish brown (10YR 3/2) mottling, moist.					<u> </u>					
9 SS	24 16	WOH 1 3 4	-16 -17	16' moist. 16.5' dark gray (10YR 4/1) with dark yellowish brown (10YR 4/6) mottling, cohesive, medium to high plasticity.	(FILL) CL									
10 SS	24 24	WOH WOH 2 3	-18 19	18' dark gray (10YR 4/1), dark yellowish brown (10YR 4/6) mottling, softer than above, moist to wet.										
11 SS	24 24	WOH WOH WOH 1	-20 -21	19.7 - 31.9' FILL, ASH (Coal): very dark grayish brown (10YR 3/2) to very dark brown (10YR 2/2), silt-sized ash, trace sand-sized ash, cohesive, very soft (0 tsf), non-plastic, wet. 20' very dark grayish brown (10YR 3/2), trace sand seams, wet.										
12 SS	48 24	WOH 1 WOH 1	-22 -23 -24 -25	22' trace fine-grained sand seams.										
13 SS	24 21	1 WOH 1 WOH	26 27	25.7' medium-grained sand seam (2" thick).	(FILL)									
14 SS	24 24	1 2 2 1	-28 -29 -29											
15 SS	24 24	WOH WOH WOH	-30 -31 -32 -33	31.9 - 38' SILT : to LEAN CLAY : ML, olive gray (5Y 5/2), cohesive, very soft to soft (0.25-0.5 tsf), low to medium plasticity, moist to wet.	ML									
16 SS	24 24	WOH WOH WOH	34											

24

56' trace root structures, oxidation staining.

Boring Number MW-385 Page 3 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Comments Number and Type Moisture Diagram Plasticity Graphic Content Liquid Each Major Unit SC 200 Well Log 31.9 - 38' SILT: to LEAN CLAY: ML, olive gray 35 (5Y 5/2), cohesive, very soft to soft (0.25-0.5 tsf), low to medium plasticity, moist to wet. (continued) 36 ML 37 38 38 - 59' **LEAN CLAY**: CL, olive gray (5Y 5/2), dark 17 24 SS 24 yellowish brown (10YR 4/6) mottling, moist to dry. 39 42 WOH 2 3 4 18 24 42' medium plasticity, moist. Augered SS 14 with 8" plug to 42' bgs. 43 44 19 Permanent SS 23 6"PVC casing set at 45' bgs. 46 20 24 SS 27 48 21 SS WOH 2 4 4 48° gray (10YR 6/1), dark yellowish brown (10YR4/6), stiff (1.5 tsf), plastic. 24 16 49 WOH 3 4 4 22 24 24 SS 51 51' trace sand, very stiff (2.5 tsf). 52 23 24 SS 24 53 54' increase in sand content, stiff (1.75 tsf). 24 24 22 SS 55

Page 4 of 5

Con	nnla			Boring Number IVI VV - 363				Coil	Pag		of	3		
San	nple									5011	Prope	rues		
	% (E)	ıts	eet	Soil/Rock Description					e G					
r pe	Att	Blow Counts	n F	And Geologic Origin For	S		,	=	essi' h (ts	8 T		Ţ.		ents
nbe Tyj	gth	×	th I	Each Major Unit	C	phic	_	E	npre ngt	stu	pi ti	tici	00) / D
Number and Type	Length Att. & Recovered (in)	Blo	Depth In Feet		S U	Graphic Log	Well	Diagram	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
SS	21	3	-	38 - 59' LEAN CLAY : CL, olive gray (5Y 5/2), dark										
IV		4	-57	yellowish brown (10YR 4/6) mottling, moist to dry. (continued)										
IΛ			E	(continued)										
20	1 24	WOH	-58		CL									
26 SS	24 23	WOH 5 11 27	E											
ΙX		27	_59		L									
/\			E	59 - 60' POORLY-GRADED SAND WITH CLAY: SP-SC, fine-grained, trace coarse-grained sand,	SP-SC									
Ľ	1		-60	and trace gravel, very stiff (2.25 tsf).	SP-SC									
27 SS	24 22	6 8 13 13	F **	60 - 61' SILTY CLAY to POORLY-GRADED SAND: CL/ML, yellowish brown (10YR 5/6), gray										
		13	-61	(10YR 5/1) mottling.	CL/ML									
I۸			- 01	61 - 62' LEAN CLAY : to SHALE : CL, very dark										
γ,	\		-62	gray (10YR 3/1), weathered, hard (>4.5 tsf), dry.	CL									
28 SS	24	9 13 15 50/4"	F-02	62 - 63.8' SILTY CLAY to SHALE: CL/ML, grayish										
55	22	15 50/4"	F	brown (10YR 5/2), dark yellowish brown (10YR 4/6) mottling, weathered.										
lλ			-63	_	CL/ML									
γ,	\		F	00.0 051011415 DDV (011)										
			-64	63.8 - 65' SHALE : BDX (SH), weathered.	BDX									
1	12		<u> </u>		(SH)									Core 1,
CORE	11		-65	65 - 65.9' SHALEY LIMESTONE : BDX (LS/SH).		П								RQD=0%
2 CORE	60		E		BDX (LS/SH									Core 2,
CORE	48		-66	65.9 - 76.3' SHALE : BDX (SH), gray,										RQD=63%
			E	decomposed, intensely to moderately fractured.										
			-67											
			E											
			-68											
			F											
			- 69											
			-											
			- 70											
3	60													Core 3,
CORE	55		-71		BDX									RQD=82%
			E	71.2' - 72.5 vertical fracture (tight aperture).	(SH)									
			-72											
			E											
			- 73											
			E											
			- 74											
			Ē											
			_ 75											
_ , [E											
4 CORE	60 60		_ _76											Core 4, RQD=74%
			Ė	76.3 - 76.9' LIMESTONE: BDX (LS).										
					BDX (<u>(LS)</u>)	匚								
			 	76.9 - 78.9' SHALE: BDX (SH), dark gray, moderately fractured.										
			- -78	•	BDX (SH)									
			1 10	I	I	1		I	1	l	I			l

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-385

Page 5 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Number and Type Comments Moisture Diagram Plasticity Graphic Content SCS Liquid Each Major Unit Index 200 Well Log 76.9 - 78.9' **SHALE**: BDX (SH), dark gray, BDX moderately fractured. (continued) (SH) 78.9 - 81.1' **LIMESTONE**: BDX (LS), cherty, slightly fractured. BDX (LS) 60 Core 5, COR 54.5 RQD=62% 81.1 - 82.2' SHALEY LIMESTONE: BDX (LS/SH), intensely fractured. BDX (LS/SH 82 82.2 - 82.9' LIMESTONE: BDX (LS), moderately BDX fractured. (LS) 82.9 - 83.5' SHALEY LIMESTONE: BDX (LS/SH), intensely fractured. BDX LS/SH 83.5 - 87.4' **SHALE**: BDX (SH), gray. 85 BDX 60 (SH) Core 6, COR 65 RQD=58% 87.4 - 93' SHALEY LIMESTONE: BDX (LS/SH), fossiliferous, intensely to moderately fractured. 88 90 BDX (LS/SH Core 7, RQD=100% 30 COR 30 92 -93 93' End of Boring. Bedrock corehole reamed 6" in diameter to 93' for well installation.

Signature

License/Permit/Monitoring Number Boring Number MW-386 MW-3												Pag		of	5		
Bornig Drilled By: Name of crew chief (first, last) and Firm						License/									•		
Mark Bact c Bulldog Drilling																	
Buillog Drilling		_		Name o	of crew chief (first, last) and Firm	Date Dri	lling St	arted		Date Drill	ing Cor	npleted					
Common Well Name							10/1	10015		10/11	2015						
August Color Col	Bı	ılldog	g Drill	ing	Common Well Name	Final Cto			Curt			2015					
Local Grid Origin																	
State Plane 554,585,18 N, 2,382,713.22 E E/W Lat 38° = 11 21,9876° N N R Long 89° 52° 1.16° N Rect N N R Randolph N Randolph Randol	Loca	al Grid	Origin	□ (e						Local (,0)		8.3 inches		
J/A of 1/4 of Section T N,R						La	t38	3° <u>11'</u> 21	.9876				٦N		Пв		
County Randolph State Civil Town/City/ or Village Baldwin Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Soil/Rock Description And Geologic Origin For Soil/Rock Description And Geologic Origin For Soil/Rock Description And Geologic Origin For Soil/Rock Description And Geologic Origin For Soil/Rock Description And Geologic Origin For Soil/Rock Description And Geologic Origin For Soil/Rock Description And Geologic Origin For Soil/Rock Description And Geologic Origin For Soil/Rock Description And Geologic Origin For Soil/Rock Description And Geologic Origin For Soil/Rock Description And Geologic Origin For And Geologic Origin For And Geologic And Geologic Origin For And Geologic		1				Long	g89	<u>)° _ 52' _</u>	1.167	<u>'"</u>	Fe						
Sample Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description Each Major Unit Soil/Rock Description Each Major Unit Soil/Rock Description Each Major Unit Soil/Rock Description Each Major Unit Soil/Rock Description Each Major Unit Soil/Rock Description Each Major Unit Soil/Rock Description Each Major Unit Soil/Rock Description Each Major Unit Soil/Rock Description Each Major Unit Soil/Rock Description E	Faci	lity ID							City/ o	or Village							
Solid Soli					Randolph	Illinois		Baldwin									
And Geologic Origin For Each Major Unit And Geologic Origin For Each Major Unit So John Market Major Unit So John Major Unit O - 0.5' FILL, WELL-GRADED SAND: SW, dark brown (10YR 3/3) to black (10YR 2/1), fine to coarse sand-sized ash and slag, moist. O - 0.5' FILL, SILT: ML, dark yellowish brown (10YR 3/8) moltling, 20-40% clay, cohesive, hard (4.5 tsf), nonplastic, 4, 22, 23, 4, 4, 17, 4, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	Sa	ımple									Soil	Prope	erties				
1		3	<u> </u>	=	Soil/Rock Description					0.0							
1		, E.	m sd (1	Fee	And Geologic Origin For					ssive (tsf			>		ıts		
1	ber	th 4	S S	h In				hic	ram 	pres	sture	pi 1	icit	0	mei		
1	un ₁	eng	slow S	Cept	,		S	Jrap Jog Vell)iag	Jom J	Aois	upi,	Plast	20	30 m		
SS					0 - 0.5' FILL. WELL-GRADED SAND: SW.	dark	71 34	3 4	N -	10 %	20	111	ш п		_ <u> </u>		
2			3 7 5	_	brown (10YR 3/3) to black (10YR 2/1), fine		_sw_										
2 24 2 2 2 2 3 4 4 7 3 5 12 4 4 5 5 12 4 5 12 4 5 5 12 4 5 5 12 4 5 5 12 4 5 5 12 4 5 5 12 4 5 5 12 4 5 5 12 4 5 5 12 4 5 5 12 4 5 5 12 4 5 5 12 5 12 5 5 12 5 12 5 5 12 5		XI		-1					×								
2 24 2 2 4 2 3 3 4 4 4 5 8 8' moist. 2 24 2 2 2 4 2 3 3 4 4 5 8 8' moist. 2 24 2 2 3 4 5 9 11.2 5 8 8' moist. 2 24 2 2 3 4 4 5 9 11.2 5 8 8' moist.		Λl		F	(10YR 4/4), yellowish brown (10YR 5/8) mo	ttling,			3								
2				E_{2}		astic,	ML										
26	2	24	2	<u> </u>	2' - 2.6' clay content increases with depth to	o mostly											
brown (10YR 5/1), mottling, 20-40% silt, cohesive, very stiff (2.0-4.0 tsf), high plasticity, moist. 4 gray (10YR 5/1), 20-30% yellowish brown (10YR 5/8) mottling, trace medium-grained sand, moist to dry. 5 24 2 3 3 4 -7 -7 -7 -7 -7 -7 -7	33	\mathbb{V}	6	-	clay at 2.6', dry.						-						
3		λl		-3	brown (10YR 4/4), trace gray (10YR 5/1) me	ottling,								•			
3 SS		Λ		F	20-40% silt, cohesive, very stiff (2.0-4.0 tsf)				3								
SS	3	H 24	2	<u>-4</u>	1	n (10YR											
4 SS	SS	17	4 4	E	5/8) mottling, trace medium-grained sand, n	noist to			3								
4 SS		YI .	5	<u>_</u> 5	dry.												
SS V 14.5 4 12 3 4 1		Λl		E							*:						
SS V 14.5 4 12 3 4 1		/ \		F													
5 SS V 14.5	4		3 2	F-6	6' trace sand, moist to dry.												
5 SS V 14.5 4 - 8 8' moist. 6 SS V 12 24 2 10 10' stiff (1.75 tsf).	SS	∭ 12	3 4	E													
5 SS V 14.5 24 2 - 8 8' moist. 6 SS V 12 3 4 - 10 10' stiff (1.75 tsf).		XI		-7			(FILL)										
6 SS 24 2 10 10' stiff (1.75 tsf).		Λ		Ė			`CL										
6 SS 24 2 10 10' stiff (1.75 tsf).	_	\square	,	<u>-</u> 8	Olympia												
6 SS 24 2 10 10' stiff (1.75 tsf).	SS	14.	5 2	F	8 moist.												
6 SS 24 2 10 10' stiff (1.75 tsf).		V	5	F ₀													
SS V 12 3 - 11 - 11 - 12 10 stiff (1.75 tsf).		Λl		F,													
SS V 12 3 - 11 - 11 - 12 10 stiff (1.75 tsf).		/\		-													
	6	24	. 2	10	10' stiff (1.75 tsf).												
	SS	12	2 3	-													
		X		-11													
		\mathbb{N}		E													
		Ц		-12													
	I her	eby ce	rtify tha		ormation on this form is true and correct to the be	est of my kr	nowled	ge.				100					

Firm Natural Resource Technology Tel: (414) 837-3607
234 W. Florida St., Fifth Floor, Milwaukee, WI 53204 Fax: (414) 837-3608

Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

Page 2 of 5

				Boring Number MW-386					T		Pa		of	5
_San	nple									Soil	Prop	erties		
	ii) &	S	et	Soil/Rock Description					9.0					
o	λtt. ed (unt	ı Fe	And Geologic Origin For			_	_	SSIV (tsf	0		>		ıts
ber 「yp	th /	ပို	h In	Each Major Unit	CS	hic	ran l		pres	ture	<u>۔</u> وا	icity		mer
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	,	n S	Graphic Log	Well	S I	Compressive Strength (tsf)	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
7	24			2.6 - 24.5' FILL, LEAN CLAY : CL, dark yellowish	+-			1	S	Z 0	-	H H	Д.	<u> </u>
7 SS	16	2 2 3 7	_	brown (10YR 4/4), trace gray (10YR 5/1) mottling,										
I X		,	-13	20-40% silt, cohesive, very stiff (2.0-4.0 tsf), high plasticity, moist. <i>(continued)</i>										
Ι/\			_	13.2' dark gray (10YR 4/1), trace sand, stiff to hard										
/ \			_ 14	(1.5-4.5+ tsf), high plasticity, dry.										
8 SS	24 17	2 3 3 5	14 	14' dark gray (10YR 4/1), dark yellowish brown										
33	''	3 5	_	(10YR 4/6), high plasticity, dry to moist.										
lλ			-15											
//			F											
9	24	2	_16	16' dark yellowish brown (10YR 4/6), decrease to										
9 SS	14	2 2 3 3		30% dark gray (10YR 4/1), soft to very stiff (1.0-4.0										
I Y		3	- 17	tsf), dry, increasing moisture content with depth.										
Ι/\			F											
	1		_ 18		ļ									
10 SS	24 15	1 1 2 2	- 10	18' brownish yellow (10YR 6/8) mottling, silt content increases with depth to 30-50%, trace fine	(FILL)									
	'0	2	L 10	gravel, very soft to very stiff (0.0 to 3.0 tsf), moist to										
I۸			19 	wet.										
/\			_											
11	24	3	-20	20' yellowish brown (10YR 5/6), 30% dark gray										
11 SS	24	3 2 2 4	Ē	(10YR 4/1) mottling, 20-40% silt, trace sand, trace fine gravel, soft to stiff (0.5-1.5 tsf), moist.										
			_21	inte graver, son to sun (0.5-1.5 tsi), moist.										
/\														
12	24	2	-22	22' trace yellowish red (5YR 4/6), 5-15% sand, stiff										
12 SS	24 5	2 1 2 2		(1.5 tsf).										
I Y		2	- -23											
1/			-											
	1													
13 SS	24 24	2 2 1			L									
	_	i	25	24.5 - 26' FILL, SILT: ML, very dark grayish brown (10YR 3/2), low to medium plasticity, wet.										
IΛ			25	brown (1011x 5/2), low to medium plasticity, wet.	(FILL) ML									
/\			L											
14 SS	24	WOH WOH	-26	26 - 28.2' FILL, LEAN CLAY: CL, dark yellowish										WOH=weight
SS	6	WOH WOH	E	brown (10YR 4/6), 30-50% silt, cohesive, moderately stiff (0.75 tsf), medium to low plasticity,										of hammer
ΙX			-27	wet.	(FILL) CL									
//			-											
15	24	1	_28		L									
15 SS	24	1 1 1	_	28.2 - 44.3' FILL, ASH (Coal): very dark grayish brown (10YR 3/2), mostly silt-sized ash, 15-30%										
Į Į			-29	sand-sized ash, sand-sized ash seams,										
/			E .	noncohesive, nonplastic.										
		2	-30	201	(FILL)									
16 SS	24 24	2 3 1	Ė į	30' wet.	(1-144)									
IV		1												
\			- 31											
/\			F 22											
L	1 l		-32					┑				I		I

Sample

Number and Type

SS

18

SS

19

SS

20 SS

21 SS

22 SS

23

24

SS

25 SS

26

SS

Length Att. & Recovered (in)

24

24 24

24

23

24

19

24

24

24 21

24

18

24

24

24

24

24

12

Blow Counts

WOH WOH WOH

1 WOH WOH WOH

WOH WOH WOH

WOH WOH

WOH

3

Boring Number MW-386 3 Page of Soil Properties Soil/Rock Description Depth In Feet Compressive Strength (tsf) And Geologic Origin For Comments Moisture Plasticity Graphic Diagram Content Liquid Each Major Unit SC Index 200 Well Limit Log 28.2 - 44.3' FILL, ASH (Coal): very dark grayish brown (10YR 3/2), mostly silt-sized ash, 15-30% sand-sized ash, sand-sized ash seams, 33 noncohesive, nonplastic. (continued) 34 34' trace dark gray (10YR 4/1) mottling of silt-sized ash, trace black (10YR 2/1) mottling of sand-sized ash, trace dark yellowish brown (10YR 4/6) mottling 35 of clay-sized ash, very soft (0 tsf), wet. 36 37 38 (FILL) 38' mostly fine to medium sand-sized ash, 15-30% silt-sized ash, wet. 38.5' very dark grayish brown (10YR 3/2), black (10YR 2/1) mottling, mostly silt-sized ash, sand-sized ash seams, cohesive, nonplastic, wet. -39 40 40' dark gray (10YR 4/1) and black (10YR 2/1) mottling, wet. 41 42 43 44.3 - 46' SILT: ML, grades from very dark gray (10YR 3/1) to dark gray (10YR 4/1) with depth, 45 15-30% clay, cohesive, low plasticity, moist to wet. ML46 46 - 60' **SILTY CLAY** CL/ML, gray (10YR 5/1) with yellowish brown (10YR 4/5), 20-40% silt, cohesive, stiff (1.75 tsf), medium plasticity, moist. 48' dry to moist. Permanent 6" PVC 49 CL/ML casing set at 48.5' bgs. 50 50' oxidation-stained nodules (15-30%), trace sand. -51

Page 4 of 5

Sar	nple									Soil	Prope	rties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
27 SS	24 17	1 6 12 14	53	46 - 60' SILTY CLAY CL/ML, gray (10YR 5/1) with yellowish brown (10YR 4/5), 20-40% silt, cohesive, stiff (1.75 tsf), medium plasticity, moist. <i>(continued)</i> 52' trace oxidation staining, very stiff (>4.5 tsf).										
28 SS	24 17	25 24	54 55											
29 SS	24 12	8 16 33 24	-56 57	56' laminated weathered shale, dry.	CL/ML									
30 SS	24 24	7 11 15 24	-58 -59											
31 SS	24 21	6 10 15 18	-60 -61 -62	60 - 60.3' GRAVELLY FAT CLAY : g(CH), black. 60.3 - 63.5' SILTY CLAY CL/ML, gray (10YR 5/1), dark yellowish brown (10YR 4/6) mottling, hard (>4.5 tsf).	\ <u>g(CH)</u>									
32 SS	24 18	9 15 50/5"	- 62		CL/ML									
1 CORE	28 35		-63	63' gravel (>15%). 63.5 - 64.8' SHALE : BDX (SH), weathered.										Core 1, RQD=34%
			-64 -65	64.8 - 65.2' SHALEY LIMESTONE : BDX (LS/SH),	BDX (SH)									
2 CORE	60 45		-66 67	moderately fractured. 65.2 - 71' SHALE: BDX (SH), gray, slightly to moderately fractured, highly decomposed, some material washed-out.	LS/SH									Core 2, RQD=93%
			-68 68 69		BDX (SH)									
3 CORE	60 28		-70 -71 -72	71 - 76' LIMESTONE : BDX (LS), vertical fracture, intensely fractured.	BDX (LS)									Core 3, RQD=18%

Page 5 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Number and Type Comments Moisture Plasticity Diagram Graphic Content SCS Liquid Each Major Unit 200 Well go 71 - 76' LIMESTONE: BDX (LS), vertical fracture, intensely fractured. (continued) 72.3' vertical fracture. **BDX** (LS) 60 Core 4, COR 57 RQD=37% 76 - 77.2' **SHALE:** BDX (SH), dark gray, moderately fractured. BDX (SH) 77.2 - 81.3' SHALEY LIMESTONE: BDX (LS/SH), moderately fractured. 78.2' - 78.9 vertical fracture. BDX (LS/SH) 79.6' - 79.8' vertical fracture. 80 60 80.3' - 80.5' vertical fracture. Core 5. COR 55 RQD=69% 81 81.3 - 82.2' **SHALE**: to **LIMESTONE**: BDX (SH), BDX slightly fractured. 82 (SH) 82.2 - 86.3' **SHALE**: BDX (SH), gray, slightly to moderately fractured. BDX (SH) 48 Core 6, COR 48 RQD=65% 86 86.3 - 89' SHALEY LIMESTONE: BDX (LS/SH), slightly fractured. BDX 89 89' End of Boring. Bedrock corehole reamed 6" in diameter to 89' for well installation.

Boring Number Boring Number Boring Number Boring Number MW-387	Facilit	v/Proje	ct Nan	10			License/	Dormit/	Monit	oring N	Jumber		Roring	Paş		of	4	
Boring Dilling Methods Boring Life Burles		-			ınlex													
Buildog Drilling							Date Dri	lling St	arted		D	te Drill	1			Drilling Method		
Common Well Name Final State Final State State	Jim	Dittm	naier													4	1/4 HSA	
Sample Soil/Rock Description Soil Properties Soil/Rock Description Soil/Rock Description Soil/Rock Description Soil/Rock Description Soil/Rock Description Soil/Rock Description Soil/Rock Description Soil/Rock Descripti	Bul	ldog I	Drillir	ng										2015				
Lat																		
State Plane	Lagal	C=: 1 O:	ما ما ما				Fe	et (NA	AVD8	38)	42				38)	8	.3 inches	
1/4 of 1/4 of Section T N.R Long 89° 52° 29 1828° Feet S Feet M.							La	t38	3° _ 1	1' 2	7.258"	Locar	JIIU LO		∃ N.T			
Sample Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil Pr						-	Lone	g89	<u>)° 5</u>	<u> 22' 29</u>	.1828"		Fe					
Sample Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description	Facilit				County	S	State				City/ or	Village						
Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit			ı		Randolph]	Illinois		Balc	lwin								
1	Sar	nple											Soil	Prope	erties			
1		(ii)	ts	l set	Soil/Rock Descrip	tion						ő Œ						
1	ے <u>ہ</u>	Att.	uno	n Fe	And Geologic Origi	n For				,	=	ssiv h (ts	e _		<u> </u>		nts	
1	nbe Tyl	igth sove	× C	oth I	Each Major Un	it		CS	phic.	. =	gra I	npre	istui	uid	stici	00	D/ nme	
1 24	Nun	Len Rec	Blo	Deg					Gra	We	DIa L	Cor	Mo	Lig	Pla: Ind	P 2	RQ	
2 SS	1		2 7	-							3							
3 24 2 4 5 5 18 4 5 5 18 5 6 6 'dark yellowish brown (10YR 3/4), trace oxidation staining. 5 24 24 3 5 6 6 6' dark yellowish brown (10YR 3/4), trace oxidation staining. CL/ML 5 8 8 8 9 0 10 10 8 10 8 10 8 10 8 10 8 1	33	10	6	 		(2.5-4 151), 10	OVV											
3 24 2 4 5 5 18 4 5 5 18 5 6 6 'dark yellowish brown (10YR 3/4), trace oxidation staining. 5 24 24 3 5 6 6 6' dark yellowish brown (10YR 3/4), trace oxidation staining. CL/ML 5 8 8 8 9 0 10 10 8 10 8 10 8 10 8 10 8 1	lλ			E 1														
3 24 2 4 5 5 18 4 5 5 18 5 6 6 'dark yellowish brown (10YR 3/4), trace oxidation staining. 5 24 24 3 5 6 6 6' dark yellowish brown (10YR 3/4), trace oxidation staining. CL/ML 5 8 8 8 9 0 10 10 8 10 8 10 8 10 8 10 8 1	- /			-				/EILL\										
3 SS 24 24 2 4 3 4 5 5 SS 24 8 8 SS 24 8 8 SS 24 8 8 SS 24 8 8 8 SS 24 8 8 SS 24 8 8 8 SS 24 8 8 8 SS 24 8 8 8 SS 24 8 8 8 SS 24 8 8 8 SS 24 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2	24	2	-2				CL/ML										
3 CL/ML 3 Trace tine sand. 4 - 10.8' SILTY CLAY CL/ML, dark yellowish brown (10YR 4/4), stiff to hard (1.5-4.5 tsf), medium plasticity, moist. 4 - 10.8' SILTY CLAY CL/ML, dark yellowish brown (10YR 3/4), trace oxidation staining. 5	SS	18	5 7	E														
3 SS	I X			_3	3' trace fine sand.													
SS	/\			F														
SS	2	24	2	-4	4 10 8' CH TV CLAV CLAN d	ark vollowich		L										
Firm Natural Resource Technology Firm Natural Resource Technology Firm Natural Resource Technology Firm Natural Resource Technology Firm Natural Resource Technology Firm Natural Resource Technology Firm Natural Resource Technology Firm Natural Resource Technology Tel: (414) 837-3607	ss \		4	E	brown (10YR 4/4), stiff to hard (1													
SS V 24 SS V 21 4 5 5 7 7 Staining. 5 SS V 24	I V		5	_5	plasticity, moist.													
SS V 24 SS V 21 4 5 5 7 7 Staining. 5 SS V 24	/\			F														
SS V 24 SS V 21 4 5 5 7 7 Staining. 5 SS V 24	L	1		E_6														
SS V 24 SS V 0		24 21	3 4 4			/4), trace ox	idation											
SS V 24 SS V 0			5	F _	otaning.													
Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Firm Natural Resource Technology Tel: (414) 837-3607	1/			E /														
SS 24 0 WOH = Weight of hammer 10 No.8 - 12' CLAYEY SILT ML/CL, dark yellowish brown (10YR 4/4), nonplastic. I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature R M M Tel: (414) 837-3607	- /			-				CL/ML										
WOH=weight of hammer I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature A A A A A A A A A A A A A A A A A A A	5			-8														
WOH=weight of hammer 10 10.8 - 12' CLAYEY SILT ML/CL, dark yellowish brown (10YR 4/4), nonplastic. I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature R ML/CL Firm Natural Resource Technology Tel: (414) 837-3607	SS	0		E														
WOH=weight of hammer I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature A Machania Firm Natural Resource Technology Tel: (414) 837-3607	I X			_9														
WOH=weight of hammer I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature A Machania Firm Natural Resource Technology Tel: (414) 837-3607	\\			-														
WOH=weight of hammer 10.8 - 12' CLAYEY SILT ML/CL, dark yellowish brown (10YR 4/4), nonplastic. I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature R A A Firm Natural Resource Technology Tel: (414) 837-3607	<u>.</u>	24	WOH	-10														
I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature B. J. Marker Firm Natural Resource Technology Tel: (414) 837-3607	ss \		3	E														
I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature B. J. Machane Firm Natural Resource Technology Tel: (414) 837-3607	I Y		5	-11	10.8 - 12' CLAYEY SILT ML/CL	dark yellow											of nammer	
I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature B D Maches Firm Natural Resource Technology Tel: (414) 837-3607	/			F	brown (10YR 4/4), nonplastic.	•		MI /CI										
Signature B Maches Firm Natural Resource Technology Tel: (414) 837-3607	L	1		F ₁₂	 													
Signature B Maches Firm Natural Resource Technology Tel: (414) 837-3607	I herel	by certif	fy that	1.2	rmation on this form is true and corre	ect to the best	t of my kr	nowled	ge.	1			1	1	I		1	
234 W. Florida St., Fifth Floor, Milwaukee, WI 53204 Fax: (414) 837-3608										nolog	v			Tel	: (414)	837-36	507	
		1	Dras	(Pr	yn							WI 532	.04					

Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

TECHNOLOGY Boring Number MW-387 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet S 2 Number and Type And Geologic Origin For Comments Moisture Plasticity Graphic Diagram Content SCS Liquid Each Major Unit Limit 200 Well Log WOH 3 4 4 12 - 24' **SILTY CLAY** CL/ML, dark yellowish brown (10YR 3/4), stiff to very stiff (1.5-2.75 tsf). 24 12.5' - 12.6' black staining. 13 13' increased silt content, moist. 14 8 24 14' dark yellowish brown (10YR 4/6). 24 SS 15 15' trace oxidation staining, medium plasticity, 16 9 24 SS 26 17 18 CL/ML 10 18' low plasticity. 24 SS 25 19 19' medium plasticity. 20' dark yellowish brown (10YR 4/4), grayish brown 11 24 SS 23 (10YR 5/2) mottling. 21 22 12 SS 24 24 23 24 - 27.4' **LEAN CLAY:** CL, gray (10YR 5/1), stiff to very stiff (1.5-2.5 tsf), high plasticity. 13 24 SS 26 CL 26 14 24 26' trace black oxidation staining. 24 SS 27 27.4 - 28.5' **SILTY SAND:** to **LEAN CLAY:** SM, mostly fine sand, wet. 28 SM 15 24 SS 24 28.5 - 32.5' SILTY CLAY CL/ML, yellowish brown (10YR 5/4), trace sand, very soft to very hard 29 (0-4.5+ tsf). 30 16 WOH 30' dark yellowish brown (10YR 3/4), 24 CL/ML 20 SS oxidation-stained nodules (1" layer). 31 31' brown (10YR 4/3).

Boring Number MW-387 Page 3 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For 12 Number and Type Comments Moisture Diagram Plasticity Graphic Content Liquid Each Major Unit SC Index 200 Well Limit Log 24 SS 16 32.5 - 34' **POORLY-GRADED SAND:** SP, yellowish brown (10YR 5/4), mostly medium sand, 33 sand grain size decreasing with depth, silt and clay SP content increasing with depth. 34 - 34.5' SILTY SAND: SM, yellowish brown 18 24 ѕм (10YR 5/4), mostly fine sand. SS 34.5 - 36' **SILTY CLAY** CL/ML, brown (10YR 4/3), 35 very stiff to hard (2.5-4.5 tsf), low plasticity. CL/ML 50 for 3" 36 - 40.6' LIMESTONE: BDX (LS), light gray, 3 3 19 SS cherty, intensely fractured (fractures partly healed Core 1. 39 39 1 with shale). RQD=44% COR 37 38 BDX (LS) 39 40 2 COR 40.6 - 43.9' **SHALE**: BDX (SH), dark gray, 60 Core 2, 49 intensely fractured. RQD=61% BDX (SH) 43.9 - 45.3' SHALEY LIMESTONE: BDX (LS/SH), intensely fractured. BDX (LS/SH 45.3 - 48.8' LIMESTONE: BDX (LS), fossiliferous, moderately fractured (fractures partly healed with 60 Core 3, COF 46 shale). RQD=75% BDX (LS) 48.8 - 53.9' SHALEY LIMESTONE: BDX (LS/SH), moderately fractured. BDX (LS/SH Formation COR 64 -51 taking water during coring.

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-387 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Number and Type Comments Moisture Diagram Plasticity SCS Content Graphic Each Major Unit Liquid Limit Index 200 Well Log 48.8 - 53.9' SHALEY LIMESTONE: BDX (LS/SH), moderately fractured. (continued) Core 4, RQD=92% BDX 53 (LS/SH 53.9 - 55' **SHALE:** BDX (SH), dark gray, moderately fractured, slightly decomposed. 54 BDX (SH) 55 55 - 56.3' SHALEY LIMESTONE: BDX (LS/SH), moderately fractured. BDX 5 COR 60 Core 5, (LS/SH 56 RQD=100% 59 56.3 - 60.1' LIMESTONE: BDX (LS), fossiliferous, slightly fractured to unfractured. 58 BDX (LS) - 59 60.1 - 61.3' Overdrilled for Well Installation. -61 61.3' End of Boring. Bedrock corehole reamed 6" in diameter to 61.3' for well installation.

Facilit	y/Projec	et Nan	ne			License/Permit/Monitoring Number Boring Number											
	dwin E			nnlex		MW-388											
				of crew chief (first, last) and Firm		Date Dri	lling St	arted		Da	te Drilli				Drilling Method		
Jim	Dittm	aier											•			/4 HSA	
	ldog I		ng				11/10)/2015	5		1	1/12/	2015			d rotary	
				Common V		Final Sta	tic Wat	ter Lev	el		e Elevat					Diameter	
					7-388	Fee	et (NA	AVD8	8)		5.28 Fe			38)	8.	3 inches	
	Grid Or			stimated: \square) or Boring Location 8 N, 2,379,624.09 E		12	Lat 38° 11' 30.426" Local Grid Location										
State					/ ((()		00		2' 39.8			-]N]S		Е	
Facilit	1/4 v ID	01	1	1/4 of Section , T N,		Long	> —		own/Ci		Village	Fe	ei L	19		Feet W	
	,			Randolph		Illinois		Bald		,	C						
Sar	nple											Soil	Prope	erties			
	[22 G		1	Soil/Rock Descrip	tion												
	tt. & d (ii	unts	Fee	And Geologic Origi							sive (tsf)					S	
ype Ype	th A	Ŝ	l In	Each Major Un			S	ji.	am.		gth	ture	ت	city		/ nen	
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major On			SC	Graphic Log	Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments	
1 k	24			0 - 4' FILL, SILTY CLAY CL/ML	dark vellov	vish	ר			_	S	20		P II	Ъ	<u> </u>	
ss	11	2 5 10 8	F	brown (10YR 3/4), 30-50% silt, o	rganic mate	rial at											
I X		Ü	-1	surface, very soft to very stiff (0.0)-4.0 tst), m	oist.				1							
1/			F														
L			\mathbb{L}_2				(FILL)										
2 SS	24 18	3 6 8 9	L 2				CL/MĹ										
33	10	9	-														
lλ			-3														
1			E														
3	24	3	_4	4 - 18' SILTY CLAY CL/ML, brow	wn (10YR 5	/3).											
SS	15	3 4 8 9	-	30-50% silt, very soft to very stiff													
I X		3	_5	moist.													
1/			E														
L	1		-6														
4 SS	24 18	1 4 6 4	L 0	6' yellowish brown (7.5YR 5/6),	30-50% fine	sand.											
	'0	4	F _														
IΛ			- 7														
1	\																
5	24	1	-8	8' yellowish brown (10YR 5/4).			CL/ML										
SS	22	1 2 4	F	, , ,													
			<u>_9</u>														
1/			E														
L	1		-10														
6 SS	24 21	2 2 3 3	10	10' brown (10YR 4/3), yellow (10)YR 7/8) mc	ttling.											
JJ	-'	3	_ 11														
lγ			-11														
V			F														
			-12					· ·									
	-	y that	the info	ormation on this form is true and corre		t of my kn	nowledg	ge.									
Signat		Brad	R	when		ral Reso					W/I 522	M		: (414) : (414)			

Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

Page 2 of 3

Son	nnla			Bornig Number 1V1 VV - 300						Soil	Prope		01	
San	nple									3011	Prope	rues		
	%. (ji	ıts	ee	Soil/Rock Description					st)					
r pe	Att	Jino	H. H.	And Geologic Origin For	S		=		essi h (ts	e T		ty		snts
nbe Ty _J	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	U U	phić.	II gran	2	npre	istu	uid	stici ex	00	D/
Number and Type	Len Rec	Blo	Dep		n s	Graphic Log	Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
7 SS	24	1 2 3 3	E	4 - 18' SILTY CLAY CL/ML, brown (10YR 5/3),										
SS	25	3	E	30-50% silt, very soft to very stiff (0.0-4.0 tsf), moist. (continued)										
lχ			_13											
/\			-	13.3' brown (10YR 5/3), trace sand.										
. -	24	1	-14	141										
8 SS	24 20	1 2 4 7	F	14' grayish brown (10YR 5/2), increasing coarse sand content.										
IV		7	_ 15											
I۸			- 13		CL/ML									
γ,	V		E											
9 SS	24	2	-16	16' brownish yellow (10YR 6/8) mottling, very dark										
SS	21	2 4 5 8	F	brown (10YR 2/2) stringers.										
ΙX			-17	17 - 18' SILTY CLAY WITH SAND (CL/ML)S,										
/\			E	yellowish brown (10YR 5/8).	(CL/ML)									
	1		- -18		(CL/IVIL)									
10 SS	24 22	1 2 2 3	- 10	18 - 20' SILTY CLAY CL/ML, 30-50% silt, very soft to very stiff (0.0-4.0 tsf), slow dilatancy, wet.										
		3	F	Soft to very still (0.0 4.0 tol), slow undurity, wet.										
ΙÅ			-19		CL/ML									
\/\			E											
11	24	WOH	20	20 - 23.5' SILT WITH SAND: (ML)s, yellowish										WOH=weight
11 SS	14	WOH 2 4 7	E	brown (10YR 5/6), fine sand, rapid dilatancy, very										of hammer
I X			-21	soft (0.0 tsf), wet.			•							
IΛ			F											
1			E 22		(ML)s									
12 SS	24	3 9 12 9	22	22' yellowish brown (10YR 5/4), with clay.	` '									
55	22	12 9	_											
lλ			-23											
/\			-	23.5 - 26.5' SILTY CLAY WITH SAND (CL/ML)S,										
13	24	WOH	-24	grayish brown (10YR 5/2), fine sand, very stiff										
ss \	18	4 6 9	E	(2.5-3.0 tsf), wet. 24' gray (10YR 5/1), no fine sand.										
I Y		9	- -25	3.7(
I۸			23		(CL/ML)									
γ,	V		F 26											
14 SS	8	4 50 for 2"	_26											
SS	7		E	26.5 - 27' SHALE: BDX (SH), gray, decomposed.	DDV	1.1								
1 ∏	35		_27	27 - 30' LIMESTONE: BDX (LS), fossiliferous,	BDX (SH)									Core 1,
1 CORE	31		F	thickly bedded, slightly fractured (narrow to										RQD = 97%
			-28	moderately narrow apertures).		H								
[]			E		BDX									
[]					(LS)									
			 			H								
			F			H								
2 CORE	60		-30	30 - 45' SHALEY LIMESTONE : BDX (LS/SH),		\Box								Core 2,
CORE	40		Ē	highly decomposed, intensely fractured.		H								RQD = 68%
			_31		BDX (LS/SH	H	1							
			F		LU/311		<u> </u>							
11			-32				 							
		•		•		•		•	•			. '		,

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-388 Page 3 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Depth In Feet Blow Counts RQD/ Comments And Geologic Origin For Number and Type Moisture Diagram Plasticity USCS Graphic Content Each Major Unit Liquid Limit Well 200 Log 30 - 45' SHALEY LIMESTONE: BDX (LS/SH), highly decomposed, intensely fractured. (continued) 33 -34 3 COR -35 Core 3, RQD = 93% 60 34.9' moderately fractured. 57.5 -36 37 37' - 43.5' fossiliferous. 38 BDX - 39 40 40.1' slightly fractured. 4 CORI 60 Core 4, -41 40.9' fossiliferous. 60.5 RQD = 100% -42 43 45 45 - 45.2' Overdrilled for Well Installation. Bedrock 45.2' End of Boring. corehole reamed 6" in diameter to 45.2' for well installation.

SOIL BORING LOG INFORMATION

						T							Pag		of ·	4
	ity/Proje ldwin l			nplex		License/	Permit/	Monit	oring	Numb	er	Boring		er '-389		
				of crew chief (first, last) and Firm		Date Dri	lling St	arted		[]	Date Drill	ing Cor	npleted		Drill	ing Method
Τo	m Mar	·lo														1/4 HSA
	lldog I		ng				11/25	5/201	5			12/1/2	2015		an	d rotary
				Common Well N		Final Sta					ace Eleva					Diameter
				MW-389		Fe	et (NA	AVD8	38)	4	17.30 F			38)	8.	.3 inches
	l Grid O Plane			stimated: \square) or Boring Location \boxtimes 3 N, 2,379,809.87 E \bowtie		La	ıt <u>38</u>	3°1	1' 37	7.2444	" Local (Grid Lo]N		□Е
	1/4	of	1	1/4 of Section , T N, R		Long				7.4736	_	Fe		S]	Feet W
Facil	ity ID			County		State				/City/ o	or Village					
				Randolph		Illinois		Bald	lwin							
_Sa	mple											Soil	Prope	erties		
	(ii) &	83	et	Soil/Rock Description							9 C					
e)	^Δ tt. ed (lunc	l Fe	And Geologic Origin For	•					_	ssiv (ts.			<u>></u>		nts
lber Tvn	over 5	ŭ	h Iı	Each Major Unit			CS	hic	1_	ran	ipre ngth	stur	pi ti	icit	0	me M
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	-			USC	Graphic 1.00	Well	Diagram	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	24		+ -	0 - 16' SILTY CLAY CL/ML, brown (7	'.5YR 4	1/4),				\	0 07					П
SS	16	1 3 7 13	F	stiff to very hard (1-4.5+ tsf), low plast	icity.											
	XI		-1							X						
	\		E													
1			-2													
2 SS	24 18	2 6 9	_ _													
	∥ '	9	L													
	\mathbb{A}		-3													
/	\		F													
3	24	1	-4													
ss	19.5	1 3 3 3	<u> </u>	4.5' moist.												
	VI.	3	_5	4.5 most.												
	\mathbb{N}															
V			Ė,													
4	24	1 2	F ⁶				CL/ML									
SS	17	1 2 3 1	E													
	XI		- 7	7' trace root structures.												
	' \			, 11000 1001 011 0010100												
_	1		-8	0.11 1 (10) (5 0.4)												
5 SS	24 17	2 2 4 5	F .	8' black (10YR 2/1) oxidation mottling	J.											
	$\parallel \cdot \cdot \cdot \mid$	5	F ₀													
	\mathbb{N}		- 9													
/			E													
6	24	2	_10	10' decreasing mottling, increasing si	lt conte	ent										
ss	20	2 2 4 4	-	To dooredoing meaning, meredoing of	001110	J. I.C.										
	XI	"	-11													
	\setminus		ļ -													
			E 12													
T 1	.1	C1	112	l	41- 1	4 - C 1										
				ormation on this form is true and correct to												
Signa	uure	Bead	1 Ru	Firm	Natur	ral Reso	urce '	Techi	nolog	gy	. МЛ 520	104		: (414) · (414)		

234 W. Florida St., Fifth Floor, Milwaukee, WI 53204 Fax: (414) 837-3608

Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

TECHNOLOGY Boring Number MW-389 Page 2 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet S 2 Number and Type And Geologic Origin For Comments Moisture Plasticity Graphic Diagram Content SCS Liquid Each Major Unit 200 Well Limit Index Log 0 - 16' SILTY CLAY CL/ML, brown (7.5YR 4/4), 24 stiff to very hard (1-4.5+ tsf), low plasticity. 13 12' dark yellowish brown (10YR 4/4), wet. 14 CL/ML 8 24 14' brown (10YR 5/3), dark yellowish brown 20 SS (10YR4/6) mottling. 15 16 16 - 23' **FAT CLAY:** CH, grayish brown (10YR 5/2), yellowish brown (10YR 5/6) mottling, trace 9 24 SS 24 sand, stiff to very stiff (1.75-3.0 tsf), medium plasticity. 18 10 18' black (10YR 2/1) oxidation nodules. 24 SS 24 19 СН 11 24 SS 21 22 12 SS 24 27 23 23 - 28.3' SILTY CLAY WITH SAND (CL/ML)S, yellowish brown (10YR 5/4), grayish brown (10YR 5/2) mottling, trace fine gravel, stiff to hard (1.5-4.5 tsf), medium plasticity. 13 24 SS (CL/ML)\$ 26 14 24 26 SS 27 27' low plasticity. 28 15 24 3 8 11 SS 28.3 - 28.8' POORLY-GRADED SAND WITH SP-SC CLAY: SP-SC, yellowish brown (10YR 5/6). 29 28.8 - 36' SILTY CLAY CL/ML, yellowish brown (10YR 5/4), trace sand, oxidation nodules, and fine gravel, very stiff to hard (2.5-4.5 tsf), wet. 30 16 24 3 5 10 SS CL/ML -31

Boring Number MW-389 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For 12 Number and Type Comments Moisture Plasticity Graphic Diagram Content SCS Liquid Each Major Unit Index 200 Well Limit go 24 28.8 - 36' SILTY CLAY CL/ML, yellowish brown (10YR 5/4), trace sand, oxidation nodules, and fine gravel, very stiff to hard (2.5-4.5 tsf), wet. SS 33 (continued) 34 CL/ML 18 24 1 3 8 13 34' increasing gravel content. 26 SS 35 36 - 37.3' SHALEY LIMESTONE: BDX (LS/SH), 50 for 4' 19 SS 4 moderately fractured. Core 1. BDX 1 46 RQD=86% COR 37 45 37.3 - 37.7' SHALE: BDX (SH), decomposed, BDX moderately fractured. (SH) 37.7 - 39.3' LIMESTONE: BDX (LS), shale at fractures, moderately fractured. BDX (LS) 39 39.3 - 46.8' SHALEY LIMESTONE: BDX (LS/SH), 13 Core 2, COR 12 fossiliferous, decomposed, moderately fractured. RQD=67% 40 40.4' - 41' intensely fractured. 56 Core 3, COR 56 RQD=65% 42 BDX 45.2' slightly fractured. 63 Core 4. COR RQD=89% 46 46.8 - 50.5' LIMESTONE: BDX (LS), fossiliferous, slightly fractured. BDX (LS) 50.5 - 52.1' SHALEY LIMESTONE: BDX (LS/SH), 60 Core 5, COR 59 RQD=100% fossiliferous. -51 BDX (LS/SH)

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-389

Page 4 of 4

Sample Soli Properties Soli Properties Solid P				Boring Number MW-389				 			e 4	of	4
52.1-55.7' End of Boring. 52.1-55.7' End of Boring. 52.1-55.7' End of Boring.	Sample								Soil	Prope	rties		
52.1-55.7' End of Boring. 52.1-55.7' End of Boring. 52.1-55.7' End of Boring.	tt. &	ınts	Feet	_				ive (tsf)					Ş.
52.1-55.7' End of Boring. 52.1-55.7' End of Boring. 52.1-55.7' End of Boring.	oer ype h Au	Cor	l In		S	nic .	am	oress gth (ure	ь	city	_	, nent
52.1-55.7' End of Boring. 52.1-55.7' End of Boring. 52.1-55.7' End of Boring.	fumb nd T engt	low	epth	Lacii Major Onit	S	raph	/ell jiagr	omp	foist onte	iqui	lasti ıdex	200	OD JIII
slightly fractured. 554 55.7' End of Boring. Bedrock corehole reamed 6" in diameter to 55' for well installation.		<u> </u>		E2.1 FE 7'LIMPSTONE, DDV // S) fossiliforous	===		 	S	20		P	Ь	<u> </u>
BDX (LS) S55.7' End of Boring. Bedrock corehole reamed 8" in dameter to 55' for well installation.			-	slightly fractured.			5002						
Bedrock corehole reamed 6" in diameter to 55' for well			53			H							
55.7' End of Boring. (LS) Bedrock corehole reamed 6" in diameter to 55' for well installation.			-										
55.7' End of Boring. Bedrock corehole reamed 6" in diameter to 55' for well installation.			54										
55.7' End of Boring. Solution			_		(==)								
55.7' End of Boring. Solution			55			曲							Bedrock
in diameter to 55' for well installation.	Ц		F										corehole
well installation.				55.7' End of Boring.									in diameter
													well
													installation.

APPENDIX D GROUNDWATER QUALITY DATA

Baldwin Energy Ce	nter																																			
Well	Sample Date	Temperatur e (deg. C)	Specific Cond (Field) (micromhos/ pt	H (field) Alkalinity, U) total (mg/L		Nitrite nitrogen, total (mg/L	Nitrate nitrogen,) diss (mg/L)	Nitrate nitrogen, total (mg/L)		dissolved	Magnesium, dissolved (mg/L)	Sodium, dissolved (mg/L)	Potassium, dissolved (mg/L)	Chloride, dissolved (mg/L)	Sulfate, dissolved (mg/L)	Fluoride, dissolved (mg/L)	Arsenic, dissolved (mg/L)	Barium, dissolved (mg/L)	Beryllium, dissolved (mg/L)	Boron, dissolved (mg/L)	Cadmium, dissolved (mg/L)	Chromium, dissolved (mg/L)	Cobalt, dissolved (mg/L)	Copper, dissolved II (mg/L) (olved			Manganese, dissolved (mg/L)	Thallium, dissolved (mg/L)	Nickel, dissolved (mg/L)	1 1	dissolved			Mercury, dissolved (mg/L)
Class II Standard		ns	ns	6.5-9.0	ns 120	00 r	ns 10	+	+	ns	n:	, . ,	s ns	, . ,		,				,	0.05	,			5.0	5.0	0.1		10	0.02		0.05	10	0.024	0.05	0.01
Max (Unlithified)		27.5		12.4 70		0.1		8 10.7		289						0.86			_						69.4	18	0.005		6.8				0.014	<0.005	0.016	<0.002
Min (Unlithified)		2	301		_	38 <0.0	_	+	+	54.17					_	0.11	+	+	+			_	_		<0.02	<0.01	<0.005	<0.003	<0.003		_	-	<0.005	<0.005	<0.01	<0.002
Max (Bedrock) Min (Bedrock)		28.1 5.8		12.9 80 6.5	08 170 16 3	_	_		8 <0.008 8 <0.007	533 45	2.1		+			0.75 0.17		_	_						3.82 0.02	1.6 0.011	<0.005 <0.005	0.58 <0.003	0.87 <0.003				0.006 <0.005	0.0075 <0.005	<0.01 <0.01	<0.002
Max (Leachate)		17.7		11.9	512	_								10						94.7					90.6	0.06		1.58	<0.005							
Min (Leachate)		13.3	1070	7.6	113	30								1	2 49	95				36.3					0.57	<0.02		0.01	<0.005							
Upgradient Wells (MW104D (N)	Unlithified Mate 11/16/2010	erials) 15	1226	7	75	35	0.0	7	<0.007					15.	7 24	15 0.46	9 <0.00	5 0.0	3 <0.005	<0.02	<0.002	<0.005	5 <0.00	<0.005		<0.01	<0.005		0.02	<0.002	2 <0.005	< 0.005	<0.005	<0.005	<0.01	<0.002
MW104D	3/23/2011	16.7	1176	7 40	06 80)1	0.0	7	<0.007	143		3 63	3 <1	1	7 24	11 0.42	2 <0.00	5 0.031	1 <0.005	0.021	<0.002	<0.005	5 <0.00	<0.005		<0.01	<0.005		0.04	<0.002	2 <0.005	<0.005	<0.005	<0.005	<0.01	<0.002
MW104D MW104DR	6/7/2011 9/13/2011	16.8 16	+	6.9 40 6.7 4:	_	76 58	<0.0		<0.007 <0.007	134 134					9 25	0.37 0.37								<0.005 <0.005		<0.01 0.024	<0.005 <0.005		0.013				<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	<0.002 <0.002
MW104DR	12/8/2011	13.7		6.8 43		39	0.0		<0.007	137					8 22		_									0.025	<0.005		0.28				<0.005	<0.005	<0.01	<0.002
MW104DR MW104DR	3/8/2012 9/16/2013	11.3 15.5		7.6 4: 6.9	16 72		0.5	5	<0.008	145	58	3 56	5 1.3	2-	4 21	14 0.3	1 <0.00	5 0.03	5 <0.004	<0.05	<0.002	<0.005	5 <0.00	<0.005	4.82	0.011	<0.005	0.93	0.21	<0.002	2 <0.005	<0.005	<0.005	<0.005	<0.01	<0.002
MW104DR	11/20/2013	13.6		6.8	63	30								1	6 19	94				0.02					4.02	0.07		0.53	0.29							
MW104DR MW104DR	2/18/2014 6/11/2014	12.2 14.3		6.8	65	76								1	8 17	75 36				<0.02 <0.02						<0.02 0.028			0.04 0.123							
MW104DR MW104DR	3/25/2015	14.3		7.1		30 <0.0)5	0.955	;					2		79				<0.02					0.54	<0.028		0.177	0.123							-
MW104DR	6/24/2015	14.8		7	7:			0.673						2	3 18					<0.02 <0.02					0.77	<0.02		0.206	0.13							
MW104DR MW104DR	9/25/2015 11/10/2015	15.4 15.2		7.1 6.8	63	34 <0.0 14 <0.0		0.847 0.924					-	2.				+		<0.02	1				0.74 0.33	<0.02 <0.02		0.224 0.234	0.15 0.172							
MW104S (N)	11/16/2010	11.8		6.6	94		<0.0		<0.007					33.		18 0.62										18	<0.005		6.8				0.009	<0.005	<0.01	<0.002
MW104S MW104S	3/23/2011 6/7/2011	15.9 21.8		6.5 44 6.5 55	_	12	<0.0		<0.007 <0.008	106 121						59 0.40 14 0.56								<0.005 <0.005		1.85	<0.005 <0.005		3.0				<0.005	<0.005 <0.005	<0.01 <0.01	<0.002 <0.002
MW104SR	9/13/2011	19.9	1286	6.4 65	54 90)9	0.3	7	<0.007	157	65	92	2 <1	3.	2 16	54 0.5	4 0.005	8 0.05	9 <0.004	<0.05	<0.002	<0.005	5 <0.00	<0.005		0.08	<0.005		1.2	<0.002	2 <0.005	<0.005	<0.005	<0.005	<0.01	<0.002
MW104SR MW104SR	12/8/2011 3/8/2012	12.3 10.1		6.9 6: 6.9 70	16 96 00 88	55 86	0.1		<0.007 <0.008	167 168		7 85	-			37 0.52 10 0.54								<0.005 <0.005		0.19	<0.005 <0.005		1.1				<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	<0.002
MW104SR	9/16/2013	17	1310	6.7	72	24																			3.18			4.97								
MW104SR MW104SR	11/20/2013 2/18/2014	15.1 12.8	+	6.7 6.7	77			-					-	1:	9 13 8 13	84	+			0.04			-			1.44 <0.02			0.59							
MW104SR	6/11/2014	14.9	1260	6.5	79	92								1	6 6	58				0.147						0.806			1.7							
MW104SR MW104SR	3/25/2015 6/24/2015	10.9 15.4		6.8	77		_	0.058						1	_	00 17				0.086 0.178					0.48 7.12	0.207 3.74		2.66 3.46	2.1							
MW104SR	9/25/2015	18.7		6.7		14 <0.0		<0.05						1:		23				0.178					3.62	3.35		2.54	2.52							
MW104SR	11/10/2015	17		6.3	73		06	0.321						1	9 5	57				0.149					0.98	1.19		2.78	3.09							
TPZ158 TPZ158	9/17/2013 11/20/2013	16.4 14.9		7.1 7.3	97								-	8	1 3	39		+		<0.02					6.93	1.43		0.12	0.35							
TPZ158	2/18/2014	10.2		6.7	38									6		14				<0.02						<0.02			<0.005							
TPZ158 Downgradient Wei	6/12/2014 Is (Unlithified M	14.8 laterials)	645	6.1	40	08							1	6	2	37	1			0.03		l .				0.085			<0.005							
MW150 (N)	11/15/2010	13.5		7.3	113		<0.0		<0.007					65.		0.02										<0.01	<0.005		<0.005				<0.005	<0.005	<0.01	<0.002
MW150 MW150	3/23/2011 6/7/2011	15.3 16.7		7.3 37 7.1 37	78 120 70 139	96 1	0.0		<0.008	132 138					_	0.84 0.79								<0.005 <0.005		<0.01	<0.005 <0.005		<0.005 <0.005				<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	<0.002 <0.002
MW150	9/13/2011	14.4	1620	7.2 3	76 116	52	0.0	5	<0.007	135	82	2 123	3 1.0		6 51	13 0.8	6 <0.00	5 0.01	7 <0.004	0.36	<0.002	<0.005	5 <0.00	<0.005		<0.01	<0.005		<0.005	<0.002	2 <0.005	< 0.005	<0.005	<0.005	<0.01	<0.002
MW150 MW150	12/7/2011 3/7/2012	13.1 16.1			90 127		<0.0!		<0.007 <0.007	136 128				7	7 58 9 58	35 0.86 34 0.79	_							<0.005 <0.005		<0.01	<0.005 <0.005		<0.005 <0.005	<0.002 <0.002			<0.005 <0.005	<0.005 <0.005	0.01 <0.01	<0.002 <0.002
MW150	9/16/2013	14.8		7.5	109		\0.0.	5	V0.007	128	100	, 13-	+ \1	0.	3 30	0.73	8 <0.00	0.01	3 <0.004	0.30	V0.002	(0.003	5 \0.00.	V0.003	20.1	V0.01	<0.003	0.32	<0.003	\0.002	2 <0.003	V0.003	V0.003	<0.003	V0.01	V0.002
MW150 MW150	11/20/2013 2/19/2014	13.3 12.7		7.1	109									5	1 50)2				0.65	1					0.07 <0.02			0.03 <0.005							
MW150	6/11/2014	13.7	1	7.3	130									4	9 55	52				0.98						<0.02			0.006							
MW150 MW150	3/25/2015 6/24/2015	13.7 13.5		7.4 7.2	127		_	0.134					-	4	-	50				1.19 1.25					14.5 0.81	<0.02 0.035		0.215 0.016	0.024							
MW150	9/25/2015	13.5		7.2	123			<0.05					+	5	, ,	32				1.25					0.81	0.035		0.016	0.003							
MW150	11/10/2015	13.5		7	118		_	0.057						5-						1.47					0.08	0.0388		0.007	0.005							
MW151 (N)* MW151	11/15/2010 3/23/2011	15.3 13.2		7.1 6.9 43	58 14 56		<0.0		<0.007 <0.007	117	46	5 46	5 1.1	39.	_	.5 0.53 77 0.53										<0.01	<0.005 <0.005		0.14	<0.002 <0.002			<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	<0.002 <0.002
MW151	6/7/2011	15	1001	6.9 4:	10 53	39	<0.0	5	<0.007	97	45				7 82	.3 0.48	3 <0.00	0.039	6 <0.005	0.22	<0.002	<0.005	5 <0.00	<0.005		<0.01	<0.005		0.032	<0.002	2 <0.005	<0.005	<0.005	<0.005	<0.01	<0.002
MW151 MW151	9/13/2011 12/8/2011	22.8 9.2		6.8 44 7.8 43		76	<0.0! <0.0!		<0.007 <0.007	109 114						78 0.5 77 0.5										<0.01 0.011	<0.005 <0.005		0.059 0.021				<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	<0.002 <0.002
MW151	3/7/2012	13.2	941	8.1 44	46 56	59	0.0		<0.007	119						75 0.47	_									<0.01	<0.005		0.010				<0.005	<0.005	<0.01	<0.002
MW151 MW151	9/16/2013 11/20/2013	17.3 14.2		7.2 7.1	52	26		-					-	3.	6 7	78	+			0.24	ı		-		19.3	<0.02		1.53	<0.005							
MW151	2/19/2014	8.5	852	7.1	53	38								3	_	74				0.23						<0.02			<0.005							-
MW151 MW152 (N)	6/12/2014 11/15/2010	13.8		6.3	175	52	0.1	7	<0.007			1		3: 84.		53 59 0.34	8 0.00	18 0.0	1 <0.005	0.217		2 <0.005	5 <0.00	<0.005		<0.02	<0.005		0.005		2 <0.005	< 0.005	<0.005	<0.005	<0.01	<0.002
MW152	3/23/2011	11.2			50 176	_	0.3	1	<0.007	249				7.	5 91	0.26	8 0.007	3 0.010	9 <0.005	8.974	<0.002	<0.005	5 <0.00	<0.005		0.04	<0.005		0.021	<0.002	2 <0.005	<0.005	<0.005	<0.005	<0.01	<0.002
MW152	6/7/2011	15.5 17.6	2103	7.3 40 7.2 42	08 163 20 160		0.24		<0.007 <0.007	205	100	148				0.27	4 <0.00	5 0.0	1 <0.005	3.6	<0.002	< 0.005	5 <0.00	<0.005		0.026 <0.01	<0.005 <0.005		0.013 0.072	<0.002	2 <0.005	< 0.005	<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	<0.002 <0.002
MW152 MW152	9/13/2011 12/6/2011				20 160		<0.0		<0.007							,,,					<0.002 <0.002					0.012	<0.005		0.072				<0.005	<0.005	<0.01	<0.002
MW152	3/7/2012	13.7		6.7 42	20 15:		0.2	5	<0.007	190			<1			0.25		0.009	4 <0.004	3.7	<0.002	< 0.005	5 <0.00	<0.005	10.1	0.02	<0.005		0.0093	<0.002	2 <0.005	<0.005	<0.005	<0.005	<0.01	<0.002
MW152 MW152	9/16/2013 11/20/2013	16.2 13.7		7.2	162 172	-	+	+	1				+	5.	5 85	57	+	+	+	9.92	!	1	+		19.4	0.07		1.37	0.005	 	+					
MW152	2/19/2014	9.5	1880	6.4	177	70									6 89	_				12.7						0.05			<0.005							
MW152 MW152	6/12/2014 3/25/2015	12.9 10		6.5 6.9	153 215		05	<0.05	;			1	1		2 63 1 102		1	+	1	2.36 26.8		1	1		12.4	0.456 0.044		0.367	0.102		+	1				
MW152	6/24/2015	14	2580	6.8	215	<0.0	15	0.207	'					6	8 97					19.5					16.6	0.118		0.639	0.091							
MW152 MW152	9/25/2015 11/10/2015	16.3 15.2	+	6.8	192	20 <0.0 20 <0.0	_	<0.05 <0.05				1	-	6.		19 55	+	+	1	17.7 16.9		 	+	-	2.65 3.93	0.033		0.105 0.158	0.019		-	 		-		
MW153 (N)	11/16/2010	14.8	730	7.1	46	52	13.	2	<0.007					34.	4 88					<0.02					3.55	<0.01	<0.005		<0.005	<0.002			<0.005	<0.005	<0.01	<0.002
MW153 MW153	3/23/2011 6/7/2011	21.2 20.2		7.4 19 7.5 20	92 43	30 19	14.9		<0.007 <0.007	58 56	24					0.38 .5 0.38									-T	<0.01 <0.01	<0.005 <0.005		0.0091 0.0053				<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	<0.002 <0.002
MW153	9/14/2011	16.2	+	6.9 19	94 44	16	_	8	<0.007	55	22				3 8	33 0.	4 <0.00	_		<0.05	<0.002	<0.005	5 <0.00			< 0.01	<0.005		0.011	<0.002	2 <0.005		<0.005	<0.005	<0.01	<0.002
MW153	12/8/2011	5.5		7 20		51		5	<0.007	61						0.4	_			<0.05	<0.002	<0.005	5 <0.00			<0.01	<0.005		0.015				<0.005	<0.005	<0.01	<0.002
MW153 MW153	3/8/2012 9/17/2013	11.9 15.5		7.3 20 7.3	00 43	16 18	12.5	9	<0.007	57	24	1 57	7 <1	2:	9 8	0.39	4 <0.00	0.02	4 <0.004	<0.05	<0.002	<0.005	5 <0.005	<0.005	7.34	<0.01	<0.005	0.16	0.0077	<0.002	2 <0.005	<0.005	<0.005	<0.005	<0.01	<0.002
MW153	11/21/2013	14.1	730	6.6	38	34								2		98				<0.02						<0.02			0.03							
MW153 MW153	2/19/2014 6/11/2014	13.7 13.2		7.2	40	26	+	+	 			1	-	2	_	31 30	+	+	1	<0.02 <0.02	1	 	+	-		<0.02			<0.005 0.009		-	 	-	-		
MW153	3/25/2015	12.9	+	7.3		64 <0.0)5	10.5	: <u> </u>					1		77				<0.02					0.64	<0.02	_	0.03								-

Ba	ılc	dw	in	Fly	Ash	Por	ıd	System

Well	Sample Date	Specific Cond (Field) Temperatur (micromhos e (deg. C) cm)		Total Dissolved Alkalinity, Solids total (mg/L)				Cyanide, di	ssolved dissol	ved di	odium, Potass ssolved dissolv ng/L) (mg/L)	ved diss	solved diss	olved di	uoride, issolved ng/L)	dissolved di	ssolved	dissolved	dissolved	Cadmium, dissolved mg/L)	dissolved	dissolved					Manganese, total (mg/L)	dissolved		dissolved		issolved	issolved d	elenium, Mercury, issolved dissolved ng/L) (mg/L)
Class II Standard Max (Unlithified) Min (Unlithified)		ns ns 27.5 3890 2 30:	1 5.6	ns 1200 700 3470 46 188	ns 0 0.16 3 <0.05	100 18 <0.05	100 10.7 <0.05	0.6 <0.008 <0.007	ns 289 54.17	ns 126 1.0	ns 168 20	ns 77.54 <1	200 140 4.1	400 2050 23	4.0 0.865 0.119	0.2 0.032 <0.005	0.24 0.0094	0.5 <0.005 <0.004	2.0 45.3 <0.02	0.05 <0.002 <0.002	1.0 <0.005 <0.005	1.0 0.01 <0.005	0.65 0.016 <0.005	5.0 69.4 <0.02	5.0 18 <0.01	0.1 0.005 <0.005	24.4 <0.003	6.8 <0.003	0.02 <0.002 <0.002	2.0 <0.005 <0.005	0.05 0.006 <0.005	0.014 <0.005	0.024 <0.005 <0.005	0.05 0.01 0.016 <0.002 <0.01 <0.002
Max (Bedrock) Min (Bedrock) Max (Leachate) Min (Leachate)		28.1 705 5.8 600 17.7 624 13.3 1070	0 6.5	5 16 375 5 5120	0.33		1.13 0.103	<0.008 <0.007	533 45	2.1	29	89 <1	642 9 109	65 <10 2820 495	0.756 0.174	0.011 <0.005	1.6 0.098	<0.005 <0.004		<0.002 <0.002	<0.005 <0.005		<0.005 <0.005	3.82 0.02 90.6 0.57	1.6 0.011 0.06 <0.02	<0.005	0.58 <0.003 1.58 0.01	0.87 <0.003 <0.005 <0.005	<0.002 <0.002	0.007 <0.005	0.01 <0.005	0.006 <0.005	0.0075 <0.005	<0.01 <0.002 <0.01 <0.002
MW153 MW153 MW153 MW154 (N)	6/7/2011	14.3 644 15.2 654 15.5 620 11.5 91: 14.5 874	4 6.8 7.1 1 7.3	354 360	<0.05 <0.05		10.6 10.5 10.7		110 106	40 38	53 28	1.2	21 22 22 12 9.53	73 75 75 94 71.9	0.623 0.501	0.0057 <0.005	0.073 0.076	<0.005 <0.005		<0.002 <0.002	<0.005 <0.005		<0.005 <0.005		<0.02 <0.02 <0.02 <0.01 0.018		0.015 0.014 0.017	0.009 0.0084 0.0087 <0.005 0.18	<0.002 <0.002	<0.005 <0.005		<0.005 0.014	<0.005 <0.005	0.0159 <0.002 <0.01 <0.002
MW154 MW154 MW154 MW154 MW154	9/12/2011 12/7/2011 3/6/2012 9/17/2013 2/19/2014	13.8 669 12.9 869 16 869 11.3 719	1 7.1 9 7.3 3 7.4	406 476 516 454	i i	0.25 4.49		<0.007 <0.007	89 114	25 40	22 20	<1	4.1 5.5	29 38 48	0.525 0.516	<0.005 <0.005	0.1	<0.004 <0.004	<0.05	<0.002 <0.002	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005		<0.01 <0.01 <0.02		0.19	0.0062 <0.005 <0.005	<0.002 <0.002	<0.005 <0.005	<0.005 <0.005	0.007 <0.005	<0.005 <0.005	<0.01 <0.002 <0.01 <0.002
MW154 MW154 MW154 MW154 MW155 (N) MW155 MW155 MW155 MW155 MW155 MW155 MW155 MW155 MW155 MW155 MW155 MW155	6/12/2014 3/25/2015 6/30/2015 9/25/2015 11/16/2010 3/23/2011 6/7/2011 12/7/2011 3/6/2012 9/17/2013 2/19/2014 6/12/2014	13.3 822 9.9 693 15 755 16.4 1044 13.8 600 15.5 766 16.1 800 19.3 524 8.3 524 16.3 777 14.1 777 13.7 3896	2 7.3 1 6.9 0 6.9 0 7.1 3 7.1 6 6.8 6 7.3 6 6.8 8 6.9 9 6.9	494 468 550 470 360 455 400 487 376 470 366 450 392 446 470 1080	<0.05 <0.05 <0.05		0.957 <0.05 <0.05	<0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.008	88 86 86 86 91	45 46 42 44 49	24 25 28 26 28	<1 <1 <1 <1 <1 <1	12 7 6 9 6.55 10 8.58 9.3 11 8.8	30 39 29 49 61.8 53 49.6 50 51 49	0.39 0.398 0.385 0.38 0.417 0.401	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.03 0.025 0.024 0.022 0.023 0.019	<0.005 <0.005 <0.005 <0.004 <0.004	<0.02 0.012 <0.05 <0.05	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005 <0.005 0.016		<0.02 <0.02 0.078 0.042 <0.01 <0.01 0.016 0.013 0.015 <0.01	<0.005 <0.005	0.019 0.05 0.132	<.0.005 <0.003 0.032 0.083 0.038 0.28 0.062 0.37 0.18 0.081	<0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005 <0.005 0.014	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW155 MW155 MW155 MW155 MW255 MW252 (N) MW252	3/25/2015 6/24/2015 9/25/2015 11/10/2015 11/15/2010 3/23/2011 6/7/2011 9/13/2011 12/6/2011 3/7/2012 9/16/2013 11/20/2013	13.6 588 13.5 799 14.9 849 14.2 777. 13.8 1733 15.3 1849 14 1833 14.9 1800 9.8 1749 21.6 1910 14.1 1656 13.8 1676	3 7.5 5 7.2 9 7.2 4 7.2 1 7.8 5 7.8 5 7.9 6 6.8	402 498 438 438 1318 534 1335 524 1341 526 1301	<0.05<0.05<0.05		1.61 1.64 1.82 2.13		232 210 206 221 225	90 84 78 83 91	100 99 104 99 99	5.3 2.1 3 1.9 1.4	7 8 9 9 52.8 61 61.4 52 50 49	50 53 50 51 528 559 578 510 490 576	0.233 0.25 0.224 0.22 0.232 0.21	0.008 0.006 <0.005 0.0061 0.007 <0.005	0.04 0.039 0.04 0.029 0.04	<0.005 <0.005 <0.005 <0.004 <0.004	<0.02 <0.02 <0.02 <0.02 <0.02 0.97 1.47 0.31 0.32	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005 0.01	<0.005 0.0072 <0.005 <0.005 <0.005 <0.005		<0.02 <0.02 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.02 <0.01 <0.01 <0.02 <0.02 <0.01 <0.01 <0.01 <0.02 <0.02	<0.005 <0.005 <0.005 <0.005 <0.005	0.073 0.291 0.132 0.273	 <0.003 0.008 0.0112 <0.003 1.7 0.93 0.61 0.97 1.2 0.44 0.11 	<0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005 0.007 <0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW252 MW252 MW252 MW252 MW252 MW252 MW253 MW253 MW253 MW253 MW253 MW253 MW253 MW253 MW253 MW253 MW253	2/19/2014 6/12/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015 11/16/2010 3/23/2011 6/7/2011 9/14/2011 12/8/2011 3/8/2012 9/17/2013	12.8 1356 13.7 1686 14.5 1800 13.7 1600 13.4 766 25.9 1977.5 17.5 956 2 900 9.6 1144 15.6 833	0 6.4 0 6.5 0 6.6 0 6.6 6 6.9 1 1 7.7 4 11.3 8 9.8 8 7.4 2 11	1390 1270 1320 1250 1250 1441 580 854 187 698 146 639 105 744 115 634	3 9 1 1		<0.05 <0.05 <0.05 <0.05	<0.007 <0.008 <0.007 <0.007 <0.007 <0.007	54 104 61 76 110	1.0 <5 15 48 2.8	168 108 95 94 86	78 18 9.1 4.9 6.4	41 38 38 41 38 38 27.4 26 22.2 23 27 22	480 447 487 488 459 493 806 262 411.4 424 483 406	0.408 0.119 0.369 0.29 0.349 0.246	0.008 0.0063 <0.005 <0.005 0.0064 <0.005	0.02 0.066 0.054 0.031 0.026 0.036	<0.005 <0.005 <0.005 <0.004 <0.004	0.124 0.064 <0.05 0.11 0.076	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005		<0.02 <0.02 <0.02 0.11 <0.02 0.0221 <0.01 <0.01 <0.01 <0.01 <0.014	<0.005 0.005 <0.005 <0.005 <0.005 <0.005	0.324 0.585 0.655 0.717	0.37 <0.005 <0.005 <0.005 0.0071 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.006 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW253 MW253 MW253 MW253 MW253 MW253 MW253 MW256 (N) MW156 MW156	11/21/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015 11/15/2010 3/23/2011 6/6/2011	14.4 83: 14.1 146(14.1 191(14.8 341(14.6 63: 14.8 58:	3 7.8 0 11.4 0 12.4 0 12.4 1 11.1		0.16 0 <0.05 0.16		0.109 <0.05 <0.05 <0.05						18 16 14 12 10 12 12	405 368 313 247 142 241 216					0.09 0.06 0.083 0.093 0.05 0.044 0.033					<0.02 0.09 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		0.003 0.005 <0.003 <0.003	<0.003 <0.003						
MW156 MW156 MW156 MW156 MW156 MW156 MW156 MW156 MW156 MW156	9/12/2011 12/8/2011 3/8/2012 9/16/2013 11/21/2013 2/18/2014 6/11/2014 3/25/2015 6/24/2015	16.4 81- 15.2 68- 13.3 66: 15 82: 11.8 61: 15.9 79-	4 6.6 2 6.8 5 6.8 1 7 4 6.8	466 470 506)								60 55 60	93 88 86					<0.02 0.03 0.024					2.04	0.06 <0.02 <0.02		0.07	0.05 <0.005 <0.005						
MW156 MW156 OW256 OW256 OW256 OW256 OW256 MW1575 MW1575 MW1575	9/25/2015 11/10/2015 9/16/2013 11/21/2013 2/18/2014 6/11/2014 11/15/2010 3/23/2011 6/6/2011	16.6 774 15.1 86: 15.7 72: 10.7 72: 15.4 88:	8 6.8 2 7.1 3 6.6 3 6.8	520 488 508	3								65 57 54	88 90 66					0.16 0.15 0.146					4.6	0.02 <0.02 0.076		0.44	0.13 <0.005 0.342						
MW1575 MW1575 MW1575 MW1575 MW1575 MW1575 MW1575 MW1575	9/12/2011 12/8/2011 3/8/2012 9/16/2013 11/21/2013 2/18/2014 6/11/2014	16.4 3270 15.1 2940 13 3150	0 6.4 0 6.6	3160 3180									121 124 118	1870 2050 2000					45.2 45.3 44.6					12.7	0.05 <0.02 0.03		0.26	0.14 0.13 0.13						

	Tempera	Specific Cond (Field) ur (micromhos/pH ((field) Alkal	Total Dissolved Nitrite inity, Solids nitroge		Nitrate nitrogen,		ium, Magnesium, olved dissolved		Potassium, Chloride, dissolved dissolved		Fluoride, dissolved		rium, Beryllium, solved dissolved		Cadmium, dissolved		balt, Copper,	Iron, total	Iron, dissolved	Lead, dissolved		Manganese, T dissolved d					Antimony, Selen dissolved dissol	
Well	Sample Date e (deg. C) total		g/L) diss (mg/L)	total (mg/L	total (mg/L) (mg/	/L) (mg/L)	(mg/L)	mg/L) (mg/L)	(mg/L)	(mg/L)	(mg/L) (m	g/L) (mg/L)	(mg/L)	(mg/L)	(mg/L) (mg	g/L) (mg/L)	(mg/L)	(mg/L)	(mg/L)	total (mg/L)	(mg/L) (r	mg/L) (m	ng/L)	(mg/L)	(mg/L)	(mg/L) (mg/L	L) (mg/L)
Class II Standard	ns	ns	6.5-9.0	ns 1200	ns 10				s ns	ns 20		4.0		2.0 0.5		0.05	!		0.65 5	.0 5	0.1		10 6.8	0.02	2.0			0.024	0.05 0.01
Max (Unlithified) Min (Unlithified)		7.5 3890 2 301	5.6		0.16 1	18 10.		289 12 54.17 1.		77.54 14 <1 4.		0.865 0.119	0.032 <0.005	0.24 <0.005 0.0094 <0.004		<0.002		0.01 0. <0.005 <0	_		18 0.005 01 <0.005			<0.002 <0.002	<0.005 <0.005			<0.005 <0.005	0.016 <0.002 <0.01 <0.002
Max (Bedrock)		8.1 7057	12.9	808 1709	0.35 2.0		+	533 4	+ +	89 64	2 65	0.756	0.011	1.6 <0.005	-		!	<0.005 <0		_	_		_	<0.002	0.007	0.01		0.0075	<0.01 <0.002
Min (Bedrock)	_	5.8 600	6.5	16 375	0.33 0.0	0.10	3 <0.007	45 2.	1 29	<1	9 <10		<0.005	0.098 <0.004		<0.002	<0.005	<0.005 <0		_				<0.002	<0.005	<0.005	<0.005	<0.005	<0.01 <0.002
Max (Leachate)		7.7 6240	11.9	5120			1			10					94.7				90	_		1.58							
Min (Leachate) MW157S		3.3 1070 2.6 3870	7.6 6.5	1130						1	2 495				36.3				0.5	57 <0.0	02	0.01	<0.005						
MW157S	6/24/2015	5.1 3730	6.3																										
MW157S MW157S		8.4 3030 7.3 3370	6.3				+				-																		
OW257	9/16/2013	5.7 1430	7	960															0.2			0.99							
OW257 OW257		4.6 1180 3.1 1120	7.1 7.1	958 900			+ +			2					3.28 2.88					0.0 <0.0			0.68						
OW257		5.8 1370	6.6	916						1					2.25					0.02			0.309						
MW161		5.1 746	6.9	446											0.00				11		00	1.84							
MW161 MW161		3.2 625 4.2 603	7.1	756 430		+	+ +		+ +		5 44				<0.02 <0.02			- 		0.0 <0.0			1.28 0.83						
MW161	6/11/2014	4.5 796	6.8	450							5 31				<0.02					0.04	47		0.272						
MW262 MW262		4.8 448 5.4 369	7.1	318 228		+			+	<	5 40				<0.02				69	.4 0.1	12	2.42	0.01						
MW262	2/19/2014	4.7 301	7.5	188						<	5 24				<0.02					0.0	02		0.02						
MW262 TPZ159		5.5 469 7.9 849	6.9	310 588		-				<	5 44				<0.02			+	1.7	0.03	31	0.47	<0.005	+					
TPZ159	11/21/2013	4.5 642	6.5	448						3					0.11				1.7	0.0		0.17	0.68						
TPZ159 TPZ159		5.1 593 8.6 674	6.5 5.6	480 460		-			1	3	5 98 4 92				0.12 0.087					<0.0			0.51 0.387						
TPZ160		7.7 880	7.2	490						3	, 32				0.007				8.6		0.5	0.36							
TPZ160 TPZ160		5.6 659 3.4 682	7.3	454 510		1				4					0.24 0.21					0.0			0.12 0.16						
TPZ160		5.2 806	6.8	494						4					0.205					<0.0			0.215						
TPZ166		6.5 612	7	396							5.5				0.4				0.0		00	0.23							
TPZ166 TPZ166		4.7 951 3.5 423	7.7	304 306						1					0.1					<0.0 <0.0			0.02 0.28						
TPZ166		5.8 495	5.8	302						1	2 23				0.028					<0.0	02		0.431						
Downgradient W MW350 (N		1.4 629	42.2					ı			4 52.7	0.51	<0.005	0.00	0.6			10.005	005	<0.0					10.005	<0.005	<0.005	<0.005	<0.01 <0.002
			12.2	375	<0.0	051	< 0.007			21.	4 53.7			0.231 <0.005	0.6	< 0.002	. <0.0051				011 <0.005		< 0.005	< 0.002					
MW350	3/23/2011	8.7 1268	12.2 11.7	307 885	<0.0 <0.0)5	<0.007 <0.007		5 182	84 2	7 30	0.46	0.0079	0.23 <0.005 0.46 <0.005	0.417	<0.002	<0.005	<0.005 <0	005	<0.0	01 <0.005		<0.005 <0.005	<0.002 <0.002	<0.005 <0.005	0.009	<0.005	<0.005	<0.01 <0.002
MW350 MW350	3/23/2011 6/7/2011	8.7 1268 6.4 5144	11.7 12.2	307 885 561 1257	<0.0 <0.0)5)5	<0.007 <0.008	218 <	5 207	84 2 89 25.	7 30 8 42.5	0.46 0.365	0.0079 <0.005	0.46 <0.005 0.87 <0.005	0.417 0.26	<0.002 <0.002	<0.005 <0.005	<0.005 <0. <0.005 <0.	005 005	<0.0 <0.0	01 <0.005 01 <0.005		<0.005 <0.005	<0.002 <0.002	<0.005 <0.005	0.009 0.007	<0.005 <0.005	<0.005 <0.005	<0.01 <0.002 <0.01 <0.002
MW350 MW350 MW350 MW350	3/23/2011 6/7/2011 9/13/2011 12/7/2011	8.7 1268 6.4 5144 8.4 4508 7 5529	11.7 12.2 12.1 12.6	307 885 561 1257 505 1196 778 1423	<0.0> 0.0> 0.0 0.0> 0.0 0.0	05 05 05	<0.007 <0.008 <0.007 <0.007	218 < 202 < 323 <	5 207 5 200 5 166	84 2 89 25. 70 3 57 3	7 30 8 42.5 4 46 1 41	0.46 0.365 0.33 0.289	0.0079 <0.005 0.0064 0.011	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004	0.417 0.26 0.21 0.13	<0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0	005 005 005 005	<0.0> 0.0> 0.0> 0.0>	01 <0.005 01 <0.005 01 <0.005 01 <0.005		<0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0069	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW350 MW350 MW350 MW350	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057	11.7 12.2 12.1 12.6 12.9	307 885 561 1257 505 1196 778 1423 808 1709	<0.0 <0.0 <0.0	05 05 05	<0.007 <0.008 <0.007	218 < 202 <	5 207 5 200 5 166	84 2 89 25. 70 3	7 30 8 42.5 4 46 1 41	0.46 0.365 0.33 0.289	0.0079 <0.005 0.0064 0.011	0.46 <0.005 0.87 <0.005 0.76 <0.004	0.417 0.26 0.21 0.13	<0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	<0.005 <0. <0.005 <0. <0.005 <0.	005 005 005 005 005	<0.0 <0.0 <0.0 <0.0	01 <0.005 01 <0.005 01 <0.005 01 <0.005		<0.005 <0.005 <0.005	<0.002 <0.002 <0.002	<0.005 <0.005 <0.005	0.009 0.007 0.005 0.006	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0069	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW350 MW350 MW350 MW350 MW350 MW350	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140	11.7 12.2 12.1 12.6 12.9 12.3 11.8	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370	<0.0> 0.0> 0.0 0.0> 0.0 0.0	05 05 05	<0.007 <0.008 <0.007 <0.007	218 < 202 < 323 <	5 207 5 200 5 166	84 2 89 25. 70 3 57 3	7 30 8 42.5 4 46 1 41 2 62 4 11	0.46 0.365 0.33 0.289 0.174	0.0079 <0.005 0.0064 0.011	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004	0.417 0.26 0.21 0.13 0.056	<0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0	005 005 005 005	<0.0 <0.0 <0.0 <0.0 <0.0 14	01 <0.005 01 <0.005 01 <0.005 01 <0.005 11 <0.005		<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0069	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370	<0.0> 0.0> 0.0 0.0> 0.0 0.0	05 05 05	<0.007 <0.008 <0.007 <0.007	218 < 202 < 323 <	5 207 5 200 5 166	84 2 89 25. 70 3 57 3 43 3	7 30 3 42.5 4 46 1 41 2 62 4 11 3 <10	0.46 0.365 0.33 0.289 0.174	0.0079 <0.005 0.0064 0.011	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004	0.417 0.26 0.21 0.13 0.056 0.03	<0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0	005 005 005 005 005	<0.0 <0.0 <0.0 <0.0 0.01	01		<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0069	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140	11.7 12.2 12.1 12.6 12.9 12.3 11.8	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430	<0.6 <0.0 <0.0 <0.0 <0.0	05	<0.007 <0.008 <0.007 <0.007 <0.007 <0.007	218 < 202 < 323 <	5 207 5 200 5 166	84 2 89 25. 70 3 57 3 43 3	7 30 3 42.5 4 46 1 41 2 62 4 11 3 <10 8 <50	0.46 0.365 0.33 0.289 0.174	0.0079 <0.005 0.0064 0.011	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.021	<0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0	005 005 005 005 005	<0.0 <0.0 <0.0 <0.0 0.03 1.4 <0.0 <0.0 <0.0	01		<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0069	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.3 6120 4.4 6580 4.4 5990	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0	05 05 05 05 05 05 05 05	<0.007 <0.008 <0.007 <0.007 <0.007 <0.007	218 < 202 < 323 <	5 207 5 200 5 166	84 2 89 25. 70 3 57 3 43 3 3 3 3 44 4	30 3 42.5 4 46 1 41 2 62 4 11 3 <10 8 <50 5 15 8 11	0.46 0.365 0.33 0.289 0.174	0.0079 <0.005 0.0064 0.011	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.021 0.032 0.034	<0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0	005 005 005 005 005 005 005 006 0.3	<0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.01 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0	01	<0.005 <0.003 <0.003	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003	<0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0069	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.3 6120 4.4 6580	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1140	<0.6 <0.0 <0.0 <0.0 <0.0	05	<0.007 <0.008 <0.007 <0.007 <0.007 <0.007	218 < 202 < 323 <	5 207 5 200 5 166	84 2 89 25. 70 3 57 3 43 3 3 3 44	7 30 8 42.5 4 46 1 41 2 62 4 11 3 <10 5 15 5 15 8 11 8 27	0.46 0.365 0.33 0.289 0.174	0.0079 <0.005 0.0064 0.011	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.021	<0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0	005 005 005 005 005 005 005	<pre><0.0 <0.0 <0.0 <0.0 <0.0 14 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.</pre>	01	<0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0069	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015 11/15/2010	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.3 6120 4.4 6580 4.4 5990 3.8 4200 3.5 2790 3.5 2790 3.1 1102	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.9	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1140 690 779	0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <	05 05 05 05 05 05 05 05	<0.007 <0.008 <0.007 <0.007 <0.007 <0.007 <1.007 <0.007	218 < 202 < 323 < 323 < 333 <	5 207 5 200 5 166 5 149	84 2 89 25. 70 3 57 3 43 3 3 3 4 4 4 4 4 552	7 30 3 42.5 4 46 1 41 2 62 4 11 3 <10 8 <50 5 15 3 11 3 27 0 38 1 12.6	0.46 0.365 0.33 0.289 0.174	0.0079 <0.005 0.0064 0.011 0.005	0.46 <0.005 0.87 <0.005 0.76 <0.000 1.2 <0.004 1.6 <0.004 0.004 0.18 <0.004	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.021 0.032 0.034 0.103 0.191	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 	01	<0.005 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0075 0.0069 0.0075	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW352 MW352 MW352	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015 11/10/2015) 11/15/2010 3/23/2011	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.4 6580 4.4 5990 3.5 4200 3.5 2790	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.5 12.5 12.6	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1140 690	<.p>< 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 <	05 05 05 05 05 05 05 05	<0.007 <0.008 <0.007 <0.007 <0.007 <0.007	218 < 202 < 323 <	5 207 5 200 5 166 5 149	84 2 89 25. 70 3 57 3 43 3 3 3 3 4 4 4 4	7 30 3 42.5 4 46 1 41 2 62 4 11 3 <10 8 <50 5 15 6 15 3 27 3 88 1 12.6 5 14	0.46 0.365 0.33 0.289 0.174	0.0079 <0.005 0.0064 0.011 0.005 0.0065 0.0066	0.46 <0.005 0.87 <0.005 0.76 <0.0004 1.2 <0.004 1.6 <0.004	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.021 0.032 0.034 0.103 0.191 0.9 0.869	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0	0.05 005 005 005 005 005 0.05 0.05 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.	001	<0.005 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003	<0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0075 0.0069 0.0075	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW352 MW352 MW352 MW352	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015) 11/15/2010 3/23/2011 6/7/2011 9/13/2011	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.4 6580 4.4 6580 4.4 5990 3.8 4200 3.8 4200 3.8 1877 3.8 1922 8.1 1704	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.6 11.6 11.6 11.6	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1140 690 779 102 783 70 862 39 735	0.00	55 55 55 55 55 56 60<	<007 <0008 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007	218	5 207 5 200 5 166 5 149 5 149 5 182 5 182 5 182	84 2 89 25. 70 3 57 3 43 3 3 3 3 4 4 4 4 4 4 52 19 53 15 514.	7 30 3 42.5 4 46 1 41 2 62 4 11 3 <10 6 15 3 11 3 27 3 27 1 12.6 5 14 4 15.2	0.466 0.365 0.330 0.2899 0.174 0.692 0.696 0.698	0.0079 <0.005 0.0064 0.011 0.005 0.005 0.005 0.005 0.005 0.005 0.0082	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004 1.6 <0.004 0.18 <0.005 0.27 <0.005 0.27 <0.005 0.29 <0.005 0.19 <0.006	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.021 0.032 0.034 0.103 0.103 0.191 0.9 0.869 0.84 0.76	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0	005 005 005 005 005 005 005 005 0.0 0.0	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 	001	<0.005 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.003 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0075 0.0069 0.0075 <0.0075	<0.01 <0.002 <0.01 <0.002
MW350 MW352 MW352 MW352	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015 11/15/2010 3/23/2011 6/7/2011 9/13/2011 12/8/2011	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.4 6580 4.4 5990 3.8 4200 3.5 2790 3.2 1102 6.8 1877 3.8 1922	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.2 10.6 11.2	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1140 690 779 102 783 70 862	0.5 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (55 55 55 55 55 55 55 55 55 55 55 55 55	<0.007 <0.008 <0.007 <0.007 <0.007 <0.007 11 13 3 5 5 5 <0.007 <0.007	218	5 207 5 200 5 166 5 149 5 149 5 182 5 180 1 185 2 190	84 2 89 25. 70 3 57 3 43 3 3 3 3 4 4 4 4 4 4 52 19 53 15 514.	7 30 3 42.5 4 46 1 41 2 62 4 11 3 <10 8 <50 5 15 5 15 3 11 3 27 0 38 1 12.6 5 14 4 15.2	0.466 0.365 0.330 0.2899 0.174 0.692 0.696 0.698	0.0079 <0.005 0.0064 0.011 0.005 0.005 0.0066 0.0066 0.0066 0.0066 0.0082 0.0091	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004 1.6 <0.004 1.6 <0.004 0.78 <0.002 0.78 <0.002 0.18 <0.002 0.27 <0.005 0.29 <0.005	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.021 0.032 0.034 0.103 0.191 0.9 0.869 0.869 0.869 0.766 0.76	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0	005 005 005 005 005 005 005 006 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <l><0.0 <0.0 <0.0 <0.0 <0.0</l>	001	<0.005 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01 0.01 0.01 0.01 0.005 0.005 0.005 0.005 0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0075 0.0069 0.0075 <0.0075	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015) 11/15/2010 3/23/2011 6/7/2011 9/13/2011 12/8/2011 13/7/2012 9/16/2013	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.3 6120 4.4 6580 4.4 5990 3.5 2790 3.2 1102 6.8 1877 3.8 1922 8.1 1704 5.8 1426 0.1 1381 4.6 1740	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 11.6 11.6 11.7 10.7 10.2 9.4	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1140 690 779 102 783 70 862 39 735 20 706 16 891 1130	0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 <	55 55 55 55 55 55 55 55 55 55 55 55 55	<0.007 <0.008 <0.007 <0.007 <0.007 <0.007 <0.007 <1 1 1 3 5 5 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007	218	5 207 5 200 5 166 5 149 5 149 5 182 5 180 1 185 2 190	84 2 89 25. 70 3 57 3 43 3 3 3 3 4 4 4 4 4 4 52 19 53 15 514. 12 60 9.6 64 6.3 61	7 30 3 42.5 4 466 1 41 2 62 4 11 3 <10 8 <50 5 15 3 11 3 27 0 38 1 12.6 1 12.6 1 14 1 15.2 2 14 1 11	0.460 0.365 0.335 0.289 0.174 0.692 0.696 0.698 0.77 0.652	0.0079 <0.005 0.0064 0.011 0.005 0.005 0.0066 0.0066 0.0066 0.0066 0.0082 0.0091	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004 1.6 <0.004 1.6 <0.004 0.18 <0.005 0.27 <0.005 0.29 <0.005 0.19 <0.004 0.19 <0.004	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.03 0.021 0.032 0.034 0.103 0.103 0.191 0.9 0.869 0.869 0.76 0.76	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	005 005 005 005 005 005 005 006 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 	001	<0.005 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.003 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01 0.01 0.01 0.01 0.005 0.005 0.005 0.005 0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0075 0.0069 0.0075 <0.0075 <0.005 <0.005 <0.005 <0.005 <0.005	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/15/2010 3/23/2011 6/7/2011 12/8/2011 3/7/2012 9/16/2013 11/20/2013 11/20/2013 11/20/2013	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.3 4170 4.3 6120 4.4 6580 4.4 6580 4.4 6590 3.8 4200 3.5 2790 3.8 120 4.9 1102 6.8 1877 3.8 1922 8.1 1704 5.8 1426 0.1 1381	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.2 10.6 11.6 11.2 11 10.7	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1440 690 779 102 783 70 862 39 735 20 706 16 891 1130 996 768	0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 <	55 55 55 55 55 55 55 55 55 55 55 55 55	<0.007 <0.008 <0.007 <0.007 <0.007 <0.007 <0.007 <1 1 1 3 5 5 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007	218	5 207 5 200 5 166 5 149 5 149 5 182 5 180 1 185 2 190	84 2 89 25. 70 3 57 3 43 3 3 3 4 4 4 4 4 522 19 53 15 514. 12 60 9.6 64 6.3 61	7 30 3 42.5 4 46 1 41 2 62 4 11, 3 <10 8 <50 5 15 8 11 3 27 3 38 1 12.6 5 14 4 15.2 2 14 1 11	0.466 0.365 0.335 0.289 0.174 0.692 0.696 0.698 0.756	0.0079 <0.005 0.0064 0.011 0.005 0.005 0.0066 0.0066 0.0066 0.0066 0.0082 0.0091	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004 1.6 <0.004 1.6 <0.004 0.18 <0.005 0.27 <0.005 0.29 <0.005 0.19 <0.004 0.19 <0.004	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.021 0.032 0.034 0.103 0.191 0.9 0.869 0.86 0.76 0.76 0.76 0.76	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0	01	<0.005 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01 0.01 0.01 0.01 0.005 0.005 0.005 0.005 0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0075 0.0069 0.0075 <0.0075 <0.005 <0.005 <0.005 <0.005 <0.005	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW352 MW352	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015) 11/15/2010 3/23/2011 6/7/2011 12/8/2011 12/8/2011 13/7/2012 9/16/2013 11/20/2013 11/20/2013 11/20/2013	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.3 6120 4.4 6580 4.4 5990 3.5 2790 3.2 1102 6.8 1877 3.8 1922 8.1 1704 5.8 1426 0.1 1381 4.6 1740 3.3 1740 1.5 1530 4.4 1590	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 11.6 11.0 11.0 11.0 11.0 11.0 11.0 11	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1140 690 779 102 783 70 862 39 735 20 706 16 891 1130 996 768	0.10	0.00 0.00	<0.007 <0.008 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007	218	5 207 5 200 5 166 5 149 5 149 5 182 5 180 1 185 2 190	84 2 89 25. 70 3 57 3 43 3 3 3 3 4 4 4 4 52 19 53 15 514. 12 60 9.6 64 6.3 61	7 30 30 42.5 4 4 46 6 1 41 1 1 1 1 1 1 1 1 1 1 1 1 1	0.460 0.365 0.385 0.289 0.174 0.692 0.696 0.698 0.756	0.0079 <0.005 0.0064 0.011 0.005 0.005 0.0066 0.0066 0.0066 0.0066 0.0082 0.0091	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004 1.6 <0.004 1.6 <0.004 0.18 <0.005 0.27 <0.005 0.29 <0.005 0.19 <0.004 0.19 <0.004	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.021 0.032 0.034 0.103 0.191 0.9 0.869 0.869 0.76 0.76 0.76 0.86	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	0.05 005 005 005 005 005 005 0.005 0.005 005	 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0<	01	<0.005 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01 0.01 0.01 0.01 0.005 0.005 0.005 0.005 0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0075 0.0069 0.0075 <0.0075 <0.005 <0.005 <0.005 <0.005 <0.005	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW350	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015 11/10/2015) 11/15/2010 3/23/2011 6/7/2011 9/13/2011 12/8/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/12/2014 3/25/2015	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.3 4170 4.3 6120 4.4 6580 4.4 6580 4.4 6590 3.8 4200 3.8 4200 3.8 1102 6.8 1877 3.8 1922 8.1 1704 5.8 1426 0.1 1381 4.6 1740 3.3 1740 1.5 1530	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.2 10.6 11.6 11.2 11 10.7 10.2 9.4 7.3 6.5	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1140 690 779 102 783 70 862 39 735 20 706 16 891 1130 996 768 1090 874	0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 <	55 55 55 55 55 55 55 55 55 55 55 55 55	<0.007 <0.008 <0.007 <0.007 <0.007 <0.007 <0.007 <1 1 1 3 5 5 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007	218	5 207 5 200 5 166 5 149 5 149 5 182 5 180 1 185 2 190	84 2 89 25. 70 3 57 3 43 3 3 3 4 4 4 4 4 522 19 53 15 514. 12 60 9.6 64 6.3 61	7 30 3 42.5 4 46 1 41 2 62 4 11 3 <10 5 15 5 15 6 15 6 15 6 15 6 15 7 10 8 20 1 12.6 6 14 4 15.2 8 16 9 2 14 1 11 1 11 1 11 1 11 1 12 1 1	0.466 0.365 0.335 0.289 0.174 0.692 0.696 0.696 0.756	0.0079 <0.005 0.0064 0.011 0.005 0.005 0.0066 0.0066 0.0066 0.0066 0.0082 0.0091	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004 1.6 <0.004 1.6 <0.004 0.18 <0.005 0.27 <0.005 0.29 <0.005 0.19 <0.004 0.19 <0.004	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.021 0.032 0.034 0.103 0.191 0.9 0.869 0.86 0.76 0.76 0.76 0.76	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0<	001	<0.005 <0.003 <0.003 <0.003 <0.003	<.0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01 0.01 0.01 0.01 0.005 0.005 0.005 0.005 0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0075 0.0069 0.0075 <0.0075 <0.005 <0.005 <0.005 <0.005 <0.005	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW350	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015) 11/15/2010 3/23/2011 6/7/2011 12/8/2011 12/8/2011 12/8/2011 11/20/2013 11/20/2013 11/20/2013 11/20/2013 11/20/2013 11/20/2013 11/20/2013 11/20/2013 11/20/2013 11/20/2013 11/20/2013 11/20/2014 6/12/2014 3/25/2015 6/24/2015 9/25/2015	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.4 6580 4.4 5990 3.5 2790 3.2 1102 6.8 1877 6.8 1426 1.1 1704 5.8 1426 1.1 1381 4.6 1740 3.3 1740 1.5 1530 4.3 1920 3.3 1350 4.3 1920 3.3 1350 4.4 1870 5.3 2070	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 11.6 11.6 11.7 10.7 10.2 9.4 7.3 6.5 8.9 9 8.6 8	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1430 1140 690 779 102 783 70 862 39 735 20 706 16 891 1130 996 768 1090 874 1100 1210	0.05 0.05 0.05 0.05 0.005 0.005	S S S S S S S S S S	<007 <0008 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007	218	5 207 5 200 5 166 5 149 5 149 5 182 5 180 1 185 2 190	84 2 89 25. 70 3 57 3 43 3 44 3 3 44 4 45 52 19 53 15 514, 12 60 9.6 64 6.3 61 588 399 566 41 500 599	7 30 30 42.5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.466 0.365 0.333 0.289 0.174 0.692 0.696 0.698 0.756	0.0079 <0.005 0.0064 0.011 0.005 0.005 0.0066 0.0066 0.0066 0.0066 0.0082 0.0091	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004 1.6 <0.004 1.6 <0.004 0.18 <0.005 0.27 <0.005 0.29 <0.005 0.19 <0.004 0.19 <0.004	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.03 0.021 0.032 0.034 0.103 0.191 0.9 0.869 0.869 0.76 0.76 0.76 0.86 1.47 0.82 1.53 1.05	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0	001	<0.005 <0.003 <0.003 <0.003 <0.0003 <0.0007 0.0004 0.004 0.004	<.0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01 0.01 0.01 0.01 0.005 0.005 0.005 0.005 0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0075 0.0069 0.0075 <0.0075 <0.005 <0.005 <0.005 <0.005 <0.005	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW352 MW352	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2013 11/20/2013 11/20/2013 2/19/2014 6/12/2015 9/13/2011 12/8/2011 12/8/2011 12/8/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/12/2014 6/12/2014 3/25/2015 6/24/2015 9/25/2015 6/24/2015	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.3 6120 4.4 6580 4.4 6580 4.4 6580 3.8 4200 3.8 1200 6.8 1877 3.8 1922 6.8 1877 3.8 1922 6.8 1704 5.8 1426 0.1 1381 4.6 1740 3.3 1740 1.5 1530 4.3 1920 4.3 1920 4.3 1920 4.3 1930 4.4 1870	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.0 10.6 11.0 11.0 11.0 11.0 11.0 10.7 10.2 9.4 7.3 6.5 8.9 9 8.6	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1430 1140 690 779 102 783 70 862 39 735 20 706 16 891 1130 996 768 1090 874 1100 1210	0.05 0.05 0.05 0.05 0.05 0.05 0.05	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<007 <0008 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007	218	5 207 5 200 5 166 5 149 5 149 5 182 5 180 1 185 2 190	84 2 89 25. 70 3 57 3 43 3 3 3 44 4 4 4 552 19 53 15 514. 12 60 9.6 64 6.3 61 58 39 56 41	7 30 30 42.5 4 4 46 6 1 41 1 1 1 1 1 1 1 1 1 1 1 1 1	0.466 0.365 0.335 0.289 0.174 0.692 0.696 0.698 0.756	0.0079 <0.005 0.0064 0.011 0.005 0.006 0.005 0.0066 0.005 0.0066 <0.005 0.0082 0.0091 <0.005	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004 1.6 <0.004 1.6 <0.004 0.18 <0.005 0.27 <0.005 0.29 <0.005 0.19 <0.004 0.19 <0.004	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.03 0.021 0.032 0.034 0.103 0.191 0.9 0.869 0.84 0.76 0.76 0.86 1.47 0.82 1.53 1.05 1.23 1.88	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	005 005 005 005 005 005 006 006	40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0	01	<0.005 <0.003 <0.003 <0.003 <0.003 <0.0007 0.007 0.004 0.004 0.007 0.007	<.0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01 <	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 0.0075 0.0069 0.0075 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW350	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.4 5590 3.5 2790 3.8 1200 6.8 1877 3.8 1922 8.1 1704 5.5 1426 6.1 1381 4.6 1740 3.3 1740 1.5 1530 4.3 1920 3.3 1350 4.4 1870 5.3 2070 3.8 1880 5.3 2070 3.8 1880 5.3 2070 3.8 1880 5.3 36 934 5.5 848	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.2 10.6 11.6 11.0 11.2 11 10.7 10.2 9.4 7.3 6.5 8.9 9 9 8 7.6 7 7.1	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1430 1430 100 778 102 783 70 862 39 735 20 706 16 891 1130 996 768 1090 874 1100 1100 1210 1100 532 432 486	0.05 0.35 0.35 0.33 0.34 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.0	S S S S S S S S S S	<pre><0.007</pre>	218	5 207 5 200 5 166 5 149 5 149 5 182 5 182 5 180 1 185 2 190 2 200	84 2 89 25. 70 3 57 3 43 3 57 3 43 3 44 4 44 4 5 52 19 53 15 514. 12 60 9.6 64 6.3 61 58 39 56 41 59 59	7 30 30 42.5 44 466 11 411 412 62 62 13 62 13 63 64 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	0.462 0.365 0.335 0.289 0.174 0.692 0.696 0.698 0.756	0.0079 <0.005 0.0064 0.011 0.005 0.0066 0.0066 0.0066 0.0069 0.0082 0.0091 <0.005 0.0066 0.0061	0.46 <0.005 0.87 <0.005 0.76 <0.004 1.2 <0.004 1.6 <0.004 1.6 <0.004 1.7 <0.004 1.7 <0.004 1.8 <0.005 0.27 <0.005 0.29 <0.005 0.29 <0.005 0.19 <0.004 0.11 <0.004 0.11 <0.004 0.11 <0.005 0.11 <0.005 0.10 <0.005	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.021 0.032 0.034 0.103 0.191 0.9 0.869 0.869 0.76 0.76 0.76 0.76 0.82 1.53 1.05 1.23 1.88 1.79 0.022 0.021	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	005 0.0	 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0<	001	<0.005 <0.003 <0.003 <0.003 <0.0007 0.004 0.007	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.003 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.0075 0.0069 0.0075 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002
MW350 MW352 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015) 11/15/2010 3/23/2011 12/8/2011 12/8/2011 11/20/2013 2/19/2014 3/25/2015 11/10/2015) 11/15/2010 3/23/2011 12/8/2011 12/8/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/12/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015 11/16/2010 3/23/2011 6/7/2011	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.3 6120 4.4 5580 4.4 5990 3.8 4200 3.8 1200 3.8 1102 6.8 1877 3.8 1922 8.8 11704 5.5 1426 0.1 1381 4.6 1740 3.3 1740 1.5 1530 4.6 1870 5.3 2070 3.3 1930 4.6 1870 5.3 2070 3.8 18850 3.8 18850 3.8 934	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.2 10.6 11.0 11.0 11.0 11.0 11.0 11.0 11.0	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1440 690 779 102 783 70 862 39 735 20 706 16 891 1130 996 768 1090 874 1100 1210 11100 532	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<pre><0.007</pre>	218	5 207 5 200 5 166 5 149 5 149 5 182 5 182 2 190 2 200	84 2 89 25. 70 3 57 3 57 3 43 3 3 3 44 4 4 4 5 52 19 53 15 514. 12 60 9.6 64 6.3 61 588 39 566 41 50 59 56 11 41 41 41 41 41 42 41 43 44 44 45 46 47 48 48 49 49 49 49 49 49 49 49 49 49 49 50 50 50 50 50 50 50 50 50 50 50 50 50	7 30 30 42.5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.460 0.365 0.335 0.288 0.174 0.692 0.696 0.698 0.756 0.756	0.0079 <0.005 0.0064 0.011 0.005 0.0066 0.0066 0.0066 <0.005 0.0082 0.0091 <0.005 0.0066 0.005 0.0066 0.005	0.46 <0.005 0.87 <0.005 0.76 <0.0004 1.2 <0.004 1.6 <0.004 0.18 <0.005 0.27 <0.005 0.29 <0.005 0.19 <0.004 0.11 <0.004 0.11 <0.004	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.03 0.021 0.032 0.034 0.103 0.191 0.9 0.869 0.84 0.76 0.76 0.86 1.47 0.82 1.53 1.05 1.23 1.88 1.79 0.022 0.021	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0<	001	<0.005 <0.003 <0.003 <0.003 <0.003 <0.0007 0.007	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.007 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<	0.009 0.007 0.005 0.006 0.01 <	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 0.0075 0.0069 0.0075 <0.0075 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.01 <0.001 <0.001 <0.001 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355 MW355	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2011 13/23/2011	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.4 6580 4.4 5990 3.5 2790 3.2 1102 6.8 1877 3.8 1922 8.1 1704 5.5 8 1426 0.1 1381 4.6 1740 3.3 1740 1.5 1530 4.3 1920 3.3 1350 4.4 1870 5.3 2070 3.8 1880 3.3 1920 3.3 1350 4.5 1426 6.7 1426 6.8 1877 7.8 1426 7.8	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.2 10.6 11.6 11.2 11 10.7 10.2 9.4 7.3 6.5 8.9 9 8 7.6 7 7.1 7.2 6.7	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1430 1430 1430 100 778 102 783 70 862 39 735 20 706 16 891 1130 996 768 1090 874 11100 1100 1210 1100 532 432 486 404 491 396 490 412 486	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.07 0.07 0.07 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.09	0.600 0.60	 <0.007 <0.008 <0.007 	218	5 207 5 200 5 166 5 149 5 149 5 182 5 180 1 185 2 190 2 200 5 32 3 30 1 34 6 33	84 2 89 25. 70 3 57 3 43 3 57 3 43 3 44 4 44 4 5 52 19 53 15 514. 12 60 9.6 64 6.3 61 58 39 56 41 50 59 56 11 41 13 41 13 41 11 41 11	7 30 30 42.5 31 42.5 31 42.6 44 45.9 44 48.9 44.8 44.8 44.8 44.8 44.8 44.8	0.463 0.365 0.335 0.289 0.174 0.692 0.696 0.756 0.756	0.0079 <0.005 0.0064 0.011 0.005 0.0066 0.0066 <0.005 0.0082 0.0091 <0.005 0.0066 <0.005 0.0066 0.0061 <0.005	0.46 <0.005 0.87 <0.005 0.76 <0.0004 1.2 <0.004 1.6 <0.004 1.6 <0.004 1.7 <0.004 1.7 <0.004 1.8 <0.005 0.27 <0.005 0.29 <0.005 0.29 <0.005 0.19 <0.004 0.11 <0.004 0.11 <0.005 0.10 <0.004 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.031 0.021 0.032 0.034 0.103 0.191 0.9 0.869 0.864 0.76 0.76 0.76 0.76 1.47 0.82 1.53 1.05 1.23 1.88 1.79 0.02 0.021 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.03 0.00 0.03 0.03 0.03 0.00 0.03	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0<	001	<0.005 <0.003 <0.003 <0.003 <0.003 <0.007 0.007 0.004 0.004 0.007	 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.003 <0.005 /ul>	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	<.0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <	<0.005 <0.005 0.0075 0.0069 0.0075 0.0069 0.0075 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW351 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW350 MW350 MW351 MW351 MW352 MW352 MW352 MW352 MW352 MW355 MW355 MW355 MW355 MW355 MW355 MW355	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2013 11/20/2011 11/20/2011 11/20/2011	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.3 4170 4.3 6120 4.4 6580 4.4 5990 3.5 2790 3.2 1102 6.8 1877 3.8 1426 0.1 1381 4.6 1740 3.3 1740 1.5 1530 4.1 1704 5.8 1426 0.1 381 1.5 1530 1.1 381 4.6 1740 3.3 1740 1.5 1530 3.3 1520	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.2 10.6 11.6 11.7 10.7 10.2 9.4 7.3 6.5 8.9 9 8.6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1140 690 779 102 783 70 862 39 735 20 706 16 891 1130 996 768 1090 874 1100 1210 1100 532 432 486 404 491 396 490 412 486	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.600 0.60	 <0.007 <0.008 <0.007 	218	5 207 5 200 5 166 5 149 5 149 5 182 5 180 1 185 2 190 2 200	84 2 89 25. 70 3 57 3 43 3 3 3 44 4 4 4 52 19 53 15 514. 12 60 9.6 64 6.3 61 58 39 56 64 59 56 41 1 1 13. 41 1 13.	7 30 30 42.5 31 42.5 31 42.6 44 45.9 44 48.9 44.8 44.8 44.8 44.8 44.8 44.8	0.462 0.365 0.335 0.289 0.174 0.692 0.696 0.756 0.756	0.0079 <0.005 0.0064 0.011 0.005 0.0066 0.0066 <0.005 0.0082 0.0091 <0.005 0.0066 <0.005 0.0066 0.0061 <0.005	0.46 <0.005 0.87 <0.005 0.76 <0.0004 1.2 <0.004 1.6 <0.004 1.6 <0.004 0.18 <0.005 0.27 <0.005 0.29 <0.005 0.19 <0.004 0.11 <0.006 0.11 <0.006 0.10 <0.006 0.10 <0.005 0.10 <0.005 0.10 <0.005 0.10 <0.005 0.10 <0.005 0.11 <0.005 0.11 <0.005	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.031 0.021 0.032 0.034 0.103 0.191 0.9 0.869 0.864 0.76 0.76 0.76 0.76 1.47 0.82 1.53 1.05 1.23 1.88 1.79 0.02 0.021 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.03 0.00 0.03 0.03 0.03 0.00 0.03	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	0.005 0.005	 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <l><0.0 <0.0 <0.0 <</l>	001	<0.005 <0.003 <0.003 <0.003 <0.003 <0.007 0.007 0.004 0.004 0.007	 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.005 /ul>	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<	0.009 0.007 0.005 0.006 0.01 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	<.0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <	<0.005 <0.005 0.0075 0.0069 0.0075 0.0069 0.0075 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.01 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW355	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015 11/10/2016 3/23/2011 6/7/2011 9/13/2011 12/8/2011 12/8/2011 12/8/2011 12/8/2011 12/8/2011 11/10/2015 9/15/2013 11/20/2011	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.4 6580 4.4 5990 3.5 2790 3.2 1102 6.8 1877 3.8 1922 8.1 1704 5.5 1426 0.1 1381 4.6 1740 3.3 1740 1.5 1530 4.6 1870 5.8 1426 0.1 381 5.8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.2 10.6 11.2 11 10.7 10.2 9.4 7.3 6.5 8.9 9 9 7 7 7 7.1 7.2 6.8 6.8 6.8 7 7 7.1 7.2 6.8	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1430 1440 690 779 102 783 70 862 39 735 20 706 16 891 1130 996 768 1090 874 1100 1100 1210 1100 1210 1100 1210 1100 532 432 486 404 491 396 449 412 486 396 447	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.07 0.07 0.07 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.09	0.600 0.60	 <0.007 <0.008 <0.007 	218	5 207 5 200 5 166 5 149 5 149 5 182 5 180 1 185 2 190 2 200 5 32 3 30 1 34 6 33	84 2 89 25. 70 3 57 3 43 3 57 3 43 3 44 4 44 4 45 52 19 53 15 514. 12 60 9.6 64 6.3 61 58 39 56 41 41 50 59 56 1 1 13. <1 1 1. <1 1 1. <1 1 1. <1 1 1. <1 1 1. <1 1 1. <1 1 1. <1 1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1	7 30 30 42.5 31 42.5 31 42.5 31 42.5 31 42.6 3	0.462 0.365 0.335 0.289 0.174 0.692 0.696 0.698 0.756 0.403 0.405 0.397 0.441 0.412	0.0079 <0.005 0.0064 0.011 0.005 0.0066 0.0066 <0.005 0.0082 0.0091 <0.005 0.0066 <0.005 0.0066 0.0061 <0.005	0.46 <0.005 0.87 <0.005 0.76 <0.0004 1.2 <0.004 1.6 <0.004 1.6 <0.004 1.7 <0.004 1.7 <0.004 1.8 <0.005 0.27 <0.005 0.29 <0.005 0.29 <0.005 0.19 <0.004 0.11 <0.004 0.11 <0.005 0.10 <0.004 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.03 0.031 0.032 0.034 0.103 0.191 0.9 0.869 0.869 0.76 0.76 0.76 0.76 1.47 0.82 1.53 1.05 1.23 1.88 1.79 0.02 0.021 0.03 0.05 <0.05	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0<	011	<0.005 <0.003 <0.003 <0.003 <0.0007 0.004 0.004 0.007	 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.003 <0.005 /ul>	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	<.0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <	<0.005 <0.005 0.0075 0.0069 0.0075 0.0069 0.0075 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW355	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015) 11/15/2010 3/23/2011 12/8/2011 12/8/2011 11/20/2013 11/20/2011	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.4 6580 4.4 5990 3.5 2790 3.2 1102 6.8 1877 3.8 1426 0.1 1381 4.6 1740 3.3 1740 1.5 1530 4.4 1590 3.6 1870 3.7 1920 3.8 1426 0.1 381 4.6 1740 3.3 1740 1.5 1530 4.7 1530 4.8 1870 3.8 1870 3.8 1870 3.8 1870 3.8 1870 3.8 1870 3.8 1870 3.8 1870 3.8 1870 3.8 1880 3.6 934 4.1 3811 17 841 17 844 17 844 17 844 1811 3.1 682 3.5 691	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.2 10.6 11.6 11.7 10.7 10.2 9.4 7.3 6.5 8.9 9 8.6 8 7.6 7 7.1 7.2 6.7 6.8 6.8 7.4 7.2 7	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1430 1140 690 779 102 783 70 862 39 735 20 706 16 891 1130 996 768 1090 874 1100 1100 1532 432 486 404 491 396 490 4412 486 396 447	0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.07 0.07 0.07 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.09	0.600 0.60	 <0.007 <0.008 <0.007 	218	5 207 5 200 5 166 5 149 5 149 5 182 5 180 1 185 2 190 2 200 5 32 3 30 1 34 6 33	84 2 89 25. 70 3 57 3 57 3 43 3 3 3 3 4 4 4 4 4 5 52 19 53 15 514, 12 60 9.6 64 6.3 61 588 399 566 41 50 599 566 41 11 41 41 41 41 41 41 41 41 41 41 41	7 30 3 42.5 3 42.5 4 446 1 441 2 62 4 11 3 <10 8 <50 6 15 8 11 1 2.6 6 14 4 15.2 2 14 1 11 3 11 7 <10 7 <10 7 <10 7 <10 7 <10 4 56 4 45.9 2 53 4 45.9 2 53 4 45.9 2 53	0.460 0.365 0.385 0.174 0.174 0.692 0.698 0.756 0.403 0.403 0.405 0.397 0.412 0.412	0.0079 <0.005 0.0064 0.011 0.005 0.0066 0.0066 <0.005 0.0082 0.0091 <0.005 0.0066 <0.005 0.0066 0.0061 <0.005	0.46 <0.005 0.87 <0.005 0.76 <0.0004 1.2 <0.004 1.6 <0.004 1.6 <0.004 1.7 <0.004 1.7 <0.004 1.8 <0.005 0.27 <0.005 0.29 <0.005 0.29 <0.005 0.19 <0.004 0.11 <0.004 0.11 <0.005 0.10 <0.004 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.03 0.021 0.032 0.034 0.103 0.191 0.9 0.869 0.86 0.86 0.76 0.76 0.76 0.86 1.47 0.82 1.53 1.05 1.23 1.88 1.79 0.02 0.031 0.031 0.031 0.031 0.031 0.031 0.05	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	0.005 0.005	Color	01	<0.005 <0.003 <0.003 <0.003 <0.0007 0.004 0.004 0.007	 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.005 <0.00	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	<.0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <	<0.005 <0.005 0.0075 0.0069 0.0075 0.0069 0.0075 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW350 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW355	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2013 11/20/2013 11/20/2013 11/20/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2011 12/8/2011 12/8/2011 12/8/2011 12/8/2011 12/8/2011 12/8/2011 12/8/2011 11/10/2013 11/20/2013 11/20/2013 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2015 11/10/2011 12/7/2011 12/7/2011 12/7/2011 12/7/2011 12/7/2011 12/7/2011 12/7/2011 12/7/2011 12/7/2011 3/6/2012 9/11/2013 11/21/2013 11/21/2013 11/21/2013 11/21/2013	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.4 6580 4.4 5990 3.5 2790 3.2 1102 6.8 1877 3.8 1922 8.1 1704 5.5 1426 0.1 1381 4.6 1740 3.3 1740 1.5 1530 4.6 1870 5.8 1426 0.1 381 1704 5.8 1426 0.1 381 1704 5.8 1426 0.1 381 1704 5.8 1426 0.1 381 1704 5.8 1426 0.1 381 1704 5.8 1426 0.1 381 1704 5.8 1426 0.1 381 1704 5.8 1426 0.1 381 1704 5.8 1426 0.1 381 1704 5.8 1426 0.1 381 1704 5.8 1426 0.1 381 1704 5.8 1426 0.1 381 174 8.1 1740 3.3 1920 3.3 1950 3.3 1950 4.4 1810 5.5 848 17 841 17 841 17 824 8.2 812 6.3 879 4.1 811 3.1 682 3.5 691 4.8 797 4.2 600	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.2 10.6 11.6 11.2 11 10.7 10.2 9.4 7.3 6.5 8.9 9 8 7.6 7 7.1 7.2 6.8 6.8 7,4 7.2 7 6.8 6.8 7,4 7.2 7 6.8 7,5	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1430 1140 690 779 102 783 70 862 39 735 20 706 16 891 1130 996 768 1090 874 1100 1100 1210 1210 1396 446 446 450 458 396 447 468	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.	S S S S S S S S S S	<007 <008 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007 <007	218	5 207 5 200 5 166 5 149 5 149 5 182 5 180 1 185 2 190 2 200 5 32 3 30 1 34 6 33	84 2 89 25. 70 3 57 3 43 3 57 3 43 3 44 4 44 4 45 52 19 53 15 514. 12 60 9.6 64 6.3 61 58 39 56 41 41 50 59 56 1 1 13. <1 1 1. <1 1 1. <1 1 1. <1 1 1. <1 1 1. <1 1 1. <1 1 1. <1 1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1 1. <1	7 30 30 42.5 31 42.5 31 42.5 31 42.5 31 42.6 3	0.460 0.365 0.335 0.289 0.174 0.692 0.696 0.756 0.756 0.405 0.405 0.397 0.414 0.442	0.0079 <0.005 0.0064 0.011 0.005 0.0066 0.0066 <0.005 0.0082 0.0091 <0.005 0.0066 <0.005 0.0066 0.0061 <0.005	0.46 <0.005 0.87 <0.005 0.76 <0.0004 1.2 <0.004 1.6 <0.004 1.6 <0.004 1.7 <0.004 1.7 <0.004 1.8 <0.005 0.27 <0.005 0.29 <0.005 0.29 <0.005 0.19 <0.004 0.11 <0.004 0.11 <0.005 0.10 <0.004 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.03 0.031 0.032 0.034 0.103 0.191 0.9 0.869 0.869 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	005 005 005 005 005 006 006 006 006 007 007 007 007 007 007	0.00 0.00	001	<0.005 <0.003 <0.003 <0.003 <0.0007 0.004 0.004 0.007	 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.003 <0.005 <0.00	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	<.0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <	<0.005 <0.005 0.0075 0.0069 0.0075 0.0069 0.0075 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW355	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015) 11/15/2010 3/23/2011 6/7/2011 12/8/2011 12/8/2011 11/20/2013 11/20/2014 3/25/2015 11/10/2015 9/25/2015 11/10/2015 11/10/2010 3/33/2011 6/7/2011 12/7/2011 3/6/2012 9/17/2013 11/21/2013 11/21/2013 11/21/2013 11/21/2014 6/12/2014 6/12/2014 6/12/2014 6/12/2014 6/12/2014	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.4 6580 4.4 5990 3.5 2790 3.2 1102 6.8 1877 3.3 1704 5.8 1426 3.1 1704 5.8 1426 3.3 1740 1.5 1530 4.1 1381 4.6 1740 3.3 150 4.1	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.2 10.6 11.6 11.7 10.7 10.2 9.4 7.3 6.5 8.9 9 8.6 8 7.6 7 7.1 7.2 6.7 6.8 6.8 7.4 7.2 7 6.8 7.5 7.2	307 885 561 1257 565 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1430 1140 690 779 102 783 70 862 39 735 20 706 16 891 1130 996 768 1090 874 1100 1100 1100 532 432 486 404 491 396 490 4412 486 396 447 468 458 532 418	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.66 0.66	 <0.007 <0.008 <0.007 <0.008 <0.008 	218	5 207 5 200 5 166 5 149 5 149 5 182 5 180 1 185 2 190 2 200 5 32 3 30 1 34 6 33	84 2 89 25. 70 3 57 3 57 3 43 3 3 44 4 44 4 552 19 53 15 514, 12 60 9.6 64 6.3 61 588 399 566 41 500 599 566 51 11 11 11 11 11 11	7 30 30 42.5 31 42.5 31 42.5 31 11 12.6 31 42.5 31 16 22 14 11 11 11 11 11 11 11 11 11 11 11 11	0.462 0.365 0.333 0.289 0.174 0.692 0.698 0.75 0.652 0.756	0.0079 <0.005 0.0064 0.011 0.005 0.0066 0.0066 <0.005 0.0082 0.0091 <0.005 0.0066 <0.005 0.0066 0.0061 <0.005	0.46 <0.005 0.87 <0.005 0.76 <0.0004 1.2 <0.004 1.6 <0.004 1.6 <0.004 1.7 <0.004 1.7 <0.004 1.8 <0.005 0.27 <0.005 0.29 <0.005 0.29 <0.005 0.19 <0.004 0.11 <0.004 0.11 <0.005 0.10 <0.004 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.03 0.021 0.032 0.034 0.103 0.191 0.9 0.869 0.864 0.76 0.76 0.76 0.86 1.47 0.82 1.53 1.05 1.23 1.88 1.79 0.02 0.021 0.03 <0.05 <0.05 0.05	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	005 005 005 005 005 006 006 006 006 007 007 007 007 007 007	Color	001	<0.005 <0.003 <0.003 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0	 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.005 <0.003 <0.003 <0.003 <0.005 <0.00	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	<.0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <	<0.005 <0.005 0.0075 0.0069 0.0075 0.0069 0.0075 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002
MW350 MW351 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW352 MW355	3/23/2011 6/7/2011 9/13/2011 12/7/2011 3/7/2012 9/16/2013 11/20/2013 2/19/2014 6/11/2014 3/25/2015 6/24/2015 9/25/2015 11/10/2015 11/10/2016 3/23/2011 6/7/2011 9/13/2011 12/8/2011 11/20/2013 11/20/2014 6/7/2011 12/7/2011 12/7/2011 12/7/2011 12/7/2011 12/7/2011 12/7/2011 12/7/2011 13/6/2012 9/17/2013 11/21/2013 11/21/2013 11/21/2013 11/21/2014 6/12/2014 3/25/2015 6/24/2015 9/17/2013 11/21/2013 11/21/2013 11/21/2013 11/21/2013 11/21/2014 6/12/2014	8.7 1268 6.4 5144 8.4 4508 7 5529 14 7057 4.6 5190 3.5 4140 3.3 4170 4.4 6580 4.4 5990 3.5 2790 3.2 1102 6.8 1877 3.8 1922 8.1 1704 5.5 1426 0.1 1381 4.6 1740 3.3 1740 1.5 1530 4.6 1870 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 1426 0.1 381 5.8 3 3 1740 5.8 3 1850 5.8 3 879 6.8 48 6.3 879 6.3 879 6.3 879 6.3 879 6.4 1 811 6.3 1 682 6.3 5.5 691 6.4 879 6.4 682 6.5 691 6.8 797	11.7 12.2 12.1 12.6 12.9 12.3 11.8 8.1 12.4 12.8 12.5 12.6 12.2 10.6 11.6 11.2 11 10.7 10.2 9.4 7.3 6.5 8.9 9 8 7.6 7 7.1 7.2 6.8 6.8 7,4 7.2 7 6.8 6.8 7,4 7.2 7 6.8 7,5	307 885 561 1257 505 1196 778 1423 808 1709 1640 1370 1420 1580 1430 1430 1140 690 779 102 783 70 862 39 735 20 706 16 891 1130 996 768 1090 874 1100 1100 1100 1100 1100 1100 1100 11	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.	S S S S S S S S S S	<pre><0.007</pre>	218	5 207 5 200 5 166 5 149 5 149 5 182 5 180 1 185 2 190 2 200 5 32 3 30 1 34 6 33	84 2 89 25. 70 3 57 3 57 3 43 3 3 3 3 4 4 4 4 4 5 52 19 53 15 514, 12 60 9.6 64 6.3 61 588 399 566 41 50 599 566 41 11 41 41 41 41 41 41 41 41 41 41 41	7 30 30 42.5 31 42.5 44 44 45.9 44 45.9 56 42 53 44 45.9 56 56 56 56 56 56 56 56 56 56 56 56 56	0.460 0.365 0.335 0.288 0.174 0.692 0.696 0.756 0.756 0.403 0.403 0.403 0.403 0.404 0.404 0.404 0.404 0.404	0.0079 <0.005 0.0064 0.011 0.005 0.0066 0.0066 <0.005 0.0082 0.0091 <0.005 0.0066 <0.005 0.0066 0.0061 <0.005	0.46 <0.005 0.87 <0.005 0.76 <0.0004 1.2 <0.004 1.6 <0.004 1.6 <0.004 1.7 <0.004 1.7 <0.004 1.8 <0.005 0.27 <0.005 0.29 <0.005 0.29 <0.005 0.19 <0.004 0.11 <0.004 0.11 <0.005 0.10 <0.004 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005 0.11 <0.005	0.417 0.26 0.21 0.13 0.056 0.03 0.03 0.03 0.031 0.032 0.034 0.103 0.191 0.9 0.869 0.869 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005 <0 <0.005	005 005 005 005 005 006 006 006 006 007 007 007 007 007 007	Color	01	<0.005 <0.003 <0.003 <0.003 <0.003 <0.003 <0.007 0.007 0.004 0.007 0.58	 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.003 <0.003 <0.003 <0.005 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.05 <0.05 <0.06 <li< td=""><td><0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002</td><td><0.005 <0.005 /td><td>0.009 0.007 0.005 0.006 0.01 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005</td><td><.0.005 <0.005 <</td><td><0.005 <0.005 0.0075 0.0069 0.0075 0.0069 0.0075 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005</td><td> <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 </td></li<>	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.007 0.005 0.006 0.01 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	<.0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <	<0.005 <0.005 0.0075 0.0069 0.0075 0.0069 0.0075 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002 <0.01 <0.002

Appendix D - Groundwater Quality Data
Supplemental Hydrogeologic Site Characterization Report and Groundwater Monitoring Plan
Baldwin Fly Ash Pond System Baldwin Energy Center

Well	Sample Date		Specific Cond (Field) r (micromhos cm)		Alkalinity, total (mg/l	Total Dissolve Solids L) (mg/L)	nitro		rogen,	Nitrate nitrogen, total (mg/L)	Cyanide, total (mg/l	Calcium, dissolved (mg/L)	Magnesium, dissolved (mg/L)	Sodium, dissolved (mg/L)	Potassium, dissolved (mg/L)	Chloride, dissolved (mg/L)	Sulfate, dissolved (mg/L)	Fluoride, dissolved (mg/L)	Arsenic, dissolved (mg/L)	Barium, dissolved (mg/L)	Beryllium, dissolved (mg/L)	Boron, dissolved (mg/L)	Cadmium, dissolved (mg/L)	Chromium, dissolved (mg/L)	Cobalt, dissolved (mg/L)	Copper, dissolved (mg/L)	Iron, total (mg/L)	Iron, dissolved (mg/L)	Lead, dissolved (mg/L)	Manganese,	Manganese dissolved (mg/L)	Thallium, dissolved (mg/L)	Nickel, dissolved (mg/L)	Silver, dissolved (mg/L)	dissolved	dissolved	dissolved d	Mercury, dissolved (mg/L)
Class II Standard		ns	ns	6.5-	0.0	ns	1200	ns	100	10) (.6 n	s r	ns ns	r	ns 2	200 4	00	4.0	0.2	.0 0	5 2	2.0 0.	05 1.0	1.	.0 0.65	5 5.	0 5.0	0.:	1 1) 1	.0 0.02	2.0	0.05	5 10	0.024	0.05	0.01
Max (Unlithified)		27.	5 389	0 1	.4 70	00	3470	0.16	18	10.	7 <0.0	8 28	9 12	168	77.5	4 1	140 20	50 0.8	65 0.	032 0.	24 <0.00	5 45	5.3 <0.0	02 <0.00	0.0	0.016	6 69.	4 1	0.00	5 24.4	1 6	.8 <0.002	<0.005	0.006	6 0.014	<0.005	0.016	<0.002
Min (Unlithified)			2 30)1	i.6	46	188	<0.05	< 0.05	<0.0	< 0.0	7 54.1	7 1	.0 20		:1	4.1	23 0.1	.19 <0.	0.00	94 <0.00	4 <0.	02 <0.0	02 <0.00	<0.00	0.005	5 <0.0	2 <0.0	1 <0.00	5 <0.00	3 <0.00	3 <0.002	<0.00	<0.00!	5 <0.005	<0.005	< 0.01	<0.002
Max (Bedrock)		28	1 705	7 1	9 8	ns.	1709	0.35	2 04	1.1	3 <0.0	8 53	3 4	6 207	, ,	19 6	542	65 0.7	56 0	011 1	.6 <0.00	5 1	88 <0.0	02 <0.00	<0.00	05 <0.005	5 3.8	2 1	6 <0.00	5 0.5	3 0.8	7 <0.00	0.00	0.0	1 0.006	0.0075	<0.01	<0.002
Min (Bedrock)		5.	8 60	10	5.5	16	375	0.33	0.06	0.10	3 <0.0	7 4	5 2	.1 29		1	9 <	10 0.1		005 0.0	00.00	4 <0.	02 <0.0	02 <0.00	<0.00			2 0.01			3 <0.00	3 <0.002	<0.00	<0.00	5 <0.005		<0.01	<0.002
Max (Leachate)		17	7 624	0 1	Q		5120									1	109 28	20				9/	1 7	+			90.	6 0.0	6	1.5	3 <0.00	15						
Min (Leachate)		13	3 107	0 1	6		1130									1	12 4	95				36	5.3	+			0.5		2	0.0	1 <0.00							
Leachate Wells in	Old Fast Fast an	d West Fly	Ash Ponds (Sc	reened in Fi	I/CCRs to he /													,,,				3.	,,,,	_			0.5	, 10.0.	-	0.0	10.00							
TPZ163	9/17/2013	15.		_	1.7		1410						1			1				1		1					7.8	6	I	0.1	3				1			
TPZ163	11/20/2013	13.	3 135		1.8		1130										19 6	26				37	7.2				1.0	<0.02	2		<0.00	15						
TPZ163	2/18/2014	13.	4 107	0	'.6		1160										15 6	10				37	7.8					<0.02	2		<0.00	15						
TPZ163	6/12/2014	14.	9 134	.0	.5		1150										12 4	95				36	5.3					<0.02	2		<0.00	15						
TPZ167	9/17/2013	17.	7 383	-	1.9	_	3250																				0.5	7		0.0	1							
TPZ167	11/20/2013		6 292		3.2		3010										100						53					<0.02			<0.00							
TPZ167	2/18/2014	14.	3 334		'.7		3040									1	18-					54	1.5					<0.02			<0.00							
TPZ167	6/11/2014	17.	2 424	-	10		3590									1	101 16	50					60					<0.02	2		<0.00	15						
TPZ168	9/17/2013	16.	. 555	-	1.8		3910				<u> </u>																90.			1.5	1				ļ			
TPZ168	11/20/2013	14.	7 317		1.2		3680				<u> </u>					1	109 27					87						<0.02			<0.00				ļ			
TPZ168	2/18/2014	15.	3 602		3.1	_	5120				<u> </u>				ļ	1	103 28					78	,.0					0.0	,		<0.00	-			ļ			
TPZ168	6/11/2014	16.	2 624	0 1	9		4610									1	101 22	40				94	1.7					0.05	5		<0.00	15						

(N) = NPDES permit monitoring well; * = added to NPDES well network

Red = Exceedance of Class II Groundwater Standard in wells screened in Unlithified Materials

APPENDIX E STATISTICAL PROCEDURE FOR BACKGROUND

APPENDIX E STATISTICAL PROCEDURE FOR CALCULATION OF BACKGROUND

Baldwin Fly Ash Pond System Closure Groundwater Monitoring Plan Baldwin Energy Complex, Baldwin, Illinois

Introduction

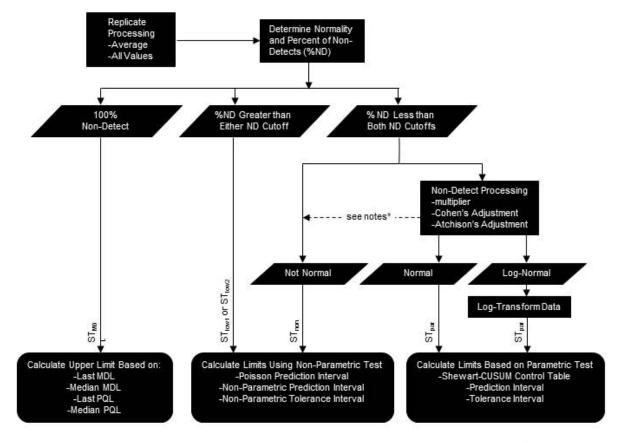
The purpose of the statistical calculations documented in this appendix is to determine the maximum background concentrations likely to occur upgradient of the Baldwin Old East and East Fly Ash ponds in the upper water bearing zone, which typically corresponds to the unlithified glacial materials. High predicted background concentrations relative to the Illinois Class II groundwater quality standards may suggest that downgradient concentrations for those parameters in the upper water bearing zone are due to a background source.

The statistical analysis procedures used here are consistent with procedures described in the document: 2009 Unified Guidance. "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance," March 2009, EPA 530/R-09-2007 (USEPA, 2009).

Compliance Data Operations - Limit Calculations

The range of potential background concentrations was statistically determined using parametric and non-parametric tolerance intervals. Tolerance intervals were chosen rather than prediction intervals because a tolerance interval makes no assumption about the future number of samples, while a prediction interval assumes a finite, and known, future number of samples.

The flow diagram (Figure E-1) outlines the logic flow for calculation of limits. Background values were calculated using parametric tolerance intervals for normally distributed data, and non-parametric tolerance intervals for data with no underlying distribution or with non-detect frequencies greater than 50 percent. Parametric tolerance intervals were calculated at a 95 percent coverage rate and a Type I individual comparison error level of 0.01 (i.e., false positive rate). Parameters with 100 percent non-detects were handled with the upper tolerance limit being set to the last Reporting Limit (RL).


Statistical Data Evaluation and Results

The input dataset (Appendix E-1) for background calculations were evaluated for the quarterly data from monitoring wells MW-104S/SR and MW-104D/DR, collected from November 2010 through December 2015, for the inorganic parameters listed in 35 IAC 620.410(a) and excluding vanadium, radium-226, radium-228, and perchlorate. All water quality data were stored, prepared, and statistically analyzed using MANAGESTM Version 3.4.49 software (EPRI, March 2014).

A statistical summary of the background water quality data from MW-104S/SR and MW-104D/DR is provided in Appendix E-2, and includes the mean, median, minimum, maximum, standard deviation, Sen Slope trend, normality determination, and percent non-detects for the background dataset. The statistical analysis procedure inputs and results are provided in Appendix E-3.

Calculated background values for the tested inorganic constituents and pH are listed in the following Table E-1 along with the percent non-detects, normal or lognormal distribution, test method, and confidence level.

Figure E-1. Statistical Analysis Flowchart

Notes

* If the option for Cohen's or Atchison's adjustment is selected and neither is appropriate, then the nonnormal comparison test will be used.

Table E-1. Tolerance Limits for Background Monitoring Wells MW-104S/SR and MW-104D/DR

	Count of	Percent					
	Backround	of Non	Normal/		Confidence	Upper	Lower
Parameter	Results	Detects	Lognormal	Test	Level	Limit	Limit
Ag, diss, mg/L	12	100.00	No/No	STmdl	N/A	0.005	
As, diss, mg/L	12	66.67	No/No	STlow2	N/A	0.032	
Ba, diss, mg/L	12	0.00	No/Yes	Stpar	99.00	0.621	
Be, diss, mg/L	12	100.00	Yes/No	STmdl	N/A	0.004	
B, diss, mg/L	26	46.20	No/No	Stnon	73.65	0.237	
Cd, diss, mg/L	12	100.00	No/No	STmdl	N/A	0.002	
Cl, diss, mg/L	28	0.00	No/No	STnon	76.22	58.7	
CN, total, mg/L	12	100.00	No/No	STmdl	N/A	0.008	
Co, diss, mg/L	12	100.00	No/No	STmdl	N/A	0.005	
Cu, diss, mg/L	12	100.00	No/No	STmdl	N/A	0.005	
Cr, diss, mg/L	12	100.00	No/No	STmdl	N/A	0.005	
F, diss, mg/L	12	0.00	Yes/Yes	STpar	99.00	0.793	
Hg, diss, mg/L	12	100.00	No/No	STmdl	N/A	0.002	
Fe, diss, mg/L	26	34.62	No/No	STnon	73.65	18.0	
Fe, tot, mg/L	10	0.00	Yes/Yes	STpar	99.00	11.0	
Mn, diss, mg/L	26	0.00	No/Yes	STpar	99.00	48.8	
Mn, tot, mg/L	10	0.00	Yes/Yes	STpar	99.00	8.2	
Ni, diss, mg/L	12	100.00	No/No	STmdl	N/A	0.005	
NO3, diss, mg/L	12	25.00	No/Yes	STpar	99.00	2.25	
Pb, diss, mg/L	12	100.00	No/No	STmdl	N/A	0.005	
pH (field), std	28	0.00	Yes/Yes	Stpar	99.00	7.55	6.06
Sb, diss, mg/L	12	100.00	No/No	STmdl	N/A	0.005	
Se, diss, mg/L	12	100.00	No/No	STmdl	N/A	0.010	
SO4, diss, mg/L	28	0.00	Yes/Yes	STpar	99.00	328	
TDS, mg/L	28	0.00	Yes/Yes	STpar	99.00	999	
TI, diss, mg/L	12	100.00	No/No	STmdl	N/A	0.002	
Zn, diss, mg/L	12	83.33	No/N9o	STlow2	45.96	0.009	

^{*} Key to Tests

STmdl = Comparison method if all background results are non-detect = Last MDL

STpar = Parametric Tolerance Interval on background

STlow1 = Non-Parametric Tolerance Interval on background (ND Frequency > 50%)

STnon = Non-Parametric Tolerance Interval on background

Appendix E-1

Date Range:	11/01/2010 to 12/3	31/2015						
Well Id	Date Sampled	Lab Id	Arsenic, dissolved,	Barium, dissolved, Beryll		Boron, dissolved, Cadmi	um, dissolved,	pH (field), SU
			mg/L	mg/L	mg/L	mg/L	mg/L	
MW104D	11/16/2010		<0.005	0.030	< 0.005	<0.020	< 0.002	6.980
	03/23/2011		< 0.005	0.031	< 0.005	0.021	< 0.002	7.010
	06/07/2011		< 0.005	0.033	< 0.005	0.019	< 0.002	6.880
/W104DR	09/13/2011		< 0.005	0.042	< 0.004	< 0.050	< 0.002	6.710
	12/08/2011		< 0.005	0.038	< 0.004	< 0.050	< 0.002	6.790
	03/08/2012		< 0.005	0.035	< 0.004	< 0.050	< 0.002	7.650
	09/16/2013							6.900
	11/20/2013					0.020		6.820
	02/18/2014					< 0.020		6.750
	06/11/2014					< 0.020		6.990
	03/25/2015					< 0.020		7.110
	06/24/2015					< 0.020		6.990
	09/25/2015					< 0.020		7.090
	11/10/2015					< 0.020		6.800
/W104S	11/16/2010		0.032	0.150	< 0.005	0.160	< 0.002	6.580
	03/23/2011		0.008	0.090	< 0.005	0.146	< 0.002	6.550
	06/07/2011		0.012	0.240	< 0.005	0.220	< 0.002	6.500
MW104SR	09/13/2011		0.006	0.059	< 0.004	< 0.050	< 0.002	6.440
	12/08/2011		< 0.005	0.076	< 0.004	< 0.050	< 0.002	6.900
	03/08/2012		< 0.005	0.097	< 0.004	0.060	< 0.002	6.880
	09/16/2013							6.720
	11/20/2013					0.040		6.710
	02/18/2014					0.050		6.730
	06/11/2014					0.147		6.500
	03/25/2015					0.086		6.790
	06/24/2015					0.178		6.650
	09/25/2015					0.237		6.740
	11/10/2015					0.149		6.320

Well Id	Date Sampled	Lab Id	Chloride, dissolved, mg/L	Chromium, dissolved, mg/L	Cobalt, dissolved, mg/L	Copper, dissolved, mg/L	Cyanide, total, mg/L	Fluoride, dissolved, mg/L
MW104D	11/16/2010		15.700	< 0.005	<0.0050	<0.005	< 0.007	0.469
	03/23/2011		16.749	< 0.005	< 0.0050	< 0.005	< 0.007	0.422
	06/07/2011		18.500	< 0.005	< 0.0050	< 0.005	< 0.007	0.379
MW104DR	09/13/2011		18.000	< 0.005	< 0.0050	< 0.005	< 0.007	0.370
	12/08/2011		18.000	< 0.005	< 0.0050	< 0.005	< 0.007	0.400
	03/08/2012		24.000	< 0.005	< 0.0050	< 0.005	< 0.008	0.310
	09/16/2013		20.000					
	11/20/2013		16.000					
	02/18/2014		18.000					
	06/11/2014		18.000					
	03/25/2015		21.000					
	06/24/2015		23.000					
	09/25/2015		24.000					
	11/10/2015		25.000					
MW104S	11/16/2010		33.700	< 0.005	< 0.0050	< 0.005	< 0.007	0.629
	03/23/2011		56.480	< 0.005	< 0.0050	< 0.005	< 0.007	0.401
	06/07/2011		58.700	< 0.005	< 0.0050	< 0.005	< 0.008	0.561
MW104SR	09/13/2011		32.000	< 0.005	< 0.0050	< 0.005	< 0.007	0.540
	12/08/2011		31.000	< 0.005	< 0.0050	< 0.005	< 0.007	0.523
	03/08/2012		34.000	< 0.005	< 0.0050	< 0.005	< 0.008	0.549
	09/16/2013		19.000					
	11/20/2013		19.000					
	02/18/2014		18.000					
	06/11/2014		16.000					
	03/25/2015		14.000					
	06/24/2015		23.000					
	09/25/2015		19.000					
	11/10/2015		19.000					

Date Range:	11/01/2010 to 12/3	31/2015						
Well Id	Date Sampled	Lab Id	Iron, dissolved, mg/L	Iron, total, mg/L	Lead, dissolved, mg/L	Manganese, dissolved, mg/L	Manganese, total, mg/L	Mercury, dissolved, mg/L
MW104D	11/16/2010		<0.010		<0.005	0.020		<0.0020
	03/23/2011		< 0.010		< 0.005	0.040		< 0.0020
	06/07/2011		< 0.010		< 0.005	0.013		< 0.0020
MW104DR	09/13/2011		0.024		< 0.005	0.420		< 0.0020
	12/08/2011		0.025		< 0.005	0.280		< 0.0020
	03/08/2012		0.011		< 0.005	0.210		< 0.0020
	09/16/2013			4.820			0.930	
	11/20/2013		0.070			0.290		
	02/18/2014		< 0.020			0.040		
	06/11/2014		0.028			0.123		
	03/25/2015		< 0.020	0.542		0.092	0.177	
	06/24/2015		< 0.020	0.767		0.130	0.206	
	09/25/2015		< 0.020	0.744		0.150	0.224	
	11/10/2015		< 0.020	0.333		0.172	0.234	
MW104S	11/16/2010		18.000		< 0.005	6.800		< 0.0020
	03/23/2011		1.852		< 0.005	3.014		< 0.0020
	06/07/2011		14.000		< 0.005	4.000		< 0.0020
MW104SR	09/13/2011		0.080		< 0.005	1.200		< 0.0020
	12/08/2011		0.190		< 0.005	1.100		< 0.0020
	03/08/2012		0.610		< 0.005	1.900		< 0.0020
	09/16/2013			3.180			4.970	
	11/20/2013		1.440			2.200		
	02/18/2014		< 0.020			0.590		
	06/11/2014		0.806			1.690		
	03/25/2015		0.207	0.476		2.100	2.660	
	06/24/2015		3.740	7.120		3.100	3.460	
	09/25/2015		3.350	3.620		2.520	2.540	
	11/10/2015		1.190	0.979		3.090	2.780	

Date Range:	11/01/2010 to 12/3	31/2015						
Well Id	Date Sampled	Lab Id	Nickel, dissolved, mg/L	Nitrate nitrogen, diss, deg. C	Residue, total filtrable, mg/L	Selenium, dissolved, mg/L	Silver, dissolved, mg/L	Sulfate, dissolved, mg/L
MW104D	11/16/2010		<0.005	0.07	785	< 0.010	< 0.005	245.000
	03/23/2011		< 0.005	0.07	801	< 0.010	< 0.005	241.400
	06/07/2011		< 0.005	< 0.05	776	< 0.010	< 0.005	250.300
MW104DR	09/13/2011		< 0.005	0.07	768	< 0.010	< 0.005	225.000
	12/08/2011		< 0.005	0.06	739	< 0.010	< 0.005	222.000
	03/08/2012		< 0.005	0.55	724	< 0.010	< 0.005	214.000
	09/16/2013				676			198.000
	11/20/2013				630			194.000
	02/18/2014				652			175.000
	06/11/2014				676			186.000
	03/25/2015				630			179.000
	06/24/2015				718			187.000
	09/25/2015				634			178.000
	11/10/2015				644			195.000
IW104S	11/16/2010		< 0.005	< 0.05	943	< 0.010	< 0.005	148.000
	03/23/2011		< 0.005	< 0.05	742	< 0.010	< 0.005	168.800
	06/07/2011		< 0.005	0.07	824	< 0.010	< 0.005	114.400
AW104SR	09/13/2011		< 0.005	0.37	909	< 0.010	< 0.005	164.000
	12/08/2011		< 0.005	0.14	965	< 0.010	< 0.005	237.000
	03/08/2012		< 0.005	0.09	886	< 0.010	< 0.005	140.000
	09/16/2013				724			43.000
	11/20/2013				770			134.000
	02/18/2014				792			138.000
	06/11/2014				792			68.000
	03/25/2015				770			100.000
	06/24/2015				880			47.000
	09/25/2015				744			23.000
	11/10/2015				732			57.000

Date Range:	11/01/2010 to 12/3	31/2015		
Well Id	Date Sampled	Lab Id	Thallium, dissolved, Zinc, diss mg/L	olved, mg/L
MW104D	11/16/2010		< 0.002	< 0.005
	03/23/2011		< 0.002	< 0.005
	06/07/2011		< 0.002	< 0.005
MW104DR	09/13/2011		< 0.002	< 0.005
	12/08/2011		< 0.002	< 0.005
	03/08/2012		< 0.002	< 0.005
MW104S	11/16/2010		< 0.002	0.009
	03/23/2011		< 0.002	< 0.005
	06/07/2011		< 0.002	0.009
MW104SR	09/13/2011		< 0.002	< 0.005
	12/08/2011		< 0.002	< 0.005
	03/08/2012		< 0.002	< 0.005

Baldwin Ash Ponds: Statistical Summary for Pooled Upgradient Monitoring Well Locations

User Supplied Information

Date Range: 11/01/2010 to 12/31/2015 Option for LT Pts: x 0.5

Pooled Locations: MW104D,MW104DR,MW104S,MW104SR

								Sen Slope	Normal /	% of
Parameter	Units	Count	Mean	Median	Maximum	Minimum	Std Dev	Units/yr	Log Normal	Non-Detects
Antimony, dissolved	mg/L	12	0.003	0.003	0.003	0.003	0.000	0.000	No / No	100.00
Arsenic, dissolved	mg/L	12	0.006	0.003	0.032	0.003	0.009	0.000	No / No	66.67
Barium, dissolved	mg/L	12	0.077	0.051	0.240	0.030	0.063	0.023	No / Yes	0.00
Beryllium, dissolved	mg/L	12	0.002	0.002	0.003	0.002	0.000	0.000	No / No	100.00
Boron, dissolved	mg/L	26	0.066	0.025	0.237	0.010	0.073	0.010	No / No	46.15
Cadmium, dissolved	mg/L	12	0.001	0.001	0.001	0.001	0.000	0.000	No / Yes	100.00
Chloride, dissolved	mg/L	28	23.887	19.000	58.700	14.000	10.977	0.263	No / No	0.00
Chromium, dissolved	mg/L	12	0.003	0.003	0.003	0.003	0.000	0.000	No / No	100.00
Cobalt, dissolved	mg/L	12	0.0025	0.0025	0.0025	0.0025	0.0000	0.0000	No / No	100.00
Copper, dissolved	mg/L	12	0.003	0.003	0.003	0.003	0.000	0.000	No / No	100.00
Cyanide, total	mg/L	12	0.004	0.004	0.004	0.004	0.000	0.000	No / No	100.00
Fluoride, dissolved	mg/L	12	0.463	0.446	0.629	0.310	0.097	0.019	Yes / Yes	0.00
Iron, dissolved	mg/L	26	1.758	0.049	18.000	0.005	4.349	0.046	No / No	34.62
Iron, total	mg/L	10	2.258	0.873	7.120	0.333	2.331	0.401	No / Yes	0.00
Lead, dissolved	mg/L	12	0.003	0.003	0.003	0.003	0.000	0.000	No / No	100.00
Manganese, dissolved	mg/L	26	1.357	0.505	6.800	0.013	1.651	0.476	No / Yes	0.00
Manganese, total	mg/L	10	1.818	1.735	4.970	0.177	1.697	1.139	Yes / No	0.00
Mercury, dissolved	mg/L	12	0.0010	0.0010	0.0010	0.0010	0.0000	0.0000	No / Yes	100.00
Nickel, dissolved	mg/L	12	0.003	0.003	0.003	0.003	0.000	0.000	No / No	100.00
Nitrate nitrogen, diss	deg. C	12	0.130	0.068	0.554	0.025	0.163	0.076	No / Yes	25.00
pH (field)	SU	28	6.803	6.790	7.650	6.320	0.258	-0.049	Yes / Yes	0.00
Residue, total filtrable	mg/L	28	761.643	756.000	965.000	630.000	92.687	0.000	Yes / Yes	0.00
Selenium, dissolved	mg/L	12	0.005	0.005	0.005	0.005	0.000	0.000	No / No	100.00
Silver, dissolved	mg/L	12	0.003	0.003	0.003	0.003	0.000	0.000	No / No	100.00

Baldwin Ash Ponds: Statistical Summary for Pooled Upgradient Monitoring Well Locations

User Supplied Information

Date Range: 11/01/2010 to 12/31/2015 Option for LT Pts: x 0.5

Pooled Locations: MW104D,MW104DR,MW104S,MW104SR

.	** *:	G	3.6	36.11	3.6	3.61.1	0.15	Sen Slope	Normal /	% of
Parameter	Units	Count	Mean	Median	Maximum	Minimum	Std Dev	Units/yr	Log Normal	Non-Detects
Sulfate, dissolved	mg/L	28	159.711	176.500	250.300	23.000	65.781	-35.529	Yes / No	0.00
Thallium, dissolved	mg/L	12	0.001	0.001	0.001	0.001	0.000	0.000	No / Yes	100.00
Zinc, dissolved	mg/L	12	0.004	0.003	0.009	0.003	0.003	0.000	No / No	83.33

2

Appendix E-3

Baldwin Ash Pond System: Background Statistics- Upper Water Bearing Zone (Unlithified Materials)

Background Date Range: 11/01/2010 to 12/31/2015

Background Locations: MW104D,MW104DR,MW104S,MW104SR

Compliance Date Range: 11/01/2010 to 04/01/2015

Compliance Locations: MW104SR

Comparison Method if all Background Results are Non-Detect:	STmdl = Last MDL

Statistical Test for Parametric Background Data Distributions:

STpar = Parametric Tolerance Interval on Background

Statistical Test for Cases with High Percentage of Non-Detect Background Data: STlow1 = Non-Parametric Prediction Interval on Background (ND Frequency > 50%)
Statistical Test for Cases with High Percentage of Non-Detect Background Data: STlow2 = Non-Parametric Tolerance Interval on background (ND Frequency > 50%)

Statistical Test for Non-Parametric Background Data Distributions: STnon = Non-Parametric Tolerance Interval on background

Background Comparison: Interwell

Number of Verification Samples: 0
Default Type 1 Individual Comparison Error Level 0.01

(False Positive Rate) for tests other than Prediction Interval

Non-Detect Processing (Parametric Tests): <=15% using MDL * 0.5

>15% using MDL * 0.5

Non-Detect Processing (All Other): <=50% using MDL * 0.5

>50% using MDL * 0.5

Compliance Location	Parameter	Sample Date	Count Of Bkg Results	Percent of Non detects	Normal / Lognormal	Test	Confidence Level	Upper Limit	Lower Limit Analysis Resul	t Exceedance Trend
MW104SR	Antimony, dissolved, mg/L	09/13/2011	12	100.00	No/No	STmdl	N/A	0.005	< 0.005	No
	dissorved, ing/L	12/08/2011	12	100.00	No/No		N/A	0.005	< 0.005	No
		03/08/2012	12	100.00	No/No		N/A	0.005	<0.005	No
MW104SR	Arsenic, dissolved	1, 09/13/2011	12	66.67	No/No	STlow2	45.96	0.032	0.006	No
	mg/L	12/08/2011	12	66.67	No/No		45.96	0.032	< 0.005	No
		03/08/2012	12	66.67	No/No		45.96	0.032	<0.005	No
MW104SR	Barium, dissolved	, 09/13/2011	12	0.00	No/Yes	STpar	99.00	0.621	0.059	No
		12/08/2011	12	0.00	No/Yes		99.00	0.621	0.076	No
		03/08/2012	12	0.00	No/Yes		99.00	0.621	0.097	No
MW104SR	Beryllium, dissolved, mg/L	09/13/2011	12	100.00	No/No	STmdl	N/A	0.004	<0.004	No
		12/08/2011	12		No/No		N/A	0.004	< 0.004	No
		03/08/2012	12	100.00	No/No		N/A	0.004	<0.004	No
MW104SR	Boron, dissolved, mg/L	09/13/2011	26	46.15	No/No	STnon	73.65	0.237	<0.050	No
	C	12/08/2011	26	46.15	No/No		73.65	0.237	< 0.050	No
		03/08/2012	26	46.15	No/No		73.65	0.237	0.060	No
		11/20/2013	26	46.15	No/No		73.65	0.237	0.040	No
		02/18/2014	26	46.15	No/No		73.65	0.237	0.050	No
		06/11/2014	26	46.15	No/No		73.65	0.237	0.147	No
		03/25/2015	26	46.15	No/No		73.65	0.237	0.086	No

Compliance Location	Parameter	Sample Date	Count Of Bkg Results	Percent of Non detects	Normal / Lognormal	Test	Confidence Level	Upper Limit Lo	wer Limit Analysis Result	Exceedance Trend
MW104SR	Cadmium, dissolved, mg/L	09/13/2011	12	100.00	No/No	STmdl	N/A	0.002	< 0.002	No
	uissor, cu, mg/2	12/08/2011	12	100.00	No/No		N/A	0.002	< 0.002	No
		03/08/2012	12	100.00	No/No		N/A	0.002	< 0.002	No
MW104SR	Chloride, dissolved, mg/L	09/13/2011	28	0.00	No/No	STnon	76.22	58.700	32.000	No
	, 2	12/08/2011	28	0.00	No/No		76.22	58.700	31.000	No
		03/08/2012	28	0.00	No/No		76.22	58.700	34.000	No
		09/16/2013	28	0.00	No/No		76.22	58.700	19.000	No
		11/20/2013	28	0.00	No/No		76.22	58.700	19.000	No
		02/18/2014	28	0.00	No/No		76.22	58.700	18.000	No
		06/11/2014	28	0.00	No/No		76.22	58.700	16.000	No
		03/25/2015	28	0.00	No/No		76.22	58.700	14.000	No
MW104SR	Chromium, dissolved, mg/L	09/13/2011	12	100.00	No/No	STmdl	N/A	0.005	<0.005	No
		12/08/2011	12	100.00	No/No		N/A	0.005	< 0.005	No
		03/08/2012	12	100.00	No/No		N/A	0.005	< 0.005	No
MW104SR	Cobalt, dissolved, mg/L	, 09/13/2011	12	100.00	No/No	STmdl	N/A	0.0050	<0.0050	No
	g/ 2	12/08/2011	12	100.00	No/No		N/A	0.0050	< 0.0050	No
		03/08/2012	12	100.00	No/No		N/A	0.0050	< 0.0050	No
MW/1040B	a	00/12/2011	10	100.00	N. A.	CT 11	NY/4	0.005	0.00-	N.
MW104SR	Copper, dissolved mg/L		12		No/No	STmdl	N/A	0.005	<0.005	No
		12/08/2011	12		No/No		N/A	0.005	< 0.005	No
		03/08/2012	12	100.00	No/No		N/A	0.005	< 0.005	No

Compliance Location	Parameter	Sample Date	Count Of Bkg Results	Percent of Non detects	Normal / Lognormal	Test	Confidence Level	Upper Limit	Lower Limit 1	Analysis Result	Exceedance Trend
MW104SR	Cyanide, total, mg/L	09/13/2011	12	100.00	No/No	STmdl	N/A	0.008		< 0.007	No
	8	12/08/2011	12	100.00	No/No		N/A	0.008		< 0.007	No
		03/08/2012	12	100.00	No/No		N/A	0.008		<0.008	No
MW104SR	Fluoride, dissolved, mg/L	09/13/2011	12	0.00	Yes/Yes	STpar	99.00	0.793		0.540	No
		12/08/2011	12	0.00	Yes/Yes		99.00	0.793		0.523	No
		03/08/2012	12	0.00	Yes/Yes		99.00	0.793		0.549	No
MW104SR	Iron, dissolved, mg/L	09/13/2011	26	34.62	No/No	STnon	73.65	18.000		0.080	No
		12/08/2011	26	34.62	No/No		73.65	18.000		0.190	No
		03/08/2012	26	34.62	No/No		73.65	18.000		0.610	No
		11/20/2013	26	34.62	No/No		73.65	18.000		1.440	No
		02/18/2014	26	34.62	No/No		73.65	18.000		< 0.020	No
		06/11/2014	26	34.62	No/No		73.65	18.000		0.806	No
		03/25/2015	26	34.62	No/No		73.65	18.000		0.207	No
MW104SR	Iron, total, mg/L	09/16/2013	10	0.00	Yes/Yes	STpar	99.00	10.986		3.180	No
		03/25/2015	10	0.00	Yes/Yes		99.00	10.986		0.476	No
MW104SR	Lead, dissolved, mg/L	09/13/2011	12	100.00	No/No	STmdl	N/A	0.005		< 0.005	No
	C	12/08/2011	12	100.00	No/No		N/A	0.005		< 0.005	No
		03/08/2012	12	100.00	No/No		N/A	0.005		<0.005	No
MW104SR	Manganese,	09/13/2011	26	0.00	No/Yes	STpar	99.00	48.767		1.200	No
	dissolved, mg/L	12/08/2011	26	0.00	No/Yes		99.00	48.767		1.100	No

Compliance Location	Parameter	Sample Date	Count Of Bkg Results	Percent of Non detects	Normal / Lognormal	Test	Confidence Level	Upper Limit	Lower Limit	Analysis Result	Exceedance Trend
MW104SR	Manganese, dissolved, mg/L	03/08/2012	26	0.00	No/Yes	STpar	99.00	48.767		1.900	No
	usserved, mg 2	11/20/2013	26	0.00	No/Yes		99.00	48.767		2.200	No
		02/18/2014	26	0.00	No/Yes		99.00	48.767		0.590	No
		06/11/2014	26	0.00	No/Yes		99.00	48.767		1.690	No
		03/25/2015	26	0.00	No/Yes		99.00	48.767		2.100	No
MW104SR	Manganese, total, mg/L	09/16/2013	10	0.00	Yes/Yes	STpar	99.00	8.173		4.970	No
		03/25/2015	10	0.00	Yes/Yes		99.00	8.173		2.660	No
MW104SR	Mercury, dissolved, mg/L	09/13/2011	12	100.00	No/No	STmdl	N/A	0.0020		<0.0020	No
	, 2	12/08/2011	12	100.00	No/No		N/A	0.0020		< 0.0020	No
		03/08/2012	12	100.00	No/No		N/A	0.0020		<0.0020	No
MW104SR	Nickel, dissolved mg/L	, 09/13/2011	12	100.00	No/No	STmdl	N/A	0.005		< 0.005	No
	C	12/08/2011	12	100.00	No/No		N/A	0.005		< 0.005	No
		03/08/2012	12	100.00	No/No		N/A	0.005		< 0.005	No
MW104SR	Nitrate nitrogen, diss, deg. C	09/13/2011	12	25.00	No/Yes	STpar	99.00	2.25		0.37	No
	_	12/08/2011	12	25.00	No/Yes		99.00	2.25		0.14	No
		03/08/2012	12	25.00	No/Yes		99.00	2.25		0.09	No
MW104SR	Nitrate nitrogen, total, mg/L	03/25/2015	8	25.00	Yes/Yes	STpar	99.00	2.264		0.058	No
MW104SR	pH (field), SU	09/13/2011	28	0.00	Yes/Yes	STpar	99.00	7.547	6.059	6.440	No

Compliance Location	Parameter	Sample Date	Count Of Bkg Results	Percent of Non detects	Normal / Lognormal	Test	Confidence Level	Upper Limit	Lower Limit	Analysis Result	Exceedance Trend
MW104SR	pH (field), SU	12/08/2011	28	0.00	Yes/Yes	STpar	99.00	7.547	6.059	6.900	No
		03/08/2012	28	0.00	Yes/Yes		99.00	7.547	6.059	6.880	No
		09/16/2013	28	0.00	Yes/Yes		99.00	7.547	6.059	6.720	No
		11/20/2013	28	0.00	Yes/Yes		99.00	7.547	6.059	6.710	No
		02/18/2014	28	0.00	Yes/Yes		99.00	7.547	6.059	6.730	No
		06/11/2014	28	0.00	Yes/Yes		99.00	7.547	6.059	6.500	No
		03/25/2015	28	0.00	Yes/Yes		99.00	7.547	6.059	6.790	No
MW104SR	Residue, total filtrable, mg/L	09/13/2011	28	0.00	Yes/Yes	STpar	99.00	999		909	No
	madole, mg/L	12/08/2011	28	0.00	Yes/Yes		99.00	999		965	No
		03/08/2012	28	0.00	Yes/Yes		99.00	999		886	No
		09/16/2013	28	0.00	Yes/Yes		99.00	999		724	No
		11/20/2013	28	0.00	Yes/Yes		99.00	999		770	No
		02/18/2014	28	0.00	Yes/Yes		99.00	999		792	No
		06/11/2014	28	0.00	Yes/Yes		99.00	999		792	No
		03/25/2015	28	0.00	Yes/Yes		99.00	999		770	No
MW104SR	Selenium, dissolved, mg/L	09/13/2011	12	100.00	No/No	STmdl	N/A	0.010		< 0.010	No
		12/08/2011	12	100.00	No/No		N/A	0.010		< 0.010	No
		03/08/2012	12	100.00	No/No		N/A	0.010		< 0.010	No
MW104SR	Silver, dissolved, mg/L	09/13/2011	12	100.00	No/No	STmdl	N/A	0.005		< 0.005	No
		12/08/2011	12	100.00	No/No		N/A	0.005		< 0.005	No
		03/08/2012	12	100.00	No/No		N/A	0.005		< 0.005	No
MW104SR	Sulfate, dissolved mg/L	, 09/13/2011	28	0.00	Yes/No	STpar	99.00	327.885		164.000	No

Compliance Location	Parameter	Sample Date	Count Of Bkg Results	Percent of Non detects	Normal / Lognormal	Test	Confidence Level	Upper Limit	Lower Limit Analysis Result	Exceedance Trend
MW104SR	Sulfate, dissolved mg/L	, 12/08/2011	28	0.00	Yes/No	STpar	99.00	327.885	237.000	No
	mg/L	03/08/2012	28	0.00	Yes/No		99.00	327.885	140.000	No
		09/16/2013	28	0.00	Yes/No		99.00	327.885	43.000	No
		11/20/2013	28	0.00	Yes/No		99.00	327.885	134.000	No
		02/18/2014	28	0.00	Yes/No		99.00	327.885	138.000	No
		06/11/2014	28	0.00	Yes/No		99.00	327.885	68.000	No
		03/25/2015	28	0.00	Yes/No		99.00	327.885	100.000	No
MW104SR	Thallium, dissolved, mg/L	09/13/2011	12	100.00	No/No	STmdl	N/A	0.002	< 0.002	No
		12/08/2011	12	100.00	No/No		N/A	0.002	< 0.002	No
		03/08/2012	12	100.00	No/No		N/A	0.002	< 0.002	No
MW104SR	Zinc, dissolved, mg/L	09/13/2011	12	83.33	No/No	STlow2	45.96	0.009	< 0.005	No
	<i>6</i> ·	12/08/2011	12	83.33	No/No		45.96	0.009	< 0.005	No
		03/08/2012	12	83.33	No/No		45.96	0.009	< 0.005	No

APPENDIX F GROUNDWATER SAMPLING PROTOCOL

Groundwater Sampling Protocol

The following procedures shall be used in sampling groundwater at the site. This sampling protocol shall apply to the routine quarterly (or modified semi-annual or annual) sampling events. A sample collector's worksheet, comparable to the one located in Exhibit 1, may be used for noting relevant information in regard to each well.

Water Levels

Water levels shall be taken in each well prior to purging and/or sampling. Water levels should be taken as close together as practical, to prevent any time distortion of the water surface data. The following steps shall be followed to obtain accurate water level readings:

- 1. Note the general condition of the monitoring well on the worksheet. This shall include, but is not limited to the condition of the casing, the lock, evidence of tampering, condition of the pad, and any standing water.
- 2. Remove the lock and open the monitoring well. Note the condition of the interior of the casing and the condition of the well cap and riser. Open the cap, taking care not to allow dirt or foreign material into the monitoring well.
- 3. The technician shall rinse the probe and cable of the water level meter with decon water.
- Slowly lower the probe into the monitoring well until the meter indicates the water surface has been reached.
- 5. Note the depth to water (to the nearest 0.01 ft) and the time on the worksheet.
- 6. Lower the probe to the bottom of well. (If a dedicated pump is installed in the well, skip this step). Note the well depth on the worksheet. The depth of the well will be measured on an annual basis, at wells that do not contain dedicated pumps. The depth of wells with dedicated pumps will be measured at least once every 5 years, or whenever the pump is removed.
- 7. Slowly remove the probe from the well. Rinse the probe and line with decon water.
- 8. Replace cap. Close and lock the well. Proceed to the next well, and repeat.

Purging of Monitoring Well – Pump Method

After all water level measurements have been taken, the monitoring wells shall be purged to provide a representative sample. Each groundwater monitoring well shall be purged by using a dedicated pump. The pump construction shall consist of inert materials consistent with the monitoring well construction (e.g., stainless steel pump bodies installed in stainless steel wells).

Purging shall be conducted utilizing a "low-flow" or minimal drawdown technique. Flow rates for this technique will typically fall below 0.5 liters/minutes, with an overall goal of not reducing the water level in the monitoring well by more than 0.3 ft during purging. Water levels should be checked frequently to ensure that the drawdown in the well does not exceed the 0.3-ft limits. Every 3 minutes to 5 minutes, readings shall be taken on the following water quality indicators to determine if a representative water sample is available.

- pH (in SU),
- Specific Conductance (in μmhos/cm or μS/cm),
- Temperature (in °F),
- And, it is suggested, at least one of the following:
 - Redox Potential (in mV);
 - Dissolved Oxygen (in mg/L); and/or
 - Turbidity (in NTU).

The water quality indicators will be considered stabilized when the following tolerances are reached after three consecutive readings:

• pH±0.05 SU	Redox Potential±10 percent
Specific Conductance ±5 percent	Dissolved Oxygen±10 percent
Temperature±0.5°F	Turbidity±10 percent

Slow recovering wells require special consideration. If a well is dry, or is purged below the bottom of the pump intake, the well will be allowed to recharge for at least 12 hours. Samples shall be collected until all sample containers have been filled or the well becomes dry. Notes shall be kept on the worksheet with regard to water levels, times, volume of water removed, and any other parameters considered to be relevant.

Purging of Monitoring Well – Bailer Method

Purging and sample collection with a bailer shall be performed in the event of a non-functioning pump or from a well that does not have a dedicated pump installed. A sample shall be collected utilizing a factory packaged, clean, disposable bailer with an appropriate length of new, clean rope attached.

Calculate the number of bailer volumes of water needed to remove one (1) well volume of water.

Well Volume Calculations (2-inch well):

Schedule 40 PVC has an inside diameter of 2.067 inches.

```
∴ ((2.067 \text{ inches/12 inches/ft})/2)^2 \bullet \pi \bullet 1 \text{ ft of water} = 0.0233 \text{ ft}^3/\text{ft of water}.
0.0233 \text{ ft}^3/\text{ft} \bullet 7.48 \text{ gallons/ft}^3 = 0.174 \text{ gallon/ft}
```

Schedule 5 Stainless Steel (304 or 316) has an inside diameter of 2.245 inches.

```
∴ ((2.245 inches/12 inches/ft)/2)<sup>2</sup> • \pi • 1 ft of water = 0.0275 ft<sup>3</sup>/ft of water. 0.0275 ft<sup>3</sup>/ft • 7.48 gallons/ft<sup>3</sup> = 0.206 gallon/ft
```

Volume of well (in gallons) = well type gallon/ft • (DTB - DTW); where, DTB = depth to bottom of well (from measuring point), and DTW ≡ depth to water (from measuring point)

Bailer Volumes:

Disposable bailer volumes will vary by type and manufacturer. Volume information should be obtained before going to the site. For comparison, a 3 ft stainless steel bailer has a volume of approximately 1220 cc or 0.322 gallon and a 5 ft PVC bailer of approximately 1085 cc or 0.287 gallon.

Open monitoring well, being careful that no potential contaminant enters the well.

Remove one (1) bailer volume of water from the monitoring well. Test pH, specific conductance and temperature. Note values on worksheet. (Turbidity, redox potential and dissolved oxygen will vary considerably due to the agitation a bailer will cause in the well. Testing for these parameters is not recommended with this method.)

Remove one-half (½) gallon of water from the monitoring well. Test pH, specific conductance and temperature. Note values on worksheet.

Remove ½ to 1 gallon of water. Test pH, specific conductance and temperature. Record data on worksheet.

Repeat until pH, specific conductance and temperature stabilize or three (3) well volumes of water have been removed.

If the monitoring well becomes dry, or there is insufficient water to obtain all necessary samples, the monitoring well will be allowed to recharge for 24 hours. Samples shall be collected until all sample containers are filled or the well becomes dry. Notes shall be kept on the worksheet regarding water levels, times, volume of water removed, and any other parameters considered by the technician to be relevant.

If there is sufficient water volume in the monitoring well to obtain all samples, sample collection shall begin at this time.

Sample Collection Order

Samples shall be collected starting at the monitoring well with the least likelihood for contamination. Sampling shall proceed from the well with the lowest potential for contamination to the well with the highest potential for contamination.

Field Measurements

General

Upon arrival at each groundwater monitoring well, the technician shall note on the sampler's worksheet or in a field notebook the date, time, ambient air temperature, general weather conditions, and individuals present, including sample team members and any observers. (Note: Any observers shall need at a minimum, the same personal protective gear as the members of the sample team.)

Establish a "clean area" near the monitoring well where the sample containers and equipment can be stored while not in use. Every effort should be made to keep the sampling equipment and containers from contacting the ground surface. If necessary, a disposable, plastic tarp can be used as a ground cover to prevent potential contamination of the sample containers and equipment. Typically, the back of the field vehicle will be used as the "clean area".

Any non-dedicated sampling equipment (meter probes, thermometers, etc.) shall be washed in a commercial, laboratory cleaner (Alconox®, Liquinox®, or equivalent), and thoroughly rinsed in decon water before each use. Calibration shall be performed at each new monitoring location after the initial decontamination. After use, each device shall be powered down (if necessary) decontaminated, and stored in its manufacturer-approved container.

Temperature

Obtain a water sample from the well. Place the sample aliquot in a disposable container, insert the thermometer (or electronic probe), wait until the readings have stabilized, and record the temperature on the worksheet. Temperature for a glass thermometer should be noted to the nearest degree Fahrenheit (1°F). For electronic thermometers (thermocouples), temperature should be noted to the nearest tenth degree Fahrenheit (0.1°F). The thermometer or probe shall be cleaned and rinsed with decon water after use.

рΗ

Confirm calibration of the instrument by comparing with an appropriate buffer solution. Adjust for temperature compensation (if meter is not self-compensating). Rinse probe with decon water. Obtain a sample from the well and place the probe in sample aliquot. Note the pH and record on the sample worksheet. Note pH readings to the nearest tenth unit (0.1).

Specific Conductance

Confirm calibration of the instrument by comparing against an appropriate buffer solution. Adjust for temperature compensation (if meter is not self-compensating). Rinse the probe with decon water. Obtain a sample from the well and place the probe in sample aliquot. Note the specific conductance and record on the sample worksheet. Specific conductance should be noted to the nearest micromhos per centimeter (µmhos/cm) or microSiemens per centimeter (µS/cm).

Sample Collection Procedures

Jars and vials may ship pre-labeled from the laboratory, identifying the analysis and preservative for each type of sample. Dependent upon circumstances, sample containers may be prepared by non-laboratory personnel. If so, this should be noted on the sample worksheet or in the field notebook.

A technician shall remove a sample container from the cooler, affix a label, and in indelible, waterproof ink write the well number and/or sample I.D., the facility name, the sample collection date and time, the type of sample in the container, and the sample collector's name. A technician shall organize the containers in the following sampling order:

- Metals and Minerals (dissolved)
- Anions (dissolved)
- Total Dissolved Solids (TDS)
- Cyanides (total)

Dissolved parameters include dissolved metals and minerals, total dissolved solids (TDS), and nitrogen should be field filtered. Samples should be filtered using a 0.45-micron filter attached to the sample pump line. Other filter apparatus may be utilized as long as Illinois EPA guidelines are followed. Filters should be replaced no less frequently than at each new well, and may need to be replaced more often if flow is restricted due to particulate matter in the sample water.

Transportation of Monitoring Samples

Sample Preservation Techniques

The preservation techniques utilized in the groundwater samples will typically adhere to those listed in *Handbook for Sampling and Sample Preservation of Water and Wastewater*, U.S. EPA, EPA-600/4-82-029, September 1982 and/or *Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods*, EPA/530/SW-846. 3^{rd.} Edition, Final Update IV (January 2008).

Transportation of Samples

Samples shall be transported to the laboratory in sealed, insulated shipping containers, ice chests, or coolers. The shipping containers should be sturdy, and if samples are contained in glass bottles, dividers and/or bubble wrap should be used to restrict potential breakage. All samples will be packed in ice or a packaged refrigerant as necessary for proper preservation. Samples should be packed to maintain sample temperatures as close to 4°C (degrees Celsius) or 39°F as possible from the time the samples are collected to the time the samples are received by the laboratory. The samples should be shipped/delivered to the laboratory as soon as practical, preferably within 24 hours of sample collection.

All samples shall be accompanied by a chain-of-custody record. The sampler shall retain a copy of the record and forward the original with the samples to the analytical laboratory. Once the laboratory has received the samples, a representative from the laboratory is to complete the record, retain the original and return a copy with the chemical analysis reports to the sampler. The chain-of-custody shall contain the facility name, the wells sampled, time and date of sampling, members of the sampling party, type of samples (i.e. water, soil, leachate, etc.), number of sample bottles, requested analysis, overnight courier, etc. A sample chain-of-custody record is provided in Exhibit 2.

Attachments

Exhibit 1: Groundwater Sampling Worksheet Exhibit 2: Example Chain-of-Custody Record

ATTACHMENT 9-7

Ramboll. 2023a. 40 C.F.R. § 257.95(g)(3)(ii): Alternative Source Demonstration. Baldwin Power Plant. Baldwin Bottom Ash Pond, CCR Unit 601. Ramboll Americas Engineering Solutions, Inc. April.

Intended for

Dynegy Midwest Generation, LLC

Date

April 30, 2023

Project No.

1940102203-001

40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION BALDWIN POWER PLANT BOTTOM ASH POND CCR UNIT 601

CERTIFICATIONS

I, Brian G. Hennings, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used other than for its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Brian G. Hennings Professional Geologist

196.001482 Illinois

Ramboll Americas Engineering Solutions, Inc.

Date: April 30, 2023

I, Anne Frances Ackerman, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used other than for its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Anne Frances Ackerman
Qualified Professional Engineer

062-060586 Illinois

Ramboll Americas Engineering Solutions, Inc.

Date: April 30, 2023

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA T 414-837-3607 F 414-837-3608

https://ramboll.com

CONTENTS

1.	Introduction	3
2.	Background	4
2.1	Site Location and Description	4
2.2	Groundwater Monitoring	4
2.3	Site Hydrogeology and Stratigraphy	4
3.	Alternate Source Demonstration: Lines of Evidence	6
3.1	LOE #1: The lithium concentration in the BAP porewater is lower	
	than the concentrations observed in compliance monitoring well	
	location MW-370.	6
3.2	LOE #2: Compliance monitoring well MW-370 has a similar ionic	
	composition to upgradient monitoring well MW-358.	7
3.3	LOE #3: An aquifer solids evaluation identified naturally occurring	
	lithium associated with the shale bedrock as a source of lithium in	
	the Uppermost Aquifer	8
4.	Conclusions	10
5.	References	11

TABLES (IN TEXT)

Table A Summary Statistics for Lithium in MW-370 and BAP Porewater (December 2015 to March 2023).

FIGURES (IN TEXT)

Figure A Stiff Diagram Showing Ionic Composition of Samples of BAP Background (Brown), Compliance Groundwater (Blue), and upgradient groundwater (Tan).

FIGURES (ATTACHED)

Figure 1 Sampling Location Map
Figure 2 Potentiometric Surface Map – December 12, 2022
Figure 3 Cross Section Location Map
Figure 4 Cross Section A-A'

APPENDICES

Appendix A Technical Memorandum – Evaluation of Lithium Sources within Aquifer Solids, Baldwin Power Station – Bottom Ash Pond (Geosyntec Consultants, Inc., 2023)

ACRONYMS AND ABBREVIATIONS

40 C.F.R. Title 40 of the Code of Federal Regulations
 35 I.A.C. Title 35 of the Illinois Administrative Code
 ASD Assessment Monitoring Sampling Event ASD

ASD Alternate Source Demonstration

BAP Bottom Ash Pond
bgs below ground surface
BPP Baldwin Power Plant
CCR coal combustion residuals
cm/s centimeters per second
FAPS Fly Ash Pond System

GWPS groundwater protection standard

IEPA Illinois Environmental Protection Agency

LOE(s) line(s) of evidence mg/L milligrams per liter

NAVD88 North American Vertical Datum of 1988 NRT Natural Resource Technology, Inc.

NRT/OBG Natural Resource Technology, an OBG Company

PMP potential migration pathways

Ramboll Ramboll Americas Engineering Solutions, Inc.

SEP Sequential extraction procedure SSI statistically significant increase SSL statistically significant level

XRD X-ray diffraction

1. INTRODUCTION

Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.95(g)(3)(ii) allows the owner or operator of a coal combustion residuals (CCR) unit 90 days from the date of determination of statistically significant levels (SSLs) over groundwater protection standards (GWPS) of groundwater constituents listed in Appendix IV of 40 C.F.R. § 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSL(s) (Alternate Source Demonstration [ASD]), or that the SSL(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

This ASD has been prepared on behalf of Dynegy Midwest Generation, LLC, by Ramboll Americas Engineering Solutions, Inc. (Ramboll), to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for the Baldwin Power Plant (BPP) Bottom Ash Pond (BAP) located near Baldwin, Illinois.

The most recent Assessment Monitoring sampling event (A5D) was completed on September 30, 2022, and analytical data was received on November 15, 2022. Additional background and compliance monitoring wells were installed around the BAP in September and October of 2022. Following the well installations, eight monthly rounds of groundwater sampling were initiated per 35 I.A.C. § 845. Analytical data from all monitoring events, from December 2015 through A5D, were evaluated in accordance with the Statistical Analysis Plan (Natural Resource Technology, an OBG Company [NRT/OBG], 2017a) to determine any statistically significant increases (SSIs) of Appendix III parameters over background concentrations or SSLs of Appendix IV parameters over GWPSs. That evaluation identified one SSL at a compliance monitoring well as follows:

Lithium at well MW-370

Pursuant to 40 C.F.R. § 257.95(g)(3)(ii), the lines of evidence (LOEs) presented in **Section 3** demonstrate that sources other than the BAP were the cause of the lithium SSL listed above. This ASD was completed by April 30, 2023, within 90 days of determination of the SSLs (January 30, 2023), as required by 40 C.F.R. § 257.95(g)(3)(ii).

2. BACKGROUND

2.1 Site Location and Description

The BPP is located in southwest Illinois in Randolph and St. Clair Counties. The Randolph County portion of the BPP is located within Sections 2, 3, 4, 9, 10, 11, 14, 15, and 16 of Township 4 South and Range 7 West. The St. Clair County portion of the property is located within Sections 33, 34, and 35 of Township 3 South and Range 7 West. The BAP is approximately one-half mile west-northwest of the Village of Baldwin.

The BPP property is bordered to the west by the Kaskaskia River; to the east by Baldwin Road, farmland, and strip-mining areas; to the southeast by the Village of Baldwin; to the south by the Illinois Central Gulf railroad tracks, scattered residences, and State Route 154; and to the north by farmland. The St. Clair/Randolph County Line crosses east-west at approximately the midpoint of Baldwin Lake (Cooling Pond). **Figure 1** shows the location of the BAP, as well as the Fly Ash Pond System (FAPS), Secondary Pond, Tertiary Pond, and Baldwin Lake (Cooling Pond). The BAP is adjacent to the FAPS, which was approved for closure by Illinois Environmental Protection Agency (IEPA) on August 16, 2016.

2.2 Groundwater Monitoring

The BAP groundwater monitoring system for compliance with 40 C.F.R. § 257 consists of two background monitoring wells (MW-304 and MW-306) and four compliance monitoring wells (MW-356, MW-369, MW-370, and MW-382). A map showing the groundwater monitoring system, including the CCR unit and all background and compliance monitoring wells, is presented in **Figure 1**. **Figure 1** also shows porewater location TPZ-164, as well as the monitoring wells that were installed in 2022. New monitoring well MW-358 was installed in 2022 upgradient of the BAP and compliance monitoring well MW-370 (compliance monitoring well with identified lithium SSL) with a well screen (363.7 to 373.7 feet North American Vertical Datum of 1988 [NAVD88]) that overlaps with MW-370 well screen elevations (355.6 to 365.6 feet NAVD88).

Groundwater samples are collected and analyzed in accordance with the Sampling and Analysis Plan prepared for the BAP (NRT/OBG, 2017b). Statistical evaluation of analytical data is performed in accordance with the Statistical Analysis Plan (NRT/OBG, 2017a).

2.3 Site Hydrogeology and Stratigraphy

Three hydrostratigraphic units are present at the Site, including CCR, an upper unit, and a bedrock unit. These units are described in detail in the Supplemental Hydrogeologic Site Characterization and Groundwater Monitoring Plan (Natural Resources Technology, Inc. [NRT], 2016) and the Hydrogeologic Site Characterization Report (Ramboll, 2021); and are summarized below.

- **CCR:** CCR, consisting primarily of fly ash, bottom ash, and boiler slag. Also includes earthen fill deposits of predominantly clay and silt materials from on-site excavations that were used to construct berms and roads surrounding the various impoundments across the Site. The 2022 Site Investigation observed up to 28.2 feet of bottom ash towards the center of the BAP (XPW05).
- **Upper Unit:** Predominantly clay with some silt and minor sand, silt layers, and occasional sand lenses. Includes the lithologic layers identified as the Cahokia Alluvium, Peoria Loess,

Equality Formation, and Vandalia Till Member. This unit is composed of unlithified natural geologic materials and extends from the water table to the bedrock. Thin sand seams and the interface (contact) between the Upper Unit and bedrock have been identified as potential migration pathways (PMPs). No continuous sand seams were observed in the Upper Unit within or immediately adjacent to the BAP; however, the sand seams may act as a PMP due to relatively higher hydraulic conductivities (on the order of 10^{-4} centimeters per second [cm/s]) than the surrounding clays (on the order of 10^{-5} cm/s).

Bedrock Unit: Shallow bedrock beneath the BAP yields small amounts of water from interconnected pores, cracks, fractures, crevices, joints, and bedding planes and is the only water-bearing unit that is continuous across the Site; this unit is considered the Uppermost Aquifer (UA) and is composed of Pennsylvanian and Mississippian-aged interbedded shale and limestone bedrock having a regional strike that is generally north to northeast with a dip of 2 to 3 degrees to the east into the Illinois Basin (Breeden et. al, 2018; Bristol and Howard, 1971). The surface elevation varies across the site, generally sloping downward from east to west, and the unlithified Upper Unit thins from east to west. The top of bedrock depth ranges between 12.5 feet below ground surface (bgs) near the Kaskaskia River and 70 feet bgs within the East Fly Ash Pond (part of the FAPS). Limestone layers intercepted at the Site are generally light to dark gray, fine-grained, thin bedded, banded, argillaceous, and competent except where weathered. Weathering of the limestone produces a calcareous clay. The limestone layers are interbedded with thin shale layers and are sometimes fossiliferous or sandy. The shale layers are generally weathered, competent, silty, slightly micaceous, fissile, and dark gray. Where highly weathered shale (i.e., decomposed bedrock) was encountered, the shale was non-fissile and resembled an unlithified stiff clay with medium to high plasticity. Bedrock in the vicinity of

Water quality in the Uppermost Aquifer (*i.e.*, Pennsylvanian and Mississippian-aged bedrock) degrades with increasing depth as water becomes increasingly mineralized. Therefore, water quality at monitoring wells with screens placed in deeper bedrock layers (*e.g.*, MW-358 and MW-370) would be expected to demonstrate more influence from the naturally increased mineralization than wells screened shallower in the bedrock. Groundwater flow in bedrock is toward the northwest in the east and central areas of the BAP, and southwest in the east area of the FAPS. The Secondary and Tertiary ponds were created in a former drainage channel and bedrock groundwater flows toward these ponds as illustrated in **Figure 2**. Groundwater elevations vary seasonally, generally less than 7 feet, although flow directions are generally consistent. Groundwater elevations across the Site range between approximately 370 and 450 feet NAVD88.

3. ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

This ASD is based on the following LOEs:

- 1. The lithium concentration in the BAP porewater is lower than the concentrations observed in compliance monitoring well location MW-370.
- 2. Compliance monitoring well MW-370 has a similar ionic composition to upgradient monitoring well MW-358.
- 3. An aquifer solids evaluation identified naturally occurring lithium associated with the shale bedrock as a source for lithium in the Uppermost Aquifer.

These LOEs are described and supported in greater detail below. Monitoring wells and the BAP porewater sample locations are shown in **Figure 1**.

3.1 LOE #1: The lithium concentration in the BAP porewater is lower than the concentrations observed in compliance monitoring well location MW-370.

Table A below provides summary statistics for lithium in background wells, MW-370 and BAP porewater collected from TPZ-164, and the five new porewater wells installed in 2022.

Table A. Summary Statistics for Lithium in MW-370 and BAP Porewater (December 2015 to March 2023).

Sample Location	Lithium (milligrams per liter [mg/L])								
Sample Location	Minimum	Maximum	Median						
Background Groundwater ¹	0.010	0.096	0.055						
Exceedance Groundwater (MW-370)	0.098	0.22	0.14						
BAP Porewater ²	<0.005	0.035	0.013						

Notes:

The following observations can be made from **Table A** above:

- Concentrations of lithium in background wells ranged from 0.010 to 0.096 mg/L, with a median concentration of 0.055 mg/L.
- Concentrations of lithium in downgradient compliance monitoring well MW-370 ranged from 0.098 to 0.22 mg/L, with a median concentration of 0.14 mg/L.
- Concentrations of lithium in BAP porewater ranged from non-detect (<0.005 mg/L) to 0.035 mg/L, with a median concentration of 0.013 mg/L.
- The median lithium concentration observed in porewater is an order of magnitude lower than the median lithium concentrations observed in compliance monitoring well MW-370.
- The highest observed lithium concentration in porewater is approximately six times lower than the maximum concentration observed in compliance monitoring well MW-370.

¹Background groundwater was collected at monitoring wells MW-304 and MW-306.

²BAP porewater was collected at TPZ-164 (September 2018 through November 2022), XPW01, XPW02, XPW04, XPW05, and XPW06 (October 2022 through January 2023).

If the BAP was the source of lithium in downgradient groundwater, BAP porewater concentrations of lithium would be expected to be higher than the groundwater concentrations. The median lithium concentration observed in porewater is below the median lithium concentrations observed in both background and compliance groundwater monitoring wells, indicating that lithium concentrations are not related to the BAP.

3.2 LOE #2: Compliance monitoring well MW-370 has a similar ionic composition to upgradient monitoring well MW-358.

Stiff diagrams graphically represent ionic composition of aqueous solutions. **Figure A** on the following page shows a series of Stiff diagrams that display the ionic compositions of groundwater from background monitoring wells (brown); compliance monitoring wells (blue); and upgradient monitoring well MW-358 (tan). Polygons with similar shapes on Stiff diagrams indicate solutions with similar ionic compositions, whereas polygons with different shapes indicate solutions with dissimilar ionic compositions. The larger the area of the polygon, the greater the concentration of the various ions. A Stiff diagram was included in **Figure A** for one out-of-network, upgradient, monitoring well, MW-358, due to similarities with MW-370 with respect to ionic composition, well screen elevation, and the composition of the bedrock material.

Compliance monitoring well MW-370 has chloride as the dominant anion and a substantially higher proportion of Na+K, similar to upgradient well MW-358. Upgradient monitoring well MW-358 is screened in a similar shaley bedrock material and at a similar elevation to MW-370 (**Figures 3 and 4**). The similarity in ionic composition in compliance well MW-370 and upgradient well MW-358 suggests that groundwater at these locations and depths is from a similar lithologic material that has undergone a similar amount of naturally occurring dissolution, and supports the conclusion that natural variability of groundwater in the Uppermost Aquifer is responsible for the lithium SSL at MW-370.

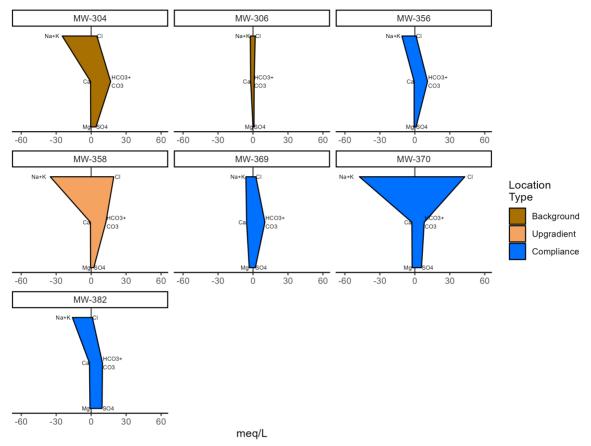


Figure A. Stiff Diagram Showing Ionic Composition of Samples of BAP Background (Brown), Compliance Groundwater (Blue), and Upgradient Groundwater (Tan).

3.3 LOE #3: An aquifer solids evaluation identified naturally occurring lithium associated with the shale bedrock as a source of lithium in the Uppermost Aquifer

Solid phase analyses were completed on samples collected from the Site to support the conclusion that lithium concentrations in groundwater at MW-370 are associated with naturally occurring lithium in the Uppermost Aquifer materials (limestone and shale bedrock formation). A review of the geochemical and site conditions was completed by Geosyntec Consultants, Inc. and is included as **Appendix A**. The following conclusions were made based on the results of the aquifer solids evaluation:

- Lithium host-minerals occur in the UA throughout the Site and constitute natural sources of lithium in BAP soils.
- Lithium is present in both upgradient and downgradient shale samples at the Site, with the largest concentrations observed in upgradient solids samples.
- Natural lithium occurrence in aquifer material from the Site is associated with multiple phases and therefore interacts with groundwater through different mechanisms at different locations and depths.

• Naturally occurring lithium associated with the shale bedrock comprising the UA at the Site was identified as a source of lithium in Site groundwater.

4. CONCLUSIONS

Based on the following three LOEs, it has been demonstrated that the lithium SSL at MW-370 is not due to the BAP:

- 1. The lithium concentration in the BAP porewater is lower than the concentrations observed in compliance monitoring well location MW-370.
- 2. Compliance monitoring well MW-370 has a similar ionic composition to upgradient monitoring well MW-358.
- 3. An aquifer solids evaluation identified naturally occurring lithium associated with the shale bedrock as a source for lithium in the Uppermost Aquifer.

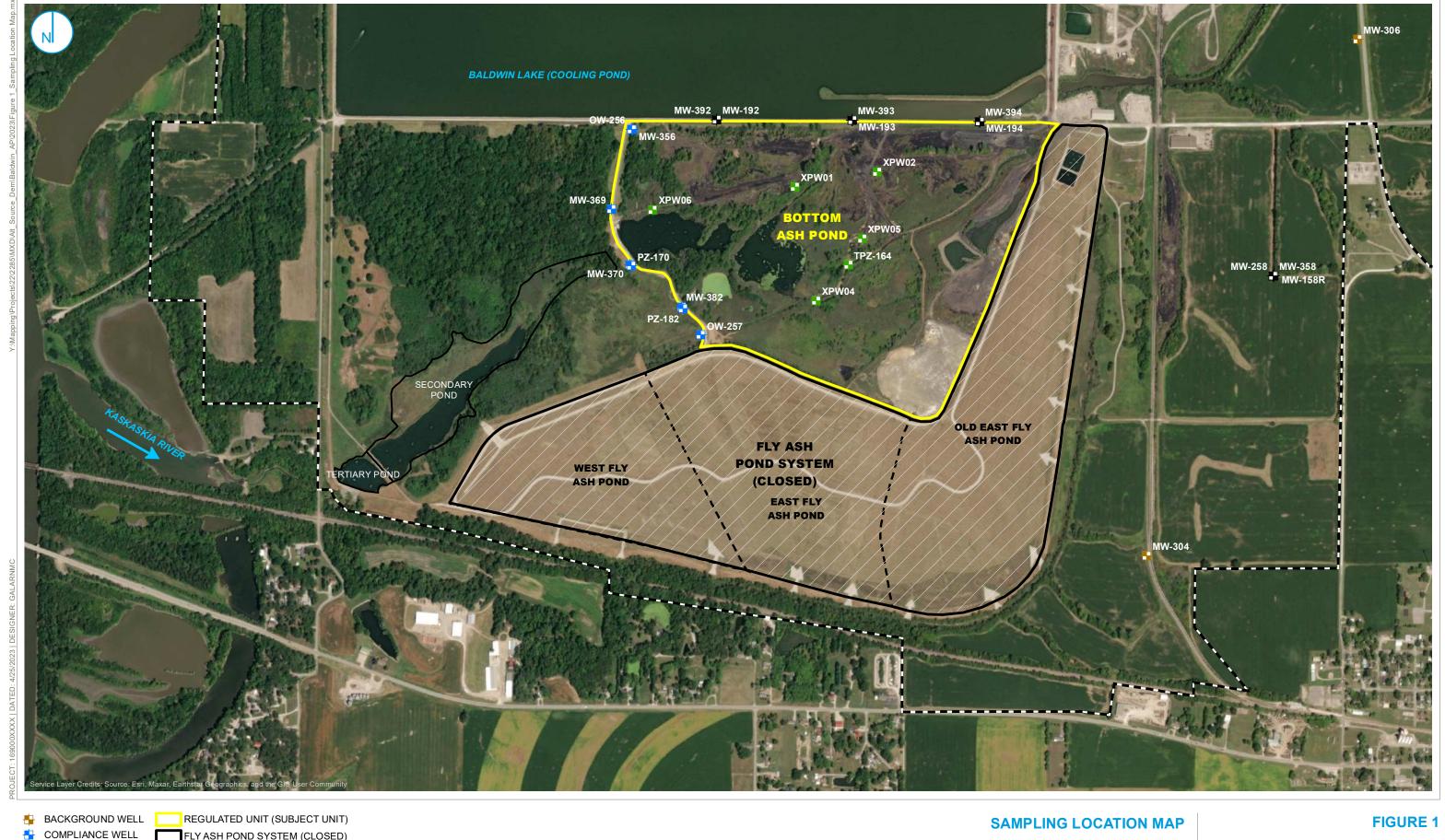
This information serves as the written ASD prepared in accordance with 40 C.F.R. § 257.95(g)(3)(ii) that the SSL observed during the A5D sampling event was not due to the BAP. Therefore, a corrective measures assessment is not required, and the BAP will remain in assessment monitoring. Additional data is being collected to identify the source of the SSLs.

5. REFERENCES

Breeden, J.R., J.A. Devera, W.J. Nelson, and F.B. Denny, 2018. Bedrock Geology of Baldwin Quadrangle, Randolph and St. Clair Counties, Illinois: Illinois State Geological Survey, USGS-STATEMAP contract report, 2 sheets, 1:24,000.

Bristol, H.M., and Howard, R.H., 1971. Paleogeologic map of the Sub- Pennsylvanian Chesterian (Upper Mississippian) surface in the Illinois Basin: Illinois State Geological Survey, Circular 458, plate 1.

Geosyntec Consultants, Inc., 2023. Technical Memorandum – Evaluation of Lithium Sources within Aquifer Solids, Baldwin Power Station – Bottom Ash Pond, April 24, 2023.


Natural Resource Technology, Inc. (NRT), 2016. Supplemental Hydrogeologic Site Characterization and Groundwater Monitoring Plan. Baldwin Fly Ash Pond System. Baldwin Energy Complex, Baldwin, IL.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017a. Statistical Analysis Plan, Baldwin Energy Complex, Havana Power Station, Hennepin Power Station, Wood River Power Station, Dynegy Midwest Generation, LLC. October 17, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017b. Sampling and Analysis Plan, Final, Baldwin Bottom Ash Pond, Baldwin Energy Complex, Baldwin, Illinois, Project No. 2285. October 17, 2017.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021. *Hydrogeologic Site Characterization Report. Baldwin Bottom Ash Pond. Baldwin Power Plant. Baldwin, Illinois*.

FIGURES

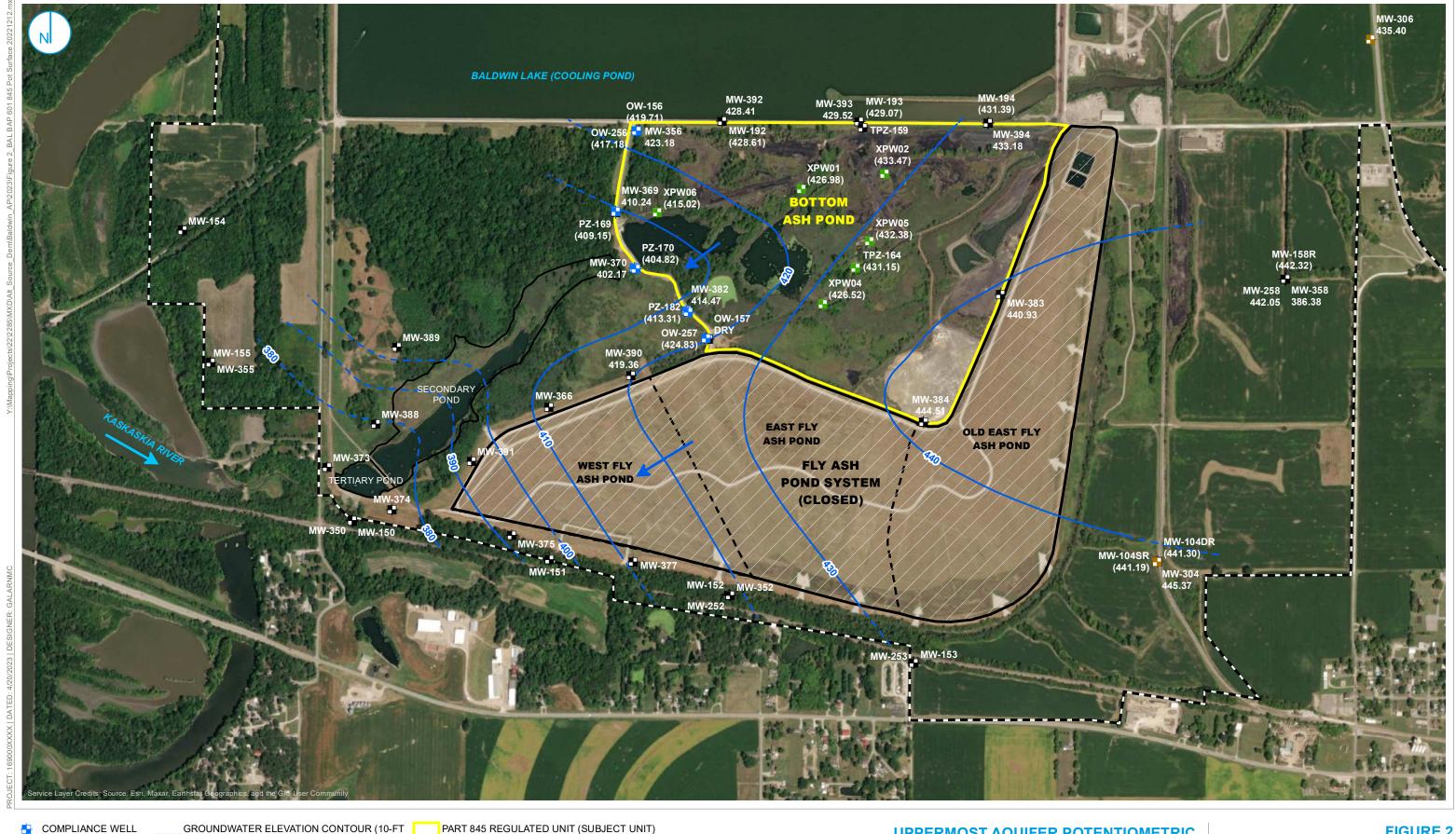
FLY ASH POND SYSTEM (CLOSED)

SITE FEATURE

CAPPED AREA

PROPERTY BOUNDARY

MONITORING WELL


PORE WATER WELL

SAMPLING LOCATION MAP

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

ALTERNATE SOURCE DEMONSTRATION BOTTOM ASH POND BALDWIN POWER PLANT BALDWIN, ILLINOIS

RAMBOLL

BACKGROUND WELL

PORE WATER WELL

MONITORING WELL

CONTOUR INTERVAL, NAVD88)

INFERRED GROUNDWATER ELEVATION CONTOUR GROUNDWATER FLOW DIRECTION

FLY ASH POND SYSTEM (CLOSED) SITE FEATURE

> CAPPED AREA PROPERTY BOUNDARY

1. ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.
2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88).


UPPERMOST AQUIFER POTENTIOMETRIC SURFACE MAP DECEMBER 12, 2022

ALTERNATE SOURCE DEMONSTRATION BOTTOM ASH POND BALDWIN POWER PLANT BALDWIN, ILLINOIS

FIGURE 2

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

PORE WATER WELL

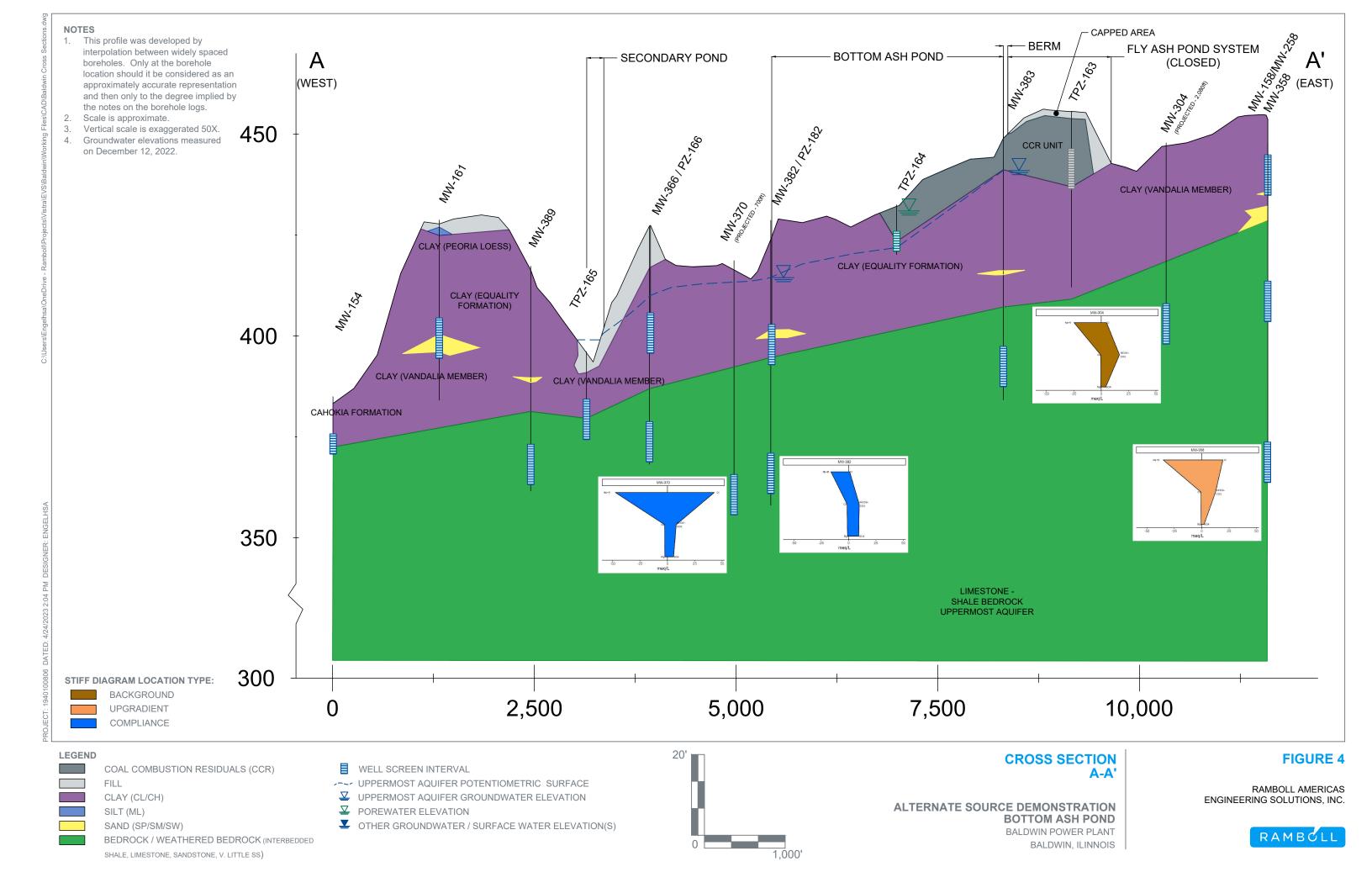
CCR SOURCEWATER SAMPLE

CROSS SECTION TRANSECT

POND SYSTEM (CLOSED)

SITE FEATURE

LIMITS OF FINAL COVER


PROPERTY BOUNDARY

ALTERNATE SOURCE DEMONSTRATION BOTTOM ASH POND BALDWIN POWER PLANT

BALDWIN, ILLINOIS

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

APPENDICES

APPENDIX A
TECHNICAL MEMORANDUM - EVALUATION OF LITHIUM
SOURCES WITHIN AQUIFER SOLIDS, BALDWIN POWER
STATION - BOTTOM ASH POND (GEOSYNTEC
CONSULTANTS, INC., 2023)

500 W. Wilson Bridge Road, Suite 250 Worthington, Ohio 43085 PH 614.468.0421 FAX 614.468.0416 www.geosyntec.com

DRAFT – SUBJECT TO CHANGE. PRIVILEGED & CONFIDENTIAL TECHNICAL MEMORANDUM

Date: April 24, 2023

To: Brian Voelker - Vistra

Copies to: Stu Cravens and Phil Morris - Vistra

From: Allison Kreinberg and Ryan Fimmen, Ph.D. - Geosyntec Consultants

Subject: Evaluation of Lithium Sources within Aquifer Solids

Baldwin Power Station – Bottom Ash Pond

Geosyntec Consultants, Inc. (Geosyntec) has completed a review of geochemical and site conditions at the Baldwin Power Plant Bottom Ash Pond (BAP; the Site) to evaluate the influence of the bedrock lithology on groundwater composition at downgradient monitoring well MW-370.

Alternate source demonstrations (ASDs) prepared by Ramboll Americas Engineering Solutions, Inc. (Ramboll) concluded that sources other than the BAP were the cause of statistically significant levels (SSL) of lithium at MW-370. This technical review has identified naturally occurring lithium associated with the shale bedrock as a source of elevated lithium in Site groundwater.

SITE CONDITIONS

The groundwater monitoring network for the BAP consists of four downgradient compliance wells (MW-356, MW-369, MW-370, and MW-382) and two upgradient background wells (MW-304 and MW-306). These monitoring locations are shown in the map provided as **Attachment 1**. Site geology consists of glacial drift deposits comprised of clastic material overlying Pennsylvanian and Mississippian-age bedrock (Ramboll, 2021). The geologic units comprising subsurface lithologies at the Site are listed in descending order:

- Equality Formation: predominantly clay and sandy clay, with intermittent sand lenses and some secondary carbonate concretions
- Pearl Formation: predominantly fine-medium grained sand with intermittent gravel
- Vandalia Till: clay and sandy clay diamicton with intermittent silt, sand, and gravel lenses
- Bedrock: Mississippian-age limestone and shale which underlies unconsolidated material beneath the western portion of the Site, and Pennsylvanian-age limestone and shale which

underlies unconsolidated material beneath the eastern portion of the Site. The gradual change from Mississippian bedrock to Pennsylvanian bedrock is believed to occur approximately beneath the central portion of the Site (Willman et al., 1967).

Limestone bedrock at the Site is generally thinly bedded, argillaceous, and competent, with localized areas of increased weathering (Ramboll, 2021). The result of this limestone weathering is a calcareous clay lithology. Layers of limestone bedrock are interbedded with thin shale layers which are sometimes calcareous and sometimes siliciclastic. The shale layers are generally more weathered than the limestone bedrock but are generally still competent. Locations of highly weathered, non-fissile, clay-like shale with medium to high plasticity have been observed.

The Uppermost Aquifer (UA) in the vicinity of the BAP is the shallow limestone/shale bedrock. Although sand lenses are present within the unconsolidated material overlying bedrock, these lenses have not been found to be laterally continuous. Groundwater in the vicinity of the BAP flows through bedrock from east to west primarily through secondary porosity features, predominantly joints and fractures, which are present at variable frequencies within the UA.

Geologic cross-sections of the lithology underlying the BAP are provided as **Attachment 2**. The fracture network within the deeper portions of the UA bedrock is overlain by unconsolidated, predominantly low permeability clay with some silt, resulting in confined to semi-confined groundwater conditions with mostly upward vertical gradients and or flowing artesian conditions observed in the unconsolidated and UA bedrock units across the Site. The observed upward vertical gradients (upwelling) result in deeper groundwater characteristic of older lithologies mixing with shallow formation water in the UA. The flat horizontal groundwater gradient beneath the Site and the mostly upward vertical gradients also suggests the BAP is not an area of significantly increased recharge or infiltration to the UA. Groundwater quality in the UA has observed to decrease with increasing depths as confined formation water is increasingly mineralized (Ramboll, 2021).

GROUNDWATER CONDITIONS

The observed lithium SSL was identified by comparing the reported groundwater concentrations at downgradient monitoring well MW-370 to the site-specific groundwater protection standard (GWPS). The site-specific GWPS for lithium was established at 0.0958 mg/L, as the Site background concentrations were greater than the health-based level of 0.040 mg/L established in 40 CFR § 257.95(h)(2). Groundwater samples collected from recently installed upgradient monitoring well MW-358, which is screened in the Mississippian-age limestone and shale bedrock strata, contained lithium concentrations ranging from 0.0592 to 0.0957 mg/L. These upgradient concentrations, as well as previously observed results from background well MW-304, are elevated with respect to the health-based GWPS. This observation indicates that lithium is present

at concentrations across the Site which suggest that a naturally occurring geogenic source of lithium to groundwater is present in these strata.

AQUIFER SOLIDS EVALUATION

Geosyntec reviewed the results of analyses completed on solid phase samples collected from the Site to support the conclusion that the lithium concentrations in groundwater at MW-370 in excess of the site-specific GWPS are associated with the limestone and shale bedrock formation.

Samples were collected from soil borings advanced in September and October 2022 at one location upgradient of the BAP (MW-358) and three locations downgradient of the BAP (MW-392, MW-393, and MW-394). These boring logs, plus the boring log for monitoring well MW-370, are provided as **Attachment 3**. Additional information regarding monitoring well construction and lithology depths of these locations and MW-370 is provided in **Table 1**. Three samples each were collected from various depth intervals/lithologies at MW-358 and MW-392, and one sample each was collected from the unconsolidated overburden at MW-393 and MW-394¹. The samples were submitted for analysis of mineralogy via X-ray diffraction (XRD), total lithium, and lithium distribution within the aquifer solids using sequential extraction procedure (SEP). SEP uses progressively stronger reagents to solubilize metals from increasingly recalcitrant phases. Although these procedures do not identify the specific metal phases in a soil/aquifer matrix, they do provide a means to evaluate association of constituents with different classes of solids (Tessier et al, 1979).

Results for total and SEP analyses of lithium in these samples are presented in **Table 2** and the analytical laboratory reports are provided as **Attachment 4**. As a first step to evaluate data quality in an SEP analysis, the sum of individual extraction steps from the SEP was compared to the total lithium concentration. The sum of the SEP procedure is not expected to be exactly equal to the total metals analysis but should generally be consistent with the total metals analysis. As can be seen in **Table 2**, the total lithium concentrations ranged from 6.0 micrograms per gram of material $(\mu g/g)$ to 20 $\mu g/g$ in the shale samples. The summed concentrations of lithium from the SEP analyses ranged from 7 to 73 $\mu g/g$. The results were generally consistent between the total metals analyses and the summed SEP steps, indicating good metals recovery and data quality. One notable exception is the sample collected from 86-88 feet (ft.) below ground surface (bgs) at upgradient location MW-358, which had a total lithium concentration of 20.0 $\mu g/g$ and a summed SEP total of 73 $\mu g/g$. While a difference was observed, both results indicate lithium is present within shale materials upgradient of the Site.

2023-04 Baldwin BAP Li Tech Review_DRAFT.docx

¹ Select samples, including those collected from MW-393 and MW-394, are excluded from subsequent results tables and discussion to emphasize findings associated with the bedrock lithologies.

These results indicate that lithium is present in both upgradient and downgradient shale samples at the Site, with the largest concentrations observed in upgradient samples. Most lithium in these samples was found to be associated with the residual metals fraction, which is typically considered to be immobile and not readily soluble. The abundance of lithium within the residual fraction indicates association with inseparable primary mineral phases such as clay minerals (Tessier et al., 1979). Lithium was also found to be associated with iron/manganese oxides in multiple samples (maximum of 25% associated with iron/manganese oxides in the sample collected from the 47-49 ft. bgs samples from MW-358), and a small component of lithium was found to be associated with organic material in the 86-88 ft. bgs sample collected from MW-358. These results indicate that natural lithium occurrence in aquifer material from the Site is associated with multiple phases and therefore interacts with groundwater through different mechanisms at different locations and depths.

Clay minerals are known to be common geosorbents for naturally occurring lithium (Starkey, 1982). Lithium is known to leach from lithium-hosting igneous rocks and micas through weathering processes. Mineral alteration reactions occurring in micas may result in lithium-rich micas transforming directly to illitic clays, and then to mixed-layer and smectite clays. The lithium within these primary minerals either becomes incorporated directly into the crystal structures of these clay minerals or is transported in solution and later concentrated in brines through evaporation (Ronov et al., 1970). Lithium-enriched brines constitute a common source of lithium in clay minerals, as eroded fine-grained materials deposited in these brines are capable of housing aqueous lithium within vacant sites in octahedral layers comprising their crystal structures (Schultz, 1969). SEP results from **Table 2** support the conclusion that naturally occurring lithium is observed in soils around the BAP, and that the majority of this lithium is associated with the residual solids fraction which consists of primary minerals. Field lithologic descriptions of samples indicate that nearly all of the samples collected and analyzed consist of clay or shale, both of which are comprised primarily of mica and clay minerals which are known to be hosts of natural lithium. Based on SEP results and lithologic observations, the data suggests that lithium in BAP soils is naturally occurring and primarily associated with micas and clays, with a smaller component associated with leachable oxides and organic material.

Mineralogical analyses were completed using X-ray diffraction (XRD) to evaluate whole rock mineralogy and evaluate the abundance of clays and micas within the aquifer solids. Whole rock mineralogy results are provided in **Table 3**. Sample mineralogy consists predominantly of quartz, mica (muscovite), feldspars (albite and microcline), and clay minerals (chlorite, kaolinite) (**Table 3**). Of these minerals, muscovite and clays are known hosts of natural lithium within their crystal structures (Zawidzki, 1976; Starkey, 1982). The combined abundances of muscovite or clay minerals account for between 30 to 49% of samples within the bedrock shale samples, with an average value of 43%. As indicated on **Table 3**, these minerals are present at sizeable abundances

both upgradient and downgradient of the BAP, indicating that these lithium-host minerals occur in the UA throughout the Site and constitute natural sources of lithium.

MW-370 is screened from 53-63 ft. bgs within an interval of shaley limestone, with additional shale and clay directly overlying this material, as indicated by the boring log included in **Attachment 3**. It is likely that lithium-hosting micas and clay minerals are present within the screened interval of this monitoring well, the leachable component of which may act as a geogenic source of lithium in groundwater. Additionally, groundwater downgradient of the BAP may be mixing with deeper groundwater in contact with lithium-bearing micas and clay minerals within the deep shale lithologies observed upgradient of the Site due to the observed upward vertical gradient within the bedrock unit.

CONCLUSION

Naturally occurring lithium associated with the shale bedrock comprising the UA at the Site was identified as a source for lithium in Site groundwater. Solid phase samples collected from upgradient and downgradient locations around the BAP contained variable lithium, with the highest total lithium concentration observed in the upgradient deep shale sample. SEP analyses of the solid phase samples determined that the majority of lithium in the solid phase is associated with the residual metals fraction. The residual metals fraction corresponds to primary minerals such as micas and clay minerals, which are known to host natural lithium in their crystal structures, either as a result of mineral formation (micas) or depositional/alteration processes (clays). XRD confirmed the presence of micas and clay minerals in the aquifer solids at an average of 43% of the bedrock total mineralogy, suggesting an abundance of common lithium-hosting minerals which may release lithium to groundwater. This solid phase assessment supports the determination that MW-370 groundwater geochemistry appears to be related to shaley aquifer solid material.

REFERENCES

- Ramboll. 2019. Alternative Source Demonstration. Baldwin Bottom Ash Pond. April.
- Ramboll. 2022. Annual Groundwater Monitoring and Corrective Action Report. Baldwin Bottom Ash Pond. January
- Ramboll. 2021. Hydrogeologic Site Characterization Report. Baldwin Bottom Ash Pond. October.
- Ronov, A.B., Migdisov, A.A., Voskresenskaya, N.T., and Korzine, G.A. 1970. Geochemistry of lithium in the sedimentary cycle. Geochemistry International. v. 7, p. 75-102.
- Schultz, L.G. 1969. Lithium and potassium absorption, dehydroxylation temperature, and structural water content of aluminous smectites. Clays and Clay Minerals. v. 17, no. 3, p. 115-150.
- Starkey, H.C. 1982. The role of clays in fixing lithium. United States Geological Survey. Bulletin 1278-F.
- Tessier, A., Campbell, P.G.C., and Bisson, M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry. v. 5, no.7, p. 844-851.
- Willman, H.B., and others. 1967. Geologic Map of Illinois. Illinois State Geologic Survey. Champaign, Illinois.
- Zawidzki, Pawel. 1976. Lithium distribution in micas and its bearing on the lithium geochemistry of granitoids. Polska Akademia Nauk, Archiwum Mineralogiczne. v. 32, p. 95-152.

Table 1 - Relevant Monitoring Well Information Baldwin Power Plant

Monitoring Well	Well Classification	Screened Interval	Depth of Well	Geologic Material Within Screened Interval	Interval of Observed Alluvial Clay	Interval of Observed Bedrock
MW-370	Downgradient	53-63	66	Shaley limestone, Limestone	0-28.5	28.5-66
MW-358	Upgradient	80-90	90	Limestone, Shale	4-21	21-90
MW-392	Downgradient	74-84	84	Shale, Limestone	1-33	52-84
MW-393	Downgradient	75-85	85	Shale	1-27, 31-40	57-85
MW-394	Downgradient	Downgradient 73-83 85		Shale, Limestone	3-20, 22-37	37-85

Notes:

Depths provided in units of feet below ground surface

Observed clay and bedrock intervals are based on the boring logs provided in Attachment 3.

Table 2 - Lithium SEP Results Summary Baldwin Power Plant

Well ID	MW-3	358	MW-	358	MW-3	392	MW-392			
Depth (ft)	(47-49)		(86-8	38)	(66-6	8)	(80-82)			
Location	Upgradient		Upgrad	lient	Downgra	adient	Downgradient			
Boring Log Description	Shallow Shale		Deeper Sha	ale Body	Shal	le	Shale transitioning to limestone			
Total Lithium	6.0		20.0		15.0)	8.0			
			SEP Res	ults						
	Concentration	% of Total	Concentration	% of Total	Concentration	% of Total	Concentration	% of Total		
Water Soluble Fraction	<2		<2		<2		<2			
Exchangeable Metals Fraction	<2		<2		<2		<2			
Metals Bound to Carbonates Fraction	<2		<2		<2		<2			
Metals Bound to Fe/Mn Oxides Fraction	3.0	25%	5.0	7%	2.0	10%	<2			
Bound to Organic Material Fraction	<2		3.0	4%	<2		<2			
Residual Metals Fraction	9.0	75%	65.0	89%	19.0	90%	7.0	100%		
SEP Total	12.0	100%	73.0	100%	21.0	100%	7.0	100%		

Notes:

SEP - sequential extraction procedure

All results shown in microgram of lithium per gram of soil ($\mu g/g$).

Total lithium was analyzed using aqua regia digest, ICP-MS

Non-detect values are shown as less than the detection limit.

The lithium fraction associated with each SEP phase is shown.

% of total lithium is calculated from the sum of the SEP fractions.


Table 3 - Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results Baldwin Power Plant

	Well ID		MW-358	MW-358	MW-392	MW-392		
	Depth (ft bgs)		(47-49)	(86-88)	(66-68)	(80-82)		
	Location		Upgradient	Upgradient	Downgradient	Downgradient		
	Boring Log Description		Shallow Shale	Deeper Shale Body	Shale	Shale transitioning to limestone		
Mineral/Compound	Formula	Mineral Type	(wt %)	(wt %)	(wt %)	(wt %)		
Quartz	SiO ₂	Silicate	33.0	34.9	27.2	29.1		
Muscovite	$KAl_2(AlSi_3O_{10})(OH)_2$	Mica	37.6	30.5	29.7	14.5		
Albite	NaAlSi ₃ O ₈	Feldspar	8.2	3.4	4.5	1.0		
Microcline	KAlSi ₃ O ₈	Feldspar	9.4	8.1	6.9	2.9		
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈	Clay	-	-	16.3	6.8		
Diaspore	aAlO.OH	Oxyhydroxide	-	-	-	-		
Pyrite	FeS ₂	Sulfide	1.0	0.8	-	1.2		
Kaolinite	$Al_2Si_2O_5(OH)_4$	Clay	9.0	18.4	-	8.2		
Calcite	CaCO ₃	Carbonate	1.8	1.7	14.8	31.5		
Anatase	TiO ₂	Oxide	-	2.1	0.7	0.4		
Leucite	KAlSi ₂ O ₆	Zeolite	-	-	-	2.4		
Siderite	FeCO ₃	Carbonate	-	-	-	1.9		
Dolomite	CaMg(CO ₃) ₂	Carbonate	-	-	-	-		
Gypsum	CaSO ₄ ·2H ₂ O	Sulfate	-	-	-	-		
Diopside	CaMgSi ₂ O ₆	Pyroxene	-	-	-	-		
Î	Clay Minerals Total	•	9	18	16	15		
	Clays + Muscovite Total		47	49	46	30		

Notes

Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value. Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined. Sample depths are shown in feet below ground surface (ft bgs).

ATTACHMENT 1 Cross Section Location Map

PORE WATER WELL

CCR SOURCEWATER SAMPLE

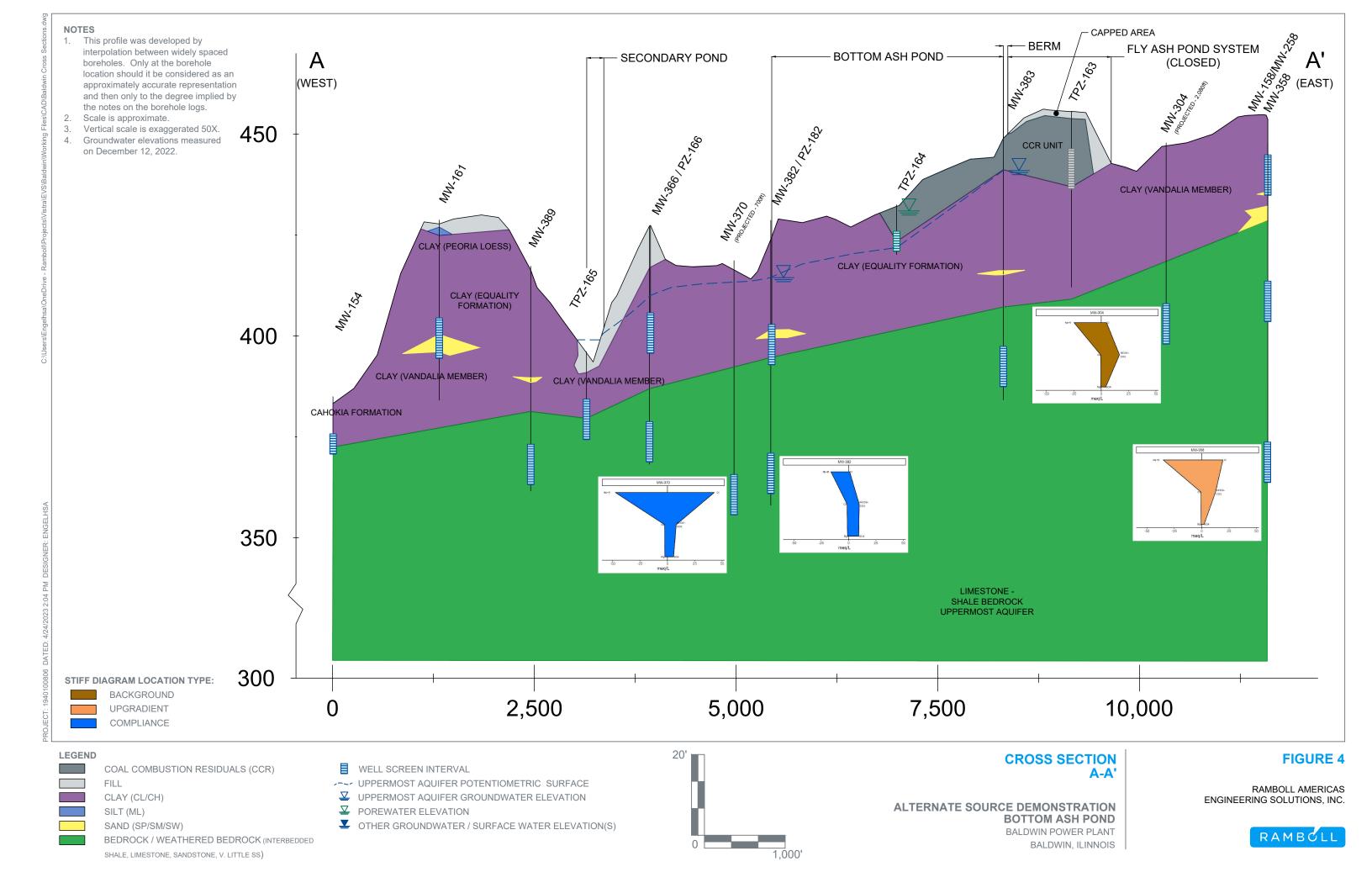
CROSS SECTION TRANSECT

POND SYSTEM (CLOSED)

SITE FEATURE

LIMITS OF FINAL COVER

PROPERTY BOUNDARY


ALTERNATE SOURCE DEMONSTRATION BOTTOM ASH POND BALDWIN POWER PLANT

BALDWIN, ILLINOIS

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

ATTACHMENT 2 Cross Section A-A'

ATTACHMENT 3 Boring Logs

SOIL BORING LOG INFORMATION

Facility/Project Name								Page I of License/Permit/Monitoring Number Boring Number										of	4	—	
Baldwin Energy Complex																	er 7-370				
Boring Drilled By: Name of crew chief (first, last) and Firm								Date Drilling Started Date D							ing Co			ing Metho	od		
Mark Baetje								<i>3.4.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.</i>							-	-		1/4 HSA			
	ldog I		ng					11/20/2015						11/24/2015					and rotary		
Common Well Name									Final Static Water Level Surface Elev						vation Bo				rehole Diameter		
MW-370									et (N	AVD	88)		418			AVD8	38)	8	.3 inche	·S	
Local Grid Origin ☐ (estimated: ☐) or Boring Location ☒ State Plane 556,826.50 N, 2,381,936.14 E E/Ŵ									Lat38°11' 44.1702 " Local Grid Location												
State									_]N]S			E							
Facilit	1/4 v ID	OI		/4 of Se	County ,	T	N, R	Lon State	<u>g</u>					Village	Fe	et L	12		Feet [_ W	
	,				Randol	ph		Illinois				-	,,	8-							
San	nple				1	F	I		Illinois Baldwin Soil Properties												
	Ī					Soil/Rock D	escription												-		
	tt. & d (ir	ınts	Feet			And Geologic	-							ive (tsf)					×	į	
er ype	h A	Cor	l I		T.	Each Ma	=		S	. <u>2</u>		В		ress gth (ure	-	Plasticity Index	200	l . uent		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Lacii Ma	or ome		SC	Graphic	Log	wen Diagram	b	Compressive Strength (tsf)	Moisture Content	Liquid Limit			RQD/ Comments	,	
<u>z</u> <u>g</u>	7 ×	B	Ω	0 2	' CII TV CI	LAY CL/ML			D	υ,	ĭ ≤	<u> </u>		SC	ΣÚ	22	P d	Ь	0-28' Blir		
			E	0-2	. SILTT CI	LAT CL/IVIL													Drilled. S	See	
			-1																log PZ-1 for soil	70	
			-						CL/MI										descripti	on.	
			F _																		
			-2	2-4	' Shelby T	ube Sample				1											
			E																		
			_3																		
			F																		
			-4						<u> </u>	-											
			F	4-0	SILITU	LAY CL/ML															
			_ ₅																		
			F 3																		
			-																		
			- 6						CL/MI	-											
			F																		
			7																		
			E																		
			-8						L												
			F .	8 - 1	0' SILTY C	CLAY to LE	AN CLAY: CL/MI	L.													
			ļ.																		
			- 9						CL/MI	-											
			F																		
			-10	10	12' I EAN	CLAY: CL.					Щ										
			E	10-	12 LLAN	CLAI. CL.															
			-11																		
			<u> </u>						CL												
			F																		
			<u>-12</u>																		
	-	fy that	the info	rmation	on this for	rm is true an	d correct to the be														
Signat	ure 🛮	11	1	, /	1011	2	Firm Natu	ıral Resc	urce	Tech	nol	ogy				Tel	: (414)	837-36	607		

234 W. Florida St., Fifth Floor, Milwaukee, WI 53204 Fax: (414) 837-3608

Template: ILLINOIS BORING LOG - Project: BALDWIN GINT.GPJ

Boring Number MW-370 Page 2 of 4 Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Comments Number and Type Moisture Diagram Plasticity SCS Graphic Content Liquid Each Major Unit Limit Index 200 Well Log 12 - 14' Shelby Tube Sample. 13 14 - 24' **SILTY CLAY** CL/ML. 15 - 19 CL/ML -21 22 24 - 26' Shelby Tube Sample. -26 26 - 28' **SILTY CLAY** CL/ML. 27 CL/ML 28 - 28.4' **LEAN CLAY:** CL, yellowish brown (10YR 5/4), trace angular limestone gravel, soft, medium plasticity, moist. 1 SS 10 CL 10 BDX 60 29 Core 1, 28.4 - 28.9' SHALE: BDX (SH), gray, highly (SH)COR 18.5 RQD=51% decomposed, very weak. 28.9 - 38.1' SHALEY LIMESTONE: BDX (LS/SH), light gray to gray, intensely fractured (extremely narrow to moderately narrow apertures), medium to BDX thickly bedded, microcrystalline, moderately (LS/SH decomposed, very strong. -31

Boring Number MW-370 Page 3 of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Blow Counts Depth In Feet Compressive Strength (tsf) And Geologic Origin For Comments Number and Type Moisture Plasticity Graphic Diagram Content Liquid Each Major Unit SC Index 200 Well Log 28.9 - 38.1' SHALEY LIMESTONE: BDX (LS/SH), light gray to gray, intensely fractured (extremely narrow to moderately narrow apertures), medium to 33 thickly bedded, microcrystalline, moderately decomposed, very strong. (continued) 33.9' - 38.1' gray, greenish gray in fractures, trace fossils, moderately to highly decomposed, slightly to 51.5 34 Core 2. CORI RQD=0% moderately disintegrated, clay in shoe with a hard, reddish brown inclusion. 35 BDX 36 36' - 37.9' vertical fracture. 37 38.1 - 44' SHALE: BDX (SH), bluish gray, 24 3 Core 3 COR 25 intensely fractured (extremely narrow to narrow RQD=40% apertures), highly decomposed, weak. - 39 40 24 Core 4, COR 11 RQD=0% 40.6' - 40.8 shaley limestone layer, light gray to BDX gray, microcrystalline, moderately decomposed, 36 very strong. 41.1' - 43.2 gray, moderately to highly Core 5. (SH) COR 32 RQD=78% decomposed. 44 - 45.7' SHALEY LIMESTONE: BDX (LS/SH), Core 6, 28 light gray to gray, intensely fractured (extremely RQD=29% narrow to narrow apertures), thin to medium BDX bedded, microcrystalline, slightly decomposed, clay cement in apertures, very strong. Core 7, 45 45' shale layer, bluish gray, moderately fractured COR RQD=65% 27 (extremely narrow to narrow apertures), highly 46 decomposed, weak. 45.7 - 52.2' SHALE: BDX (SH), bluish gray, moderately fractured (tight to narrow), highly decomposed, weak. RDX (SH) 24 Core 8. COR 30 RQD=78% -51 Core 9, COR RQD=0% 24

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-370 Page of Sample Soil Properties Length Att. & Recovered (in) Soil/Rock Description Compressive Strength (tsf) Blow Counts Depth In Feet And Geologic Origin For Number and Type Comments Moisture Diagram Plasticity Content Graphic SCS Liquid Each Major Unit Limit Index 200 Well Log 52' clay cement. 52.2 - 61.7' SHALEY LIMESTONE: BDX (LS/SH), light gray to gray, intensely fractured (very narrow to narrow), thin to medium bedded, microcrystalline, 53 10 COR slightly decomposed, cemented clay in apertures, Core 10, 24 very strong.
52.7' - 53' clayey sand in aperture.
53' - 53.1 shale bed, bluish gray, fossiliferous, 36 RQD=0% moderately fractured (very narrow to narrow), highly decomposed, weak. 55 53.1' white to bluish gray, gray in the fractures (extremely narrow to moderately narrow apertures), thinly to medium bedded, slightly to moderately 11 CORI Core 11, 24 disintegrated. 30 RQD=18% 55.7' moderately disintegrated. BDX (LS/SH 58 12 COR Core 12, 30 58.1' highly decomposed. 27 RQD=39% -59 13 CORI 36 Core 13, RQD=89% 61.7 - 65.3' **LIMESTONE**: BDX (LS). BDX (LS) 65.3 - 66' Overdrilled for Well Installation. 66 66' End of Boring. Bedrock corehole reamed 6" in diameter to 66' for well installation.

													Pag		of	5
Facilit	y/Proje dwin l			. †		License/	Permit	/Moni	toring l	Numb	er	Boring	Numb MW			
				of crew chief (first, last) and Firm		Date Dri	lling S	tarted		D	ate Drill	ing Co			Dril	ling Method
•	ke We	•		, ,			J					J	1			S
Cas	cade]	Drilli	ng				10/5					10/8/2	2022			onic
					Well Name W358	Final Sta					ice Eleva		AMD			Diameter .0 inches
Local	Grid O	rigin	☐ (e:	stimated: \(\sigma\) or Boring Location		1	et (NA				3.59 F				0	.0 menes
				<u> </u>	/W		t38		1' 42.9	9882']N		□ E
	1/4	of	1	*	, R		g <u>-89</u>)°5	<u>0'</u> <u>57.</u>				et [S		Feet W
Facilit	y ID			County Randolph		tate L		Civil Balo		City/ c	r Villag	e				
San	nple		1	Kandoipii	1	LL	<u> </u>	Daic	WIII	۵	. 1	Soil	Prop	erties		
	<u> </u>			Soil/Rock Descri	ntion					PID 10.6 eV Lamp			Пор			_
	.tt. &	unts	Feet	And Geologic Orig	•					e S	sive (tsf)					ts
ber 「ype	th A	S ₂	h In	Each Major U	=		CS	hic	ram	10.6	pres	sture ent	ب <u>ت</u> ظ	icity		men
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	J			SO	Graphic I og	Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	180		-	0 - 3.8' SILT: ML, very dark gray		0YR	_			\	0 02					CS= Core
CS	97		E	3/2), organic material (0-10%), r	noist to wet.											Sample
			- 1							X						Measured
			E													Rock Quality
			-2	2.1' dry.			ML									Designation (RQD) was
			E													modified
			_3													due to drilling
			E				L									methods, modified
			- 4	3.8 - 8.9' CLAYEY SILT: ML/CL 7/2), very dark grayish brown (1	0YR 3/2) and	i										RQD equals the sum of
			_	yellowish brown (10YR 5/8) mot	tling (20-30%	6), dry.										recovered
			- 5													core sections
			E													greater than 4 inches in
			-6													length
			Ē				ML/CL									divided by total core
			- 7													recovery.
			Ė													
			-8													
			F													
			<u>_</u> 9	8.9 - 13' SILTY CLAY WITH SA			<u> </u>									
			-	grayish brown (10YR 5/2), stron and very dark brown (10YR 2/2)	g brown (7.5` mottling (20-	YR 5/6) -30%),										
			-10	organic material (0-10%), low to medium plasticity, stiff.												
			F	modium piasuolty, suii.		(CL/ML)									
			-11													
			-													
			-12													
I herel	by certi	fy that	the inf	formation on this form is true and co	orrect to the b	est of my	y know	ledge								
Signat	ure	5		hr	Firm Ramb									(414)		
	- 1			-/-	234 W	Florida S	Street,	5th Fl	oor, Mi	ilwauk	ee, WI	53204	Fax:	(414)	837-3	608

234 W Florida Street, 5th Floor, Milwaukee, WI 53204 Fax: (414)837-3608

Template: RAMBOLL_IL_BORING LOG - Project: 845_BALDWIN_2022.GPJ

				Boring Number MW358								Pag	ge 2	of	5
Sar	nple								dun		Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			E		(CL/ML)										
			-13 -14 -14 -15	13 - 17.8' SILTY CLAY: CL/ML, grayish brown (10YR 5/2), strong brown (7.5YR 5/6) and very dark brown (10YR 2/2) mottling (20-30%), low toughness, medium to high plasticity, stiff to very stiff.	(CL/WIL)										
2 CS	60 60		-16 -17	16.1' mottling discontinues.	CL/ML										
3 CS	48 36			17.8 - 21' SILTY CLAY WITH SAND: (CL/ML)S, brown (10YR 5/3), strong brown (7.5YR 5/6) and gray (10YR 6/1) mottling (20-30%), gravel (5-15%), no dilatancy, high toughness, low to medium plasticity, hard, moist. 21 - 26.5' SHALE: BDX (SH), dark gray (GLEY 1	(CL/ML)	\$									
4 CORE	36 32		-22 -23 -24 -25 -26	4/N), weathered, thin bedding, moderately fractured.	BDX (SH)										RUN #4: Modified RQD = (21/32) = 66%
5 CORE	36 29		-27 -28 -29	26.5 - 27.5' LIMESTONE: BDX (LS), dark gray (5Y 4/1), shaley, fossiliferous, very strong. 27.5 - 31.3' SHALE: BDX (SH), grayish black (N2), weathered, highly decomposed to residual soil, wet to moist.	BDX (LS)										RUN #5: Modified RQD = (0/29) = 0%
6 CORE	72 60		30	29.3' thinly bedded, moderately decomposed. 30' slightly decomposed to competent, moderately fractured. 31.3 - 32' COAL: COAL, black (N1).	BDX (SH)										RUN #6: Modified RQD = (45/60) = 75%
-	1		-32												1

				Boring Number MW358									ge 3		5
San	nple							amp	٠ 📙		Soil	Prop	erties		_
	Length Att. & Recovered (in)	unts	Feet	Soil/Rock Description And Geologic Origin For				Diagram PID 10.6 eV Lamp	Sive	Strength (tsf)					ts:
Number and Type	gth A	Blow Counts	Depth In Feet	Each Major Unit	CS	Graphic Log	Well	10.6	nores	ngth	Moisture Content	nid it	Plasticity Index	9	RQD/ Comments
Nur	Len	Blo	Dep		S D	Grap Log	We.	PID PID) j	Stre	Mo	Liquid Limit	Plastic Index	P 200	RQ]
			<u>-</u>	32 - 33' SHALE : BDX (SH), grayish black (N2), slightly decomposed to competent, moderately fractured, wet to moist.	BDX (SH)										
			_33	33 - 36' SHALEY LIMESTONE: BDX (LS/SH),	(011)										
			34	medium gray (N5), weathered, shaley, higly decomposed, slightly fractured.											
			_		BDX (LS/SH	H									
			_35		(13/311										
			- -36												
7 CORE	72 71		-	36 - 40.8' SHALEY LIMESTONE : to SHALE : BDX (LS/SH), interbedded shale.											RUN #7: Modified
			_37			H									RQD = (67/71) = 94%
															3470
			-		BDX (LS/SH										
			_39												
			E -40												
			-41	40.8 - 42' LIMESTONE : BDX (LS), medium light gray (N6), strong to moderately fractured, slightly	BDX										
			-42	decomposed, narrow apertures.	(LS)										
8 CORE	96 85			42 - 58.9' SHALE : BDX (SH), medium gray (N5) to medium dark gray (N4), weathered, weak, thinly											RUN #8: Modified
			-43	bedded, moderately to highly fractured.											RQD = (81/85) = 94%
			- 44												
			45												
			- -46												
			<u> </u>												
			-47		BDX (SH)										
			- -48	47.5' dark grayish brown (10YR 4/2), pale olive (5Y 6/4) discoloration, more competent.											
			49												
	00		50												DI INI "2
9 CORE	60 60		= "	50.2' weak to moderate.											RUN #9: Modified RQD =
			_51	50.8' olive gray (5Y 5/2).											(52/60) = 87%
			1 '	ı	1	I	1	1	1		1	1	I	1	ı

				Boring Number MW358							Pag		of	5
Sar	nple							dun		Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u> </u>			-	42 - 58.9' SHALE: BDX (SH), medium gray (N5)				Д	O S	<u> </u>		H H		
10 COR E	60 58		53 54 55	to medium dark gray (N4), weathered, weak, thinly bedded, moderately to highly fractured. (continued) 52.2' dark grayish green (5GY 4/2). 54.1' medium dark gray (N4) to medium gray (N5), weak, highly decomposed, no visible bedding, dry.	BDX									RUN #10: Modified
			56 57	55.7' dark grayish green (5GY 4/2). 57.2' light brownish gray (10YR 6/2), thinly bedded, laminated.	(SH)									RQD = (42/58) = 72%
11 CORE	36 31		-58 -59 -60 -61 -62	58.2' medium dark gray (N4), strong, intensely fractured, thinly bedded. 58.9 - 64' LIMESTONE : BDX (LS), medium gray (N5), very strong, moderately fractured, visible laminations.	BDX (LS)									RUN #11: Modified RQD = (8/31) = 26%
12 CORE	36 36		-63 -64	64 - 75.3' SHALE : BDX (SH), medium dark gray										RUN #12: Modified RQD = (31/36) = 86%
13 CORE	48 48		65 66 67	(N4) to medium gray (N5), strong, thinly bedded to laminated, moderately fractured. 64.3' grayish green (5GY 5/2), weathered, weak, decomposed.										RUN #13: Modified RQD = (43/48) = 90%
14 CORE	60 58		-68 -69 -70 -71	69.3' medium dark gray (N4), weathered, moderate strength.	BDX (SH)									RUN# 14: Modified RQD = (57/58) = 99%

				Boring Number MW358							Pag	e 5	of	5
Sar	nple							dun		Soil	Prope	rties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
15 CORE				64 - 75.3' SHALE : BDX (SH), medium dark gray (N4) to medium gray (N5), strong, thinly bedded to laminated, moderately fractured. <i>(continued)</i> 75.3 - 77.1' LIMESTONE : BDX (LS), gray (5Y 6/1), fossiliferous, very strong. 77.1 - 78.2' SHALE : BDX (SH), medium dark gray (N4), weathered, weak to moderate strength, moderately decomposed. 78.2 - 84.8' LIMESTONE : BDX (LS), medium dark gray (N4) to medium gray (N5), shaley, fossiliferous, very strong, moderately fractured, laminations (0-5%).	BDX (SH) BDX (LS) BDX (LS)									RUN #15: Modified RQD = Not Recorded RQD = (23/51) = 45%
17 CORE	60 60			84.8 - 90' SHALE : BDX (SH), dark gray (N3), weathered, weak to moderate strength, moderately decomposed, moderately fractured, thin bedding. 90' End of Boring.	BDX (SH)									RUN #17: Modified RQD = (28/60) = 47%

													Pag		of	5
	ty/Proje					License/	Permit	/Monito	oring N	Vumbe	r	Boring				
	dwin]					D . D	1111 0			15	. 5 11		MW		- 15 11	
	_	•	Name	of crew chief (first, last) and Firm		Date Dri	Illing S	tarted		Da	te Drill	ing Co	mplete	1	Drill	ling Method
	ke We		ng				9/9/	2022				9/26/2	2022		Sc	onic
				Common Well		Final Sta	atic Wa	iter Lev	el	Surfac	e Eleva	ation		Во		Diameter
				MW392		Fe	et (NA	AVD8	8)	434	1.07 F			88)	6	.0 inches
				stimated: \square) or Boring Location \triangleright 0 N, 2,382,717.92 E E/W		La	t 38	8° <u>11</u>	' 57.	.132"	Local	Grid Lo		-		_
State	1/4							9° 52				Fe]N]S		☐ E Feet ☐ W
Facilit		01	1	County T N, R	S	tate	<u> </u>	Civil T	own/C	ity/ or	Village		Ci _] 3		reet w
	,			Randolph]	IL		Baldy		,	Č					
San	nple									du		Soil	Prope	erties		
			,,	Soil/Rock Description						Lan						
0	od (i	unts	Fee	And Geologic Origin Fo	or					eV	sive (tsf				ı	ts:
ber Sype	th A	ပိ	h In	Each Major Unit			CS	hic	ram	9.01	pres	ture	<u>.</u>	icity		men /
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				n S (Graphic Log	Well Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	120	Щ		0 - 1.2' FILL, WELL-GRADED GRAV	EL WIT	Н	1	PÕŢ			S C	0		P		CS= Core
cs	46		Ė	CLAY: GW-GC, pinkish gray (7.5YR 6	6/2), an	gular,	(FILL) GW-G0	5000							ı	Sample
			-1	moist.						3					ı	Measured
			E	1.2 - 16' FILL, LEAN CLAY: CL, light	brown										ı	Rock
			-2	(7.5YR 6/4), sand (0-5%), no dilatanc medium plasticity, moist.	y, iow i	O									ı	Quality Designation
			<u> </u>												ı	(RQD) was
			Ε,												ı	modified due to
			_3												ı	drilling
			E												ı	methods, modified
			_4												ı	RQD equals
			_												ı	the sum of recovered
			- 5												ı	core
			F												ı	sections greater than
			F _												ı	4 inches in
			- 6				/=\								ı	length divided by
			_				(FILL) CL								ı	total core
			- 7												ı	recovery.
			Ė												ı	
			-8												ı	
			F												ı	
			_ 9												ı	
			L ´												ı	
			_												ı	
2 CS	120		-10												ı	
CS	62		F												ı	
			-11												ı	
			E												ı	
			- 12												ı	
I here	by certi	fy that	the inf	formation on this form is true and correct	to the l	best of m	y know	ledge.			1					<u> </u>
Signat	-				Raml		-						Tel·	(414)	837-30	607
			_	-922		Florida S	Street,	5th Floo	or, Mil	wauke	e, WI 5	53204		(414)		

234 W Florida Street, 5th Floor, Milwaukee, WI 53204 Fax: (414)837-3608

Template: RAMBOLL_IL_BORING LOG - Project: 845_BALDWIN_2022.GPJ

				Boring Number MW392									ge 2	of	5
Sar	nple								dun		Soil	Prop	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
3 CS	120 33		13 14 15 16 17 18 19 21 21 22 23 24 25 26	1.2 - 16' FILL, LEAN CLAY: CL, light brown (7.5YR 6/4), sand (0-5%), no dilatancy, low to medium plasticity, moist. (continued) 16 - 20' LEAN CLAY: CL, light brown (7.5YR 6/4), sand (0-5%), no dilatancy, low to medium plasticity, moist. 20 - 33' LEAN CLAY: CL, pinkish gray (7.5YR 6/2), sand (0-5%), medium to high plasticity, stiff, moist.	(FILL)										
4 CS	120 104		-29 -30 -31 -32	30' increasing sand and gravel content.											

Soil Properties Soil Prope					Boring Number MW392							,				ge 3	of	5
20 - 33 LEAN CLAY: CL. pinkish gray (7.5 YR 6); sand (0-5%), sand (0-5%), moist. (continued) 33	San	nple									du		So	i1 I	Prope	erties		
20 - 33 LEAN CLAY: CL. pinkish gray (7.5 YR 6); sand (0-5%), sand (0-5%), moist. (continued) 33		% (ii)	ts	et	Soil/Rock Description						/ La	b (t						
20 - 33 LEAN CLAY: CL. pinkish gray (7.5 YR 6); sand (0-5%), sand (0-5%), moist. (continued) 33	ے کو	Att.	oun	n Fe	And Geologic Origin For		١.			п	6 eV	ssiv 1 (ts	e			25		nts
20 - 33 LEAN CLAY: CL. pinkish gray (7.5 YR 6), sand (0-5%), sand (0-5%), moist. (continued) 31	nbe Tyf	gth	× C	th I	Each Major Unit	U U	1.5	d '		grar	10.	npre ngtl	istur	[ED]	uid iit	sticil	00	D/ Dime
20 - 33' LEAN CLAY: CL. pinkish gray (7.5YR moist: (continued) 33	Nun	Len Rec	Blo	Dep		S O	2	Log	We	Dia	PIL	Cor	Wo	5	Lig Lin	Plas Ind	P 20	RQ
33 33 WELL (SW-SM)g, fine to medium sand, diy. 34 (SW-SM)g, fine to medium sand, diy. 35 36.5 SANDY SILT WITH GRAVEL: s(ML)g, light yellowish brown (10YR 6/4), diy. 36.5 -39 CLAYEY SILT: ML/CL, gray (7.5YR 5/1), sand (6-10%), coal (0-5%), gravel (0-5%), dry. 39 -40 SILTY CLAY; CL/ML, sand (0-5%), low to medium plasticity, stiff. 40 - 48 SILT WITH SAND: (ML)s, light brownish gray (10YR 6/2), dry. 44 44' increasing clay content. 45 (2.5Y 6/2). 48 48 -52' SILT: ML, gray (2.5Y 5/1), sand (0-5%), dry.				_	6/2), sand (0-5%), medium to high plasticity, stiff,	CI												
GRAVEL: (SW-SM)g, fine to medium sand, dry. 34 (SW-SM)g, fine to medium sand, dry. 35 35 - 36 .5 SANDY SILT WITH GRAVEL S(ML)g. 36.5 - 39 CLAYEY SILT: ML/CL, gray (7.5YR 5/1), sand (5-10%), coal (0-5%), gravel (0-5%), dry. 39 - 40 SILTY CLAY: CL/ML, sand (0-5%), low to medium plasticity, stiff. 40 - 48 SILT WITH SAND: (WL)s, light brownish gray (10YR 6/2), dry. 44 44' increasing clay content. 45 46' (2.5Y 6/2). 48 48 - 52' SILT: ML, gray (2.5Y 5/1), sand (0-5%), dry.				- -33														
35 36.5 SANDY SILT WITH GRAVEL: s(ML)g. light yellowish brown (10YR 6/4), dry. 36.5 39 CLAYEY SILT: MLCL, gray (7.5YR 5/1), sand (5-10%), coal (0-5%), gravel (0-5%), dry. MLCL 39 39 40 SILTY CLAY: CLML, sand (0-5%), low to medium plasticity, stiff. 40 48 SILT WITH SAND: (ML)s, light brownish gray (10YR 6/2), dry. 41 44 44' increasing clay content. 45 (2.5Y 6/2). 48 48 - 52' SILT: ML, gray (2.5Y 5/1), sand (0-5%), dry.				Ė			2											
35				-34		(E)M CN	Þ	:]][
120				Ė		(300-310	//)g: 											
120				- -35		-L	- ($2 _{\mathcal{K}}$										
36.5 - 39' CLAYEY SILT: ML/CL, gray (7.5YR 5/1), sand (5-10%), coal (0-5%), gravel (0-5%), dry. 39					35 - 36.5' SANDY SILT WITH GRAVEL: s(ML)g, light yellowish brown (10YR 6/4), dry.			9										
36.5 - 39' CLAYEY SILT: ML/CL, gray (7.5VR 5/1), sand (5-10%), coal (0-5%), gravel (0-5%), dry. 38 -39 39 - 40' SILTY CLAY: CL/ML, sand (0-5%), low to medium plasticity, stiff. 40 - 48' SILT WITH SAND: (ML)s, light brownish gray (10YR 6/2), dry. -41 -42 -43 -44 44' increasing clay content. 45' (2.5Y 6/2). -46 -47 -48 48 - 52' SILT: ML, gray (2.5Y 5/1), sand (0-5%), dry.				_ 36		s(ML)g	g											
5/1), sand (5-10%), coal (0-5%), gravel (0-5%), dry. ML/CL 39 39 - 40' SILTY CLAY: CL/ML, sand (0-5%), low to medium plasticity, stiff. 40 - 48' SILT WITH SAND: (ML)s, light brownish gray (10YR 6/2), dry. 44' increasing clay content. 45' (2.5Y 6/2). 48 - 52' SILT: ML, gray (2.5Y 5/1), sand (0-5%).				Ė	 	.L												
120				37	36.5 - 39 CLAYEY SILT: ML/CL, gray (7.5YR 5/1), sand (5-10%), coal (0-5%), gravel (0-5%), dry.													
120				Ė														
5 CS 120				-38		ML/CL	네											
5 CS 120 120 -40 -40 -41 -41 -42 -43 -44 -44 -44 -45 (2.5Y 6/2)45 -46 -46 -47 -48 -48 -52'SILT: ML, gray (2.5Y 5/1), sand (0-5%), iow to medium plasticity, stiff. -40 -48'SILT WITH SAND: (ML)s, light brownish gray (10YR 6/2), dry. (ML)s -41 -42 -43 -44 -44 -44 -44 -45 (2.5Y 6/2). -48 -48 -48 -48 -48 -48 -48 -48 -48 -48				E														
5 CS 120 120 -40 -40 -41 -41 -42 -43 -44 -44 -44 -45 (2.5Y 6/2)45 -46 -46 -47 -48 -48 -52'SILT: ML, gray (2.5Y 5/1), sand (0-5%), iow to medium plasticity, stiff. -40 -48'SILT WITH SAND: (ML)s, light brownish gray (10YR 6/2), dry. (ML)s -41 -42 -43 -44 -44 -44 -44 -45 (2.5Y 6/2). -48 -48 -48 -48 -48 -48 -48 -48 -48 -48				- 39		.L	Щ											
120					medium plasticity, stiff.	CL/MI	E											
CS 108	5	120		-40	40 - 48' SILT WITH SAND: (ML)s light brownish													
-42 -43 -44 -45 -45 -46 -47 -48 -48 -48 -48 -48 -48 -48 -48 -48 -48	cs			E	gray (10YR 6/2), dry.		-											
44' increasing clay content. 45' (2.5Y 6/2). 48 - 52' SILT: ML, gray (2.5Y 5/1), sand (0-5%), dry.				- -41														
44' increasing clay content. 45' (2.5Y 6/2). 48 - 52' SILT: ML, gray (2.5Y 5/1), sand (0-5%), dry.				_														
44' increasing clay content. (ML)s 45' (2.5Y 6/2). 48 - 52' SILT: ML, gray (2.5Y 5/1), sand (0-5%), dry.				- 42			ŀ											
44' increasing clay content. (ML)s 45' (2.5Y 6/2). 48 - 52' SILT: ML, gray (2.5Y 5/1), sand (0-5%), dry.				_					-									
44' increasing clay content. 45' (2.5Y 6/2). 45' (2.5Y 6/2). 48 - 52' SILT: ML, gray (2.5Y 5/1), sand (0-5%), dry.				-43														
44' increasing clay content. 45' (2.5Y 6/2). 45' (2.5Y 6/2). 48 - 52' SILT: ML, gray (2.5Y 5/1), sand (0-5%), dry.				E														
45' (2.5Y 6/2). 45' (2.5Y 6/2). 48 - 52' SILT: ML, gray (2.5Y 5/1), sand (0-5%), dry.				-44	/// increasing clay content	(ML)s												
45 (2.5Y 6/2). -46 -47 -48 -48 -48 -48 -48 -48 -48 -48 -48 -48				E	44 increasing clay content.	(,-												
48 - 52' SILT : ML, gray (2.5Y 5/1), sand (0-5%), dry.				-45	45' (2 5Y 6/2)													
48 - 52' SILT : ML, gray (2.5Y 5/1), sand (0-5%), dry.				-	(2.01.0/2).]+										
48 - 52' SILT : ML, gray (2.5Y 5/1), sand (0-5%), dry.				_46														
48 - 52' SILT : ML, gray (2.5Y 5/1), sand (0-5%), dry.				-														
48 - 52 SIL1 : ML, gray (2.5Y 5/1), sand (0-5%),				_47			.											
48 - 52 SIL1 : ML, gray (2.5Y 5/1), sand (0-5%),				_														
				-48	48 - 52' SILT: ML. grav (2.5Y 5/1), sand (0-5%).		+											
				-														
				-49														
				Ė														
6 H 84	6	84		- 50		ML												
6 CS 84	cs	81		Ė														
				_51														
				Ė														
	I			- 52			#	ШШ										

				Boring Number MW392								e 4	of	5
Sar	nple			Soil/Rock Description				PID 10.6 eV Lamp			Prope	rties		
. Q	Att. & red (in	stunc	ı Feet	And Geologic Origin For				6 eV]	ssive 1 (tsf)	ပ		>		nts
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	SCS	Graphic Log	ell	D 10.	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Z E	l I	B	<u> </u>	52 - 57' SHALE : BDX (SH), dark gray (5Y 4/1),	D	G L	≱ Q	[H	Ω <u>Ω</u>	Σŭ	r r	P II	Ъ	<u> </u>
			- -53	highly weathered, hard, dry.										
			-	53' very dark gray (7.5YR 3/1).										
			<u>-</u> 54		BDV									
			_ 55		BDX (SH)									
			_											
			_56 _											
7	60		_57	57 - 57.5' LIMESTONE: BDX (LS), gray (5Y 6/1),										RUN #7:
7 CORE	4		-	slightly fractured. 57.5 - 70' SHALE : BDX (SH), dark gray (5Y 4/1).	BDX (LS)									Modified RQD = 0%
			<u>-58</u>	weathered, soft, moderately fractured to highly fractured limestone beds (0-5%).										(No Solid Recovery > 4")
			-59											4)
			60											
			- 00											
			-61											
	00		- -62											DUN #0
8 CORE	96 78													RUN #8: Modified RQD =
			-63											(28/78) = 36%
			-64		BDX (SH)									
			-											
			-65											
			-66											
			E -67	66.3' - 67.2' highly fractured, very soft, wet.										
- 1			<u> </u>											
			-68											
			-69											
- 1			E											
9 CORE	120 62		70	70 - 74.4' LIMESTONE : BDX (LS), gray (5Y 6/1), moderately to intensely fractured, moderately wide										RUN #9: Modified
			71	apertures.	BDX (LS)									RQD = (28/78) = 36%
- 1			72											30%
-	1		1/2		I	1	Ι	1	1	l		- 1		I

				Boring Number MW392								ge 5	of	5
San	nple							duı		Soil	Prope	erties		
	(ii) &	S	et	Soil/Rock Description				/ La	e (
ے اور	Att.	oun	n Fe	And Geologic Origin For			п	6 eV	ssiv	ر بو ا		5		ants
nber Tyf	gth	Blow Counts	Depth In Feet	Each Major Unit	SCS	Graphic Log	Well Diagram	PID 10.6 eV Lamp	npre ngtl	Moisture Content	Liquid Limit	Plasticity Index	00	D/ Dme
Number and Type	Length Att. & Recovered (in)	Blo	Del		S O	Grap Log	Well Diagr	PIL	Compressive Strength (tsf)	Co Co	Liquid Limit	Plastic Index	P 200	RQD/ Comments
			_	70 - 74.4' LIMESTONE: BDX (LS), gray (5Y 6/1), moderately to intensely fractured, moderately wide										
			- 73	apertures. (continued)	DDV									
					BDX (LS)									
			- 74											
			_	74.4 - 81.8' SHALE: BDX (SH), medium dark gray	<u> </u>									
			- 75	74.4 - 81.8' SHALE: BDX (SH), medium dark gray (N4) to dark gray (N3), slightly weathered, moderately fractured, thinly bedded.										
			- 76											
			-											
			-77 -											
			_ 78		DDV									
			_ , ,		BDX (SH)									
			- 79											
			E											
10 CORE	48		-80											RUN #10:
CORE	48													Modified RQD =
			-81											(28/48) = 58%
			- -82	81.8 - 84' LIMESTONE: BDX (LS), medium light										
			- 82	gray (N6), shaley, fossiliferous, moderately fractured, thinly bedded.										
				nactured, tilling bedded.	BDX									
			Ē	83.2' medium gray (N5).	(LS)									
			-84	84' End of Boring.										
				-										

													Pag		of	5
	ty/Proje			4		License/	Permit	/Monito	oring l	Numb	er	Boring				
	dwin]			of crew chief (first, last) and Firm		Date Dri	lling S	tarted		D	ate Drill	ling Co	MW		Dril	ling Method
	ke We	•	rvanic	or crew emer (mst, last) and I mm		Date Di	illing 5	tarted			ate Dili	ing Co	трисс	u		ing wethou
	cade		ng				9/9/	2022				10/4/2	2022		So	onic
				Common V		Final Sta	itic Wa	iter Lev	el		ce Eleva					Diameter
					/393	Fe	et (NA	AVD8	8)	43	4.59 F				6	.0 inches
				stimated:) or Boring Location N, 2,383,944.49 E	n ⊠ ′®	La	t 38	8° 11	' 57	.027"	Local	Grid Lo				
State					•		g -89		45.:			Ea]N]S		East DW
Facili	1/4 ty ID	01	1	/4 of Section , T N,		tate	<u> </u>	Civil T			 r Village		et			Feet W
	,			Randolph		L		Bald		,	Ü					
San	nple									du		Soil	Prop	erties		
	T .		,,	Soil/Rock Descrip	otion					PID 10.6 eV Lamp						1
•	kt. &	unts	Fee	And Geologic Orig						e	sive (tsf)					ts:
ber Sype	th A	, Co	h In	Each Major Un			CS	hic	ram	9.01	pres gth	ture ent	.e _	icity		men
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	,			n s	Graphic Log	Well Diagram		Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	120	I		0 - 1' FILL, WELL-GRADED GR	AVEL: GW,			1 × 0	VA R	 	0 01	20		H H	<u> </u>	CS= Core
CS	86		-	pinkish gray (7.5YR 6/2), angular			(FILL) GW	10 Co								Sample
			-1	1 - 20' FILL, LEAN CLAY: CL, br	own (7.5YR	6/4)		27		\triangleleft						Measured
			_	sand (0-5%), no dilatancy, low to	medium pla	sticity,										Rock
			-2	moist.												Quality Designation
			F													(RQĎ) was
																modified due to
																drilling
			L													methods, modified
			- 4													RQD equals
			F													the sum of recovered
			_5													core
																sections greater than
			-6													4 inches in
			<u> </u>				(FILL)									length divided by
			F _				CL									total core
			E /													recovery.
			L													
			-8													
			-													
			- 9													
			_													
			-10													
2 CS	120 120			10' sand (0-5%), iron concretion	s (0-5%).											
	0		<u> </u>													
			-11													
			 													
			-12					//								
		fy that	the inf	formation on this form is true and co			y know	ledge.								
Signa	ture	=		fr	Firm Ramb		7	5.1 P!	3.6		****	72001		(414)		
			1		234 W	Florida S	street,	oth Flo	or, Mı	ıwauk	ee, WI	5204	гах:	(414)	03/-3	000

234 W Florida Street, 5th Floor, Milwaukee, WI 53204 Fax: (414)837-3608

Template: RAMBOLL_IL_BORING LOG - Project: 845_BALDWIN_2022.GPJ

				Boring Number MW393									ge 2	of	5
San	nple							dui	_		Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram PID 10.6 eV Lamp	Commercia	Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
S S S	120 120		-13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -24 -25 -26 -27 -28	1 - 20' FILL, LEAN CLAY: CL, brown (7.5YR 6/4), sand (0-5%), no dilatancy, low to medium plasticity, moist. (continued) 18' medium to high plasticity. 20 - 24' LEAN CLAY: CL, light brown (7.5YR 6/4), mottling, sand (0-5%), medium to high plasticity, cohesive, moist. 24 - 27' CLAYEY SAND: SC, gray (10YR 6/1), fine to medium sand, wet.	(FILL) CL										
4 CS	120 105		30 31	30' coal fragments (0-5%). 31 - 40' SILTY CLAY: CL/ML, dark gray (7.5Y 4/1), organic material (0-5%), gravel (0-5%), stiff to	CL /ht										
11				very stiff, moist.	CL/ML										

				Boring Number MW393									ge 3	of	5
Sar	nple								dur		Soil	Prop	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	120			31 - 40' SILTY CLAY: CL/ML, dark gray (7.5Y 4/1), organic material (0-5%), gravel (0-5%), stiff to very stiff, moist. <i>(continued)</i>	CL/MI										
5 C	120		-41 -42 -43 -44 -45 -46 -47 -48 -49	stiff to hard, platy, dry.	ML										
6 CS	120 92		-50 -51 -52	50 - 55' SILT : ML, dark gray (7.5YR 4/1), sand (0-5%), very stiff to hard, dry.	ML										

				Boring Number MW393								Pag	e 4	of	5
Sar	nple								amp		Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
7 CORE	120 60			50 - 55' SILT : ML, dark gray (7.5YR 4/1), sand (0-5%), very stiff to hard, dry. <i>(continued)</i> 55 - 57' CLAYEY SILT : ML/CL, gray (10YR 6/1), sand (0-5%), gravel (0-5%), medium plasticity, moist. 57 - 60' LIMESTONE : BDX (LS), gray (10YR 6/1), rock flour and angular chips (<2").	ML/CL BDX (LS) BDX (SH)										RUN #7: Modified RQD = (31/60) = 52%
8 CORE	42 40		-69 -70 -71 -72	70 - 73.5' LIMESTONE : BDX (LS), medium dark gray (N4), weathered, shaley, thinly bedded, moderately fractured.	BDX (LS)										RUN #8: Modified RQD = (32/40) = 80%

				Boring Number MW393								ge 5	of	5
San	nple							dur		Soil	Prope	erties		
	(ii)	ts	l set	Soil/Rock Description				V La	s Œ					
r pe	Att.	,oun	ln Fe	And Geologic Origin For	S	ပ	B	.6 e	essiv h (ts	re t		ty		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	SCS	Graphic Log	Well Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
and Nu	Leı	BIG	De		n S	Grap Log	Well	III	Str	ĭ S	Li Li	Pla Ind	P 2	RC Co
			73	70 - 73.5' LIMESTONE: BDX (LS), medium dark gray (N4), weathered, shaley, thinly bedded, moderately fractured. <i>(continued)</i> 72' medium gray (N5).	BDX (LS)									
9 CORE	78 40		74	73.5 - 85' SHALE : BDX (SH), medium gray (N5), weathered, moderately to slightly fractured, thinly laminated.										RUN #9: Modified RQD = (30/40) =
														75%
			- 78											
			79 		BDX (SH)									
10 CORE	60 45		- 80											RUN #10: Modified RQD =
														(34/45) = 76%
			-82 -83											
			-84	83.5' more competent.										
			- - 85	85' End of Boring.										
				co End of Borning.										

													Pag		of	5
	ty/Proje			.		License/	Permit	/Monito	oring l	Numbei	•	Boring	Numb MW			
	dwin]			of crew chief (first, last) and Firm		Date Dri	lling S	tarted		Da	te Drill	ing Cor			Dril	ling Method
	ke Wo	-		21 313		24.0							присс			
	scade		ng					/2022				10/5/2	2022			onic
						Final Sta				Surfac						Diameter
Local	Grid O	rigin		stimated:) or Boring Location	W394	Fe	et (NA	AVD8	8)			eet (N. Grid Lo		88)	6	.0 inches
					/(W)	La	t38	<u>8° _ 11</u>	<u>' 56.8</u>	<u>8911"</u>	Local	JIIG LO]N		□ E
	1/4				, R	Long	g <u>-89</u>	<u>° 51</u>	<u>'</u> 31.	1756"		Fee				Feet W
Facili	ty ID			County		tate		Civil T		City/ or	Village	;				
				Randolph	I	L		Baldy	win		<u> </u>	G '1				
Sai	nple									PID 10.6 eV Lamp		Soil	Prope	erties		
	Length Att. & Recovered (in)	ıts	eet	Soil/Rock Descri	_					N C	ve sf)					
er /pe	Att ered	Cou	In F	And Geologic Orig	=		S	.c	_ u).6 e	ressi th (t	ıre 1t	_	ity		ents
Number and Type	Length Att. Recovered (Blow Counts	Depth In Feet	Each Major U	nıt		SC	Graphic Log	Well Diagram	D 10	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
2 g	72	B	Ď	0 - 2.6' FILL, WELL-GRADED 0	DAVEL WIT	н	ח	<u> </u>			2 2	Σŭ	2 2	Pl	Ь	ದ ರ CS= Core
cs	67			CLAY: GW-GC, brown (10YR 4/				000								Sample
			-1				(FILL)			4						Measured
							GW-GC	300								Rock
			-2													Quality Designation
								60°								(RQD) was modified
			- 3	2.6 - 20' LEAN CLAY: CL, brow reddish brown bottling (20%), sa	n (10YR 5/3), and (0-5%). Io	, ow to					4					due to
				medium plasticity, very stiff to ha	ard, moist.						4					drilling methods,
			<u> </u>													modified RQD equals
																the sum of
			_ 5													recovered core
											4					sections greater than
																4 inches in
2 CS	120 120		_ ~													length divided by
			_ 7								2.5					total core recovery.
			_ ′				CL									locovery.
			_ 8								3.5					
			- 0													
			_ 9								2					
				9.2' brown (7.5YR 5/3), medium	to high plast	ticity.										
			10	,		·					2					
			-10													
			-								3					
			11 													
			- 12								2.25					
Ihere	hy certi	fy that		formation on this form is true and co	orrect to the b	est of m	/ know	ledge				<u> </u>				
Signa	-	ıy mat	1111	ormation on this form is true and to	Firm Ramb		y KIIOW	reage.					Та1.	(414)	837 2	507
2	-	-		- gr		Florida S	Street,	5th Flo	or, Mi	lwauke	e, WI 5	3204		(414)		

234 W Florida Street, 5th Floor, Milwaukee, WI 53204 Fax: (414)837-3608

Template: RAMBOLL_IL_BORING LOG - Project: 845_BALDWIN_2022.GPJ

				Boring Number MW394		_							ge 2	of	5
San	nple								dur		Soil	Prop	erties		
	(ii) &	S	Ę	Soil/Rock Description					/ La	De (
. 9	Att.	oun)	n Fe	And Geologic Origin For				٦	6 eV	ssiv ı (ts	0		>		nts
nber Typ	gth,	Ŭ ≽	th Ir	Each Major Unit	CS	hic		gran	10.	ngth	stur	ii d	ticit	9)/ ime
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		S O	Graphic	Well	Diag	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			- - - - -13	2.6 - 20' LEAN CLAY: CL, brown (10YR 5/3), reddish brown bottling (20%), sand (0-5%), low to medium plasticity, very stiff to hard, moist. <i>(continued)</i>						2.25					
			- - - - - 14	14' low to medium plasticity.											
			15 15							2.5					
3 CS	120 120		-16 - - - -17	16.5' increasing sand and gravel content, gray (GLEY 1 5/1) iron concretions (50%).	CL										
			-18 -18												
			-19 - - -20	20 - 22.1' SILTY SAND: SM, yellowish brown											
			- - -21 -	(10YR 5/6), fine sand, clay (0-5%), moist.	SM										
				22.1 - 36.8' LEAN CLAY: CL, dark yellowish brown (10YR 4/4), greenish gray (GLEY 1 5/10Y) and yellowish brown (10YR 5/6) mottling, sand (0-5%), medium to high plasticity, hard, moist.						4.5					
			- - 24 -							4.5					
4	120		25 							4.5					
4 CS	120 112		_ _ 27		CL					4.5					
			-28							4.5					
			29							4.5					
			-30 - - -31							4.5					
			_							4.5					
11			-32												

				Boring Number MW394		_				ge 3	of	5		
Sar	nple							du		Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
5 CS	120 113			22.1 - 36.8' LEAN CLAY: CL, dark yellowish brown (10YR 4/4), greenish gray (GLEY 1 5/10Y) and yellowish brown (10YR 5/6) mottling, sand (0-5%), medium to high plasticity, hard, moist. (continued) 34.4' olive yellow (5Y 6/6), low to medium plasticity. 36.8 - 48' Weathered SHALE Bedrock: BDX (SH), pale olive (5Y 6/3), weathered, argillaceous, fissile, moist.	CL				3.75 4.25 4.5					
			-38 -39 -40 -41 -42 -43 -44 -45	40' olive gray (5Y 5/2).	BDX (SH)									
6 CS	96 96		-46 -47 -48 -49 -50 -51	48 - 58' LIMESTONE : to SHALE : BDX (LS), olive gray (5Y 4/2), interbedded limestone and shale, fissile. 50' - 50.2' limestone, very strong.	BDX (LS)									

				Boring Number MW394							Pag		of	5
Sar	nple							dun		Soil	Prope	rties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
7 CS	48 48		-53 -54 -55 -56 -57	48 - 58' LIMESTONE : to SHALE : BDX (LS), olive gray (5Y 4/2), interbedded limestone and shale, fissile. <i>(continued)</i> 53.7' - 53.9' limestone, very strong. 54' - 55.6' dark gray (10YR 4/1) to gray (10YR 5/1), more competent. 55.6' gray (10YR 6/1) to dark gray (10YR 4/1), more competent.	BDX (LS)									
8 CORE	18 14		-58 - -59	58 - 59.7' LIMESTONE: BDX (LS), medium gray (N5), shaley, laminated, moderately fractured.	BDX (LS)									RUN #8: Modified RQD = (4/14) = 29%
9 CORE	60 60		-60 -61 -62 -63	59.7 - 68' SHALE : BDX (SH), medium dark gray (N4), weathered, very weak to weak, thinly bedded, moderately fractured.										RUN #9: Modified RQD = (48/60) = 80%
10 CORE	57 56		-64 -65 -66	64.5 - 67.2' highly decomposed, weathered, wet.	BDX (SH)									RUN #10: Modified RQD = Not Recorded
11 CORE	68 68		-68 -69 -70	68 - 68.4' LIMESTONE: BDX (LS), light olive gray (57 6/2) to olive gray (5/2). 68.4 - 70.8' SHALE: BDX (SH), medium dark gray (N4), weathered, very weak to weak, thinly bedded, moderately fractured.	BDX (LS) BDX (SH)									RUN #11: Modified RQD = (42/68) = 62%
			—71 — —72	70.8 - 71' LIMESTONE : BDX (LS), dark gray (N3), shaley. 71 - 77.6' SHALE : BDX (SH), dark gray (N3),	BDX (LS)								I	

				Boring Number MW394								e 5	of	5
Sar	nple							amp		Soil	Prope	erties		
	tt. &	ınts	Feet	Soil/Rock Description And Geologic Origin For				eV L	ive tsf)					o s
ber Гуре	th At	Blow Counts	Depth In Feet	And Geologic Origin For Each Major Unit	CS	hic	ram	PID 10.6 eV Lamp	press ngth (sture	id t	icity x	0)/ ment
Number and Type	Length Att. & Recovered (in)	Blow	Dept		Sn	Graphic Log	Well Diagram	PID	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
				strong, thinly bedded, moderately fractured. 71 - 77.6' SHALE: BDX (SH), dark gray (N3), strong, thinly bedded, moderately fractured.										
			-73	strong, thinly bedded, moderately fractured. (continued)										
			_											
			74 											
12	60		_ 75		BDX (SH)									RUN #12:
12 CORE	59		_											Modified RQD =
			- 76											(44/59) = 75%
			_ 											7370
			78	77.6 - 80' LIMESTONE: BDX (LS), medium gray (N5), shaley, weak, moderately fractured.										
			_		BDX]							
			79 		(LS)	H								
4.0			- -80											B. D. #40
13 CORE	60 48		-	80 - 85' SHALE: BDX (SH), medium dark gray (N4), weathered, weak, thinly bedded, moderately fractured, moist to wet.										RUN #13: Modified RQD =
			81	iractured, moist to wet.										(40/48) = 83%
			- 02											03%
			-82		BDX									
			E -83		(SH)									
			_											
			 84											
L			- -85											
				85' End of Boring.										

ATTACHMENT 4 Analytical Laboratory Reports

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Ramboll Americas Engineering Solutions, Inc.

Attn: Evvan Plank

P.O# Box 4873 Syrascuse, New York 13221-7873, USA

Phone: 315-463-7554

Fax:

28-February-2023

Date Rec.: 24 November 2022 LR Report: CA19218-NOV22

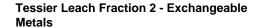
Reference: Baldwin Power Plant Drilling

Copy: #1

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	Analysis Start Ana Date		Analysis mpleted DateCor	Analysis npleted Time	MW-358 (13-15)	MW-358 (47-49)	MW-358 (86-88)	MW-392 (80-82)
Sample Date & Time					05-Oct-22 14:05	06-Oct-22 15:00	08-Oct-22 18:00	26-Sep-22 16:00
Ag [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.05	< 0.05	< 0.05	< 0.05
AI [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	30	540	380	18
As [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.5	< 0.5	< 0.5	< 0.5
Ba [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	0.4	11	4.2	< 0.1
Be [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.02	0.06	0.05	< 0.02
= - [µg/g] В [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 1	8	10	3
Bi [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.09	< 0.09	< 0.09	< 0.09
Ca [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	21	300	140	75
Cd [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.05	< 0.05	< 0.05	< 0.05
Co [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.01	0.04	0.86	0.02
Cr [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.5	< 0.5	< 0.5	< 0.5
Cu [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.1	< 0.1	0.1	< 0.1
Fe [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	17	240	190	< 1
σ σ . Κ [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	7	250	190	41
Li [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 2	< 2	< 2	< 2
Mg [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	9	210	150	19
Mn [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.5	0.6	0.9	< 0.5
Mo [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.1	< 0.1	< 0.1	< 0.1
Na [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	65	1800	1600	850
Ni [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.5	< 0.5	1.2	< 0.5
P [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 3	6	< 3	< 3
Pb [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.1	< 0.1	0.2	< 0.1
Si [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	100	950	750	59
Sb [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.7	< 0.7	< 0.7	< 0.7
Sr [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	0.1	13	5.9	1.4
Sn [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.5	< 0.5	< 0.5	< 0.5
Ti [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	1.1	0.6	0.5	0.6
TI [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.02	< 0.02	< 0.02	< 0.02
U [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.002	0.006	0.029	< 0.002
V [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 3	< 3	< 3	< 3
Zn [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.7	< 0.7	< 0.7	< 0.7

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365


LR Report : CA19218-NOV22

Analysis	9:	10:	11:	12:
	MW-392 (32-33.5)	MW-393 (24-25.5)	MW-394 (20.5-22)	MW-392 (66-68)
Sample Date & Time	27-Sep-22 09:00	04-Oct-22 16:00	25-Sep-22 16:00	26-Sep-22 12:00
Ag [µg/g]	< 0.05	< 0.05	< 0.05	< 0.05
Al [μg/g]	33	26	24	59
As [µg/g]	< 0.5	< 0.5	< 0.5	< 0.5
Ba [µg/g]	0.5	0.3	0.3	0.3
Be [µg/g]	< 0.02	< 0.02	< 0.02	< 0.02
B [μg/g]	< 1	< 1	< 1	5
Bi [µg/g]	< 0.09	< 0.09	< 0.09	< 0.09
Ca [µg/g]	130	28	25	89
Cd [µg/g]	< 0.05	< 0.05	< 0.05	< 0.05
Co [µg/g]	0.02	< 0.01	0.01	0.02
Cr [µg/g]	< 0.5	< 0.5	< 0.5	< 0.5
Cu [µg/g]	< 0.1	< 0.1	< 0.1	< 0.1
Fe [µg/g]	27	14	20	28
K [μg/g]	16	9	12	92
Li [μg/g]	< 2	< 2	< 2	< 2
Mg [μg/g]	40	12	12	44
Mn [μg/g]	1.4	0.7	0.6	< 0.5
Mo [μg/g]	< 0.1	< 0.1	< 0.1	< 0.1
Na [µg/g]	44	49	43	720
Ni [μg/g]	< 0.5	< 0.5	< 0.5	< 0.5
P [µg/g]	< 3	< 3	< 3	< 3
Pb [µg/g]	< 0.1	< 0.1	< 0.1	< 0.1
Si [µg/g]	100	80	91	140
Sb [µg/g]	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	< 0.7	< 0.7	< 0.7	< 0.7
Sr [µg/g]	0.3	< 0.1	< 0.1	1.8
Sn [µg/g]	< 0.5	< 0.5	< 0.5	< 0.5
Ti [μg/g]	0.6	0.6	0.9	0.5
TI [μg/g]	< 0.02	< 0.02	< 0.02	< 0.02
U [μg/g]	< 0.002	< 0.002	< 0.002	< 0.002
V [µg/g]	< 3	< 3	< 3	< 3
Zn [µg/g]	< 0.7	< 0.7	< 0.7	< 0.7

Water Soluble Fraction

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Ramboll Americas Engineering Solutions, Inc.

Attn: Evvan Plank

P.O# Box 4873 Syrascuse, New York 13221-7873, USA

Phone: 315-463-7554

Fax:

28-February-2023

Date Rec.: 24 November 2022 LR Report: CA19219-NOV22

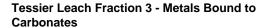
Reference: Baldwin Power Plant Drilling

Copy: #1

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	Analysis Start Ana Date		Analysis mpleted DateCor	Analysis npleted Time	MW-358 (13-15)	MW-358 (47-49)	MW-358 (86-88)	MW-392 (80-82)
Sample Date & Time					05-Oct-22 14:05	06-Oct-22 15:00	08-Oct-22 18:00	26-Sep-22 16:00
Ag [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.05	< 0.05	< 0.05	< 0.05
Αg [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	9	< 0.03 17	< 0.03 8	9
As [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.5	< 0.5	< 0.5	< 0.5
As [µg/g] Ba [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	48	55	15	3.0
Be [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.02	< 0.02	< 0.02	< 0.02
Β [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.02	< 0.02	1	< 0.02
Bi [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.09	< 0.09	< 0.09	< 0.09
եւ [μg/g] Ca [μg/g]	19-Jan-23	23:42	31-Jan-23	09:43	2000	2500	1300	3500
Cd [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.05	< 0.05	< 0.05	< 0.05
Co [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.03	< 0.03	0.58	0.03
	19-Jan-23	23:42	31-Jan-23	09:43	< 0.5	< 0.5	< 0.5	< 0.5
Cr [µg/g] Cu [µg/g]	19-Jan-23	23:42	31-Jan-23	09:43	< 0.1	< 0.1	< 0.1	< 0.5
	19-Jan-23	23:42	31-Jan-23	09.43	2	21	< 1	12
Fe [µg/g]	19-Jan-23 19-Jan-23	23:42	31-Jan-23	09:43	37	430	300	160
K [μg/g]	19-Jan-23 19-Jan-23	23:42	31-Jan-23	09:43	3 <i>1</i> < 2	430 < 2	300 < 2	< 2
Li [µg/g] Mp [ug/g]	19-Jan-23	23:42	31-Jan-23	09:43	6.5	0.7	1.8	3.6
Mn [µg/g]	19-Jan-23	23:42	31-Jan-23	09:44	< 0.1	< 0.1	< 0.1	< 0.1
Mo [µg/g]	19-Jan-23 19-Jan-23	23:42	31-Jan-23	09:44	< 0.1 45	3200	2600	420
Na [µg/g]	19-Jan-23 19-Jan-23	23:42	31-Jan-23	09:44	45 < 0.5	3200 < 0.5	2000 < 0.5	420 0.7
Ni [μg/g]	19-Jan-23 19-Jan-23		31-Jan-23	09:44	< 0.5	< 0.5	< 0.5	< 0.1
Pb [μg/g]	19-Jan-23 19-Jan-23	23:42 23:42	31-Jan-23	09:44	< 3	4	< 3	43
P [μg/g]								
Sb [µg/g]	19-Jan-23	23:42	31-Jan-23	09:44	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	19-Jan-23	23:42	31-Jan-23 31-Jan-23	09:44	< 0.7	< 0.7 < 0.5	< 0.7	< 0.7
Sn [µg/g]	19-Jan-23	23:42		09:44	< 0.5		< 0.5	< 0.5
Sr [µg/g]	19-Jan-23	23:42	31-Jan-23	09:44	11	100	52	76
Ti [μg/g]	19-Jan-23	23:42	31-Jan-23	09:44	0.9	0.3	0.2	0.1
TI [μg/g]	19-Jan-23	23:42	31-Jan-23	09:44	< 0.02	< 0.02	< 0.02	< 0.02
U [µg/g]	19-Jan-23	23:42	31-Jan-23	09:44	< 0.002	0.009	0.006	0.043
V [µg/g]	19-Jan-23	23:42	31-Jan-23	09:44	< 3	< 3	< 3	< 3
Zn [µg/g]	19-Jan-23	23:42	31-Jan-23	09:44	< 0.7	< 0.7	< 0.7	< 0.7

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365


LR Report : CA19219-NOV22

Analysis	9:	10:	11:	12:
	MW-392 (32-33.5)	MW-393 (24-25.5)	MW-394 (20.5-22)	MW-392 (66-68)
Sample Date & Time	27-Sep-22 09:00	04-Oct-22 16:00	25-Sep-22 16:00	26-Sep-22 12:00
Ag [μg/g]	< 0.05	< 0.05	< 0.05	< 0.05
Al [μg/g]	10	12	12	10
As [µg/g]	< 0.5	< 0.5	< 0.5	< 0.5
Ba [µg/g]	16	16	10	4.3
Be [µg/g]	< 0.02	< 0.02	< 0.02	< 0.02
B [μg/g]	< 1	< 1	< 1	2
Bi [µg/g]	< 0.09	< 0.09	< 0.09	< 0.09
Ca [µg/g]	2500	1400	2100	3700
Cd [µg/g]	< 0.05	< 0.05	< 0.05	< 0.05
Co [µg/g]	0.02	< 0.01	< 0.01	0.02
Cr [µg/g]	< 0.5	< 0.5	< 0.5	< 0.5
Cu [µg/g]	< 0.1	< 0.1	< 0.1	< 0.1
Fe [µg/g]	8	9	8	10
K [μg/g]	44	35	60	360
Li [µg/g]	< 2	< 2	< 2	< 2
Mn [μg/g]	3.5	1.7	3.2	2.5
Mo [μg/g]	< 0.1	< 0.1	< 0.1	< 0.1
Na [μg/g]	17	22	30	480
Ni [μg/g]	< 0.5	< 0.5	< 0.5	< 0.5
Pb [µg/g]	< 0.1	< 0.1	< 0.1	< 0.1
P [μg/g]	< 3	< 3	4	< 3
Sb [µg/g]	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	< 0.7	< 0.7	< 0.7	< 0.7
Sn [µg/g]	< 0.5	< 0.5	< 0.5	< 0.5
Sr [µg/g]	6.5	4.3	7.4	75
Ti [μg/g]	0.1	0.6	0.3	< 0.1
TI [μg/g]	< 0.02	< 0.02	< 0.02	< 0.02
U [μg/g]	< 0.002	< 0.002	< 0.002	0.004
V [μg/g]	< 3	< 3	< 3	< 3
Zn [µg/g]	< 0.7	< 0.7	< 0.7	< 0.7

Fraction 2 Exchangeable Metals

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Ramboll Americas Engineering Solutions, Inc.

Attn: Evvan Plank

P.O# Box 4873 Syrascuse, New York 13221-7873, USA

Phone: 315-463-7554

Fax:

28-February-2023

Date Rec.: 24 November 2022
LR Report: CA19220-NOV22
Reference: Ramboll Power Plant

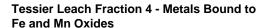
Drilling

Copy: #1

8:	7:	6:	5:	4:	3:	2:	1:	Analysis
MW-392 (80-82)	MW-358 (86-88)	MW-358 (47-49)	MW-358 (13-15)	Analysis	Analysis mpleted DateCon		Analysis Start Anal	
				ipietea i ime	inpleted DateCon	Time Cor	Date	
26-Sep-22 16:00	08-Oct-22 18:00	06-Oct-22 15:00	05-Oct-22 14:05					Sample Date & Time
< 0.05	< 0.05	< 0.05	< 0.05	09:45	31-Jan-23	23:42	19-Jan-23	Ag [μg/g]
25	56	55	30	09:45	31-Jan-23	23:42	19-Jan-23	Al [μg/g]
< 0.5	< 0.5	< 0.5	< 0.5	09:45	31-Jan-23	23:42	19-Jan-23	As [μg/g]
2.8	6.9	23	25	09:45	31-Jan-23	23:42	19-Jan-23	Ba [µg/g]
0.03	0.07	0.10	0.09	09:45	31-Jan-23	23:42	19-Jan-23	Be [µg/g]
4	3	2	< 1	09:45	31-Jan-23	23:42	19-Jan-23	B [µg/g]
< 0.09	< 0.09	< 0.09	< 0.09	09:45	31-Jan-23	23:42	19-Jan-23	Bi [µg/g]
52000	770	1300	110	09:45	31-Jan-23	23:42	19-Jan-23	Ca [µg/g]
< 0.05	< 0.05	< 0.05	< 0.05	09:45	31-Jan-23	23:42	19-Jan-23	Cd [µg/g]
1.0	2.3	0.02	0.04	09:45	31-Jan-23	23:42	19-Jan-23	Co [µg/g]
< 0.5	< 0.5	< 0.5	< 0.5	09:45	31-Jan-23	23:42	19-Jan-23	Cr [µg/g]
0.2	0.6	0.2	0.6	09:45	31-Jan-23	23:42	19-Jan-23	Cu [µg/g]
25	42	45	40	09:45	31-Jan-23	23:42	19-Jan-23	Fe [µg/g]
90	120	180	15	09:45	31-Jan-23	23:42	19-Jan-23	K [µg/g]
< 2	< 2	< 2	< 2	09:45	31-Jan-23	23:42	19-Jan-23	Li [μg/g]
77	4.3	7.0	13	09:45	31-Jan-23	23:42	19-Jan-23	Mn [µg/g]
< 0.1	< 0.1	< 0.1	< 0.1	09:45	31-Jan-23	23:42	19-Jan-23	Mo [μg/g]
2.7	1.9	< 0.5	< 0.5	09:46	31-Jan-23	23:42	19-Jan-23	Ni [μg/g]
1.9	0.9	0.1	0.2	09:46	31-Jan-23	23:42	19-Jan-23	Pb [µg/g]
100	< 3	13	< 3	09:46	31-Jan-23	23:42	19-Jan-23	P [μg/g]
< 0.8	< 0.8	< 0.8	< 0.8	09:46	31-Jan-23	23:42	19-Jan-23	Sb [µg/g]
< 0.7	< 0.7	< 0.7	< 0.7	09:46	31-Jan-23	23:42	19-Jan-23	Se [µg/g]
33	150	160	96	09:46	31-Jan-23	23:42	19-Jan-23	Si [µg/g]
< 0.5	< 0.5	< 0.5	< 0.5	09:46	31-Jan-23	23:42	19-Jan-23	Sn [µg/g]
99	7.3	10	0.5	09:46	31-Jan-23	23:42	19-Jan-23	Sr [µg/g]
1.0	0.5	0.6	0.8	09:46	31-Jan-23	23:42	19-Jan-23	Ti [µg/g]
< 0.02	< 0.02	< 0.02	< 0.02	09:46	31-Jan-23	23:42	19-Jan-23	TI [μg/g]
0.31	0.13	0.094	0.19	09:46	31-Jan-23	23:42	19-Jan-23	U [μg/g]
< 3	< 3	< 3	< 3	09:46	31-Jan-23	23:42	19-Jan-23	V [µg/g]
3.7	< 0.7	< 0.7	< 0.7	09:46	31-Jan-23	23:42	19-Jan-23	Zn [µg/g]

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365


LR Report : CA19220-NOV22

Analysis	9:	10:	11:	12:
	MW-392 (32-33.5)	MW-393 (24-25.5)	MW-394 (20.5-22)	MW-392 (66-68)
Sample Date & Time	27-Sep-22 09:00	04-Oct-22 16:00	25-Sep-22 16:00	26-Sep-22 12:00
Ag [μg/g]	< 0.05	< 0.05	< 0.05	< 0.05
Al [μg/g]	30	28	23	28
As [μg/g]	< 0.5	< 0.5	< 0.5	< 0.5
Ba [µg/g]	19	15	12	5.0
Be [µg/g]	0.06	0.04	0.04	0.07
B [μg/g]	< 1	< 1	< 1	3
Bi [µg/g]	< 0.09	< 0.09	< 0.09	< 0.09
Ca [µg/g]	1500	56	140	35000
Cd [µg/g]	< 0.05	< 0.05	< 0.05	< 0.05
Co [µg/g]	0.05	0.02	0.03	0.27
Cr [µg/g]	< 0.5	< 0.5	< 0.5	< 0.5
Cu [µg/g]	0.8	0.2	0.2	0.6
Fe [µg/g]	9	14	10	300
K [μg/g]	16	10	15	130
Li [μg/g]	< 2	< 2	< 2	< 2
Mn [μg/g]	20	4.4	7.0	144
Mo [μg/g]	< 0.1	< 0.1	< 0.1	< 0.1
Ni [μg/g]	< 0.5	< 0.5	< 0.5	< 0.5
Pb [μg/g]	0.2	0.1	0.1	0.4
P [μg/g]	< 3	< 3	4	< 3
Sb [µg/g]	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	< 0.7	< 0.7	< 0.7	< 0.7
Si [µg/g]	130	90	99	96
Sn [µg/g]	< 0.5	< 0.5	< 0.5	< 0.5
Sr [µg/g]	1.5	0.3	0.8	59
Ti [μg/g]	0.1	1.9	0.6	< 0.1
TI [μg/g]	< 0.02	< 0.02	< 0.02	< 0.02
U [μg/g]	0.12	0.14	0.17	0.100
V [µg/g]	< 3	< 3	< 3	< 3
Zn [µg/g]	< 0.7	< 0.7	< 0.7	1.0

Fraction 3 Metals Bound to Carbonates

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Ramboll Americas Engineering Solutions, Inc.

Attn: Evvan Plank

P.O# Box 4873 Syrascuse, New York 13221-7873, USA

Phone: 315-463-7554

Fax:

28-February-2023

Date Rec.: 24 November 2022 LR Report: CA19221-NOV22

Reference: Baldwin Power Plant Drilling

Copy: #1

Analysis	3: Analysis	4: Analysis	5: MW-358 (13-15)	6: MW-358 (47-49)	7: MW-358 (86-88)	8: MW-392 (80-82)	9: MW-392 (32-33.5)
	Completed DateCor		IVIVV-336 (13-13)	IVIVV-336 (47-49)	MAA-330 (00-00)	WW-392 (60-62)	WW-392 (32-33.5)
Sample Date & Time			05-Oct-22 14:05	06-Oct-22 15:00	08-Oct-22 18:00	26-Sep-22 16:00	27-Sep-22 09:00
Ag [µg/g]	31-Jan-23	09:47	< 0.01	< 0.01	< 0.01	< 0.01	0.01
Al [μg/g]	31-Jan-23	09:47	290	310	340	220	220
As [µg/g]	31-Jan-23	09:47	< 0.5	< 0.5	< 0.5	1.3	< 0.5
Ba [µg/g]	31-Jan-23	09:47	16	6.4	1.6	4.1	56
Be [µg/g]	31-Jan-23	09:47	0.26	0.16	0.15	0.15	0.21
B [µg/g]	31-Jan-23	09:47	< 1	5	6	6	< 1
Bi [µg/g]	31-Jan-23	09:47	< 0.09	< 0.09	< 0.09	0.14	< 0.09
Ca [µg/g]	31-Jan-23	09:47	71	320	250	130000	2300
Cd [µg/g]	31-Jan-23	09:47	< 0.05	< 0.05	< 0.05	0.13	0.18
Co [µg/g]	31-Jan-23	09:47	3.8	0.33	3.0	2.3	5.1
Cr [µg/g]	31-Jan-23	09:47	2.3	1.2	1.3	1.0	0.9
Cu [µg/g]	31-Jan-23	09:47	1.6	0.4	0.7	0.1	2.9
Fe [µg/g]	31-Jan-23	09:47	1600	1600	1200	1800	1100
K [μg/g]	31-Jan-23	09:47	16	140	110	43	19
Li [μg/g]	31-Jan-23	09:47	< 2	3	5	< 2	< 2
Mn [μg/g]	31-Jan-23	09:47	240	3.1	2.9	190	500
Mo [μg/g]	31-Jan-23	09:47	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ni [μg/g]	31-Jan-23	09:47	3.1	2.7	4.5	6.5	3.1
Pb [µg/g]	31-Jan-23	09:47	3.3	0.2	1.2	8.4	3.7
P [μg/g]	31-Jan-23	09:47	19	110	77	400	31
Sb [µg/g]	31-Jan-23	09:47	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	31-Jan-23	09:47	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7
Si [µg/g]	31-Jan-23	09:47	920	910	710	270	600
Sn [µg/g]	31-Jan-23	09:47	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Sr [µg/g]	31-Jan-23	09:47	0.4	3.1	2.8	237	1.7
Ti [μg/g]	31-Jan-23	09:47	0.4	0.1	0.3	< 0.1	< 0.1
TI [μg/g]	31-Jan-23	09:47	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
U [μg/g]	31-Jan-23	09:47	0.26	0.068	0.17	0.62	0.15
V [μg/g]	31-Jan-23	09:47	5	< 3	< 3	< 3	3
Zn [µg/g]	31-Jan-23	09:47	2.9	1.9	1.9	13	3.8

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA19221-NOV22

Analysis	10:	11:	12:	
	MW-393 (24-25.5)	MW-394 (20.5-22)	MW-392 (66-68)	
Sample Date & Time	04-Oct-22 16:00	25-Sep-22 16:00	26-Sep-22 12:00	
Ag [μg/g]	< 0.01	0.02	< 0.01	
Al [μg/g]	290	270	490	
As [µg/g]	< 0.5	< 0.5	< 0.5	
Ba [µg/g]	45	35	1.5	
Be [µg/g]	0.16	0.18	0.18	
B [μg/g]	< 1	< 1	4	
Bi [µg/g]	< 0.09	< 0.09	0.14	
Ca [µg/g]	100	350	7600	
Cd [µg/g]	0.06	0.14	< 0.05	
Co [µg/g]	4.3	3.5	0.62	
Cr [µg/g]	1.2	1.2	2.0	
Cu [µg/g]	1.5	2.0	0.9	
Fe [µg/g]	1500	1200	2700	
K [μg/g]	15	22	120	
Li [µg/g]	< 2	< 2	2	
Mn [µg/g]	380	260	63	
Mo [μg/g]	< 0.1	< 0.1	< 0.1	
Ni [μg/g]	3.2	3.7	2.5	
Pb [μg/g]	3.5	2.1	0.9	
P [μg/g]	17	91	110	
Sb [µg/g]	< 0.8	< 0.8	< 0.8	
Se [µg/g]	< 0.7	< 0.7	< 0.7	
Si [µg/g]	660	850	650	
Sn [µg/g]	< 0.5	< 0.5	< 0.5	
Sr [µg/g]	0.5	1.3	26	
Ti [μg/g]	0.3	0.2	0.2	
TI [μg/g]	< 0.02	< 0.02	< 0.02	
U [μg/g]	0.12	0.18	0.082	
V [μg/g]	< 3	5	< 3	
Zn [µg/g]	4.3	7.8	2.8	

Fraction 4 Metals Bound to Fe and Mn Oxides

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Ramboll Americas Engineering Solutions, Inc.

Attn: Evvan Plank

P.O# Box 4873 Syrascuse, New York 13221-7873, USA

Phone: 315-463-7554

Fax:

28-February-2023

Date Rec.: 24 November 2022 LR Report: CA19222-NOV22

Reference: Baldwin Power plant Drilling

Copy: #1

Analysis	3:	4:	5:	6:	7:	8:	9:
	Analysis Completed DateCor	Analysis npleted Time	MW-358 (13-15)	MW-358 (47-49)	MW-358 (86-88)	MW-392 (80-82)	MW-392 (32-33.5)
Sample Date & Time			05-Oct-22 14:05	06-Oct-22 15:00	08-Oct-22 18:00	26-Sep-22 16:00	27-Sep-22 09:00
Ag [µg/g]	31-Jan-23	09:48	0.14	0.15	0.08	0.07	0.06
Al [μg/g]	31-Jan-23	09:48	980	1300	1100	130	610
As [µg/g]	31-Jan-23	09:48	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ba [µg/g]	31-Jan-23	09:48	15	11	1.8	3.6	36
Be [µg/g]	31-Jan-23	09:48	0.13	0.32	0.16	0.07	0.12
B [μg/g]	31-Jan-23	09:48	< 1	2	2	2	< 1
Bi [µg/g]	31-Jan-23	09:48	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09
Ca [µg/g]	31-Jan-23	09:48	160	490	220	8600	840
Cd [µg/g]	31-Jan-23	09:48	< 0.05	< 0.05	< 0.05	0.20	< 0.05
Co [µg/g]	31-Jan-23	09:48	1.4	0.45	9.7	3.3	1.3
Cr [µg/g]	31-Jan-23	09:48	2.1	1.0	1.2	< 0.5	1.6
Cu [µg/g]	31-Jan-23	09:48	0.5	1.0	1.8	1.9	0.4
Fe [µg/g]	31-Jan-23	09:48	150	610	1800	220	83
K [μg/g]	31-Jan-23	09:48	15	104	79	25	15
Li [μg/g]	31-Jan-23	09:48	< 2	< 2	3	< 2	< 2
Mg [µg/g]	31-Jan-23	09:48	170	1100	870	200	500
Mn [μg/g]	31-Jan-23	09:48	85	3.6	15	16	92
Mo [μg/g]	31-Jan-23	09:48	< 0.1	< 0.1	< 0.1	0.2	0.4
Na [µg/g]	31-Jan-23	09:48	110	180	150	90	75
Ni [µg/g]	31-Jan-23	09:48	1.9	4.3	13	15	2.1
Pb [µg/g]	31-Jan-23	09:48	1.6	0.1	1.6	3.8	1.3
P [μg/g]	31-Jan-23	09:48	< 3	< 3	< 3	290	5
Sb [µg/g]	31-Jan-23	09:48	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	31-Jan-23	09:48	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7
Si [µg/g]	31-Jan-23	09:48	590	480	420	130	530
Sn [µg/g]	31-Jan-23	09:48	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Sr [µg/g]	31-Jan-23	09:48	0.5	5.1	2.8	48	0.9
Ti [μg/g]	31-Jan-23	09:48	0.7	< 0.1	< 0.1	< 0.1	2.9
TI [μg/g]	31-Jan-23	09:48	< 0.02	< 0.02	0.02	0.05	< 0.02
U [μg/g]	31-Jan-23	09:48	0.17	0.13	0.19	0.25	0.060
V [μg/g]	31-Jan-23	09:48	< 3	< 3	< 3	< 3	3
Zn [μg/g]	31-Jan-23	09:48	1.4	< 0.7	1.8	41	1.7

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report: CA19222-NOV22

Analysis	10: MW-393 (24-25.5)	11: MW-394 (20.5-22)	12: MW-392 (66-68)	
	MV 030 (24 25.5)	MIV 334 (20.3 22)	M11 032 (00 00)	
Sample Date & Time	04-Oct-22 16:00	25-Sep-22 16:00	26-Sep-22 12:00	
Ag [μg/g]	< 0.05	< 0.05	< 0.05	
Al [μg/g]	660	870	820	
As [µg/g]	< 0.5	< 0.5	< 0.5	
Ba [µg/g]	33	45	1.5	
Be [µg/g]	0.08	0.15	0.18	
B [μg/g]	< 1	< 1	2	
Bi [μg/g]	< 0.09	< 0.09	< 0.09	
Ca [µg/g]	88	300	2400	
Cd [µg/g]	< 0.05	< 0.05	< 0.05	
Co [µg/g]	1.2	2.3	0.68	
Cr [µg/g]	1.2	1.5	1.1	
Cu [µg/g]	0.3	0.8	1.4	
Fe [µg/g]	93	120	680	
K [μg/g]	14	21	70	
Li [μg/g]	< 2	< 2	< 2	
Mg [µg/g]	150	280	730	
Mn [µg/g]	100	164	15	
Mo [μg/g]	0.1	0.3	< 0.1	
Na [μg/g]	48	170	95	
Ni [µg/g]	1.6	3.5	2.9	
Pb [μg/g]	1.7	1.3	0.9	
P [μg/g]	4	8	< 3	
Sb [µg/g]	< 0.8	< 0.8	< 0.8	
Se [µg/g]	< 0.7	< 0.7	< 0.7	
Si [μg/g]	470	650	470	
Sn [µg/g]	< 0.5	< 0.5	< 0.5	
Sr [µg/g]	0.3	1.2	9.8	
Ti [μg/g]	2.1	2.5	< 0.1	
TI [μg/g]	< 0.02	< 0.02	< 0.02	
U [μg/g]	0.065	0.16	0.080	
V [μg/g]	< 3	4	< 3	
Zn [µg/g]	1.6	4.0	0.9	

Fraction 5 Bound to Organic Material

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Ramboll Americas Engineering Solutions, Inc.

Attn: Evvan Plank

P.O# Box 4873 Syrascuse, New York 13221-7873, USA

Phone: 315-463-7554

Fax:

28-February-2023

Date Rec.: 24 November 2022 LR Report: CA19223-NOV22

Reference: Baldwin Power Plant Drilling

Copy: #1

Analysis	3:	4:	5:	6:	7:	8:	9:
	Analysis Completed DateCor	Analysis npleted Time	MW-358 (13-15)	MW-358 (47-49)	MW-358 (86-88)	MW-392 (80-82)	MW-392 (32-33.5)
Sample Date & Time			05-Oct-22 14:05	06-Oct-22 15:00	08-Oct-22 18:00	26-Sep-22 16:00	27-Sep-22 09:00
Ag [µg/g]	31-Jan-23	09:48	0.09	< 0.05	< 0.05	< 0.05	0.07
Al [μg/g]	31-Jan-23	09:48	44000	63000	71000	27000	45000
As [μg/g]	31-Jan-23	09:48	5.8	2.3	9.8	10	8.6
Ba [µg/g]	31-Jan-23	09:48	390	150	140	56	320
Be [µg/g]	31-Jan-23	09:48	0.65	1.4	1.5	0.68	0.87
B [μg/g]	31-Jan-23	09:48	13	60	62	26	21
Bi [μg/g]	31-Jan-23	09:48	0.25	0.26	0.18	0.14	0.25
Ca [µg/g]	31-Jan-23	09:48	2500	150	120	20000	1400
Cd [µg/g]	31-Jan-23	09:48	0.06	< 0.05	< 0.05	0.11	0.08
Co [µg/g]	31-Jan-23	09:48	3.3	7.2	6.4	2.0	6.4
Cr [µg/g]	31-Jan-23	09:48	34	69	75	37	40
Cu [µg/g]	31-Jan-23	09:48	10	9.9	5.7	7.2	15
Fe [µg/g]	31-Jan-23	09:48	22000	42000	22000	14000	28000
K [μg/g]	31-Jan-23	09:48	11000	18000	16000	5100	13000
Li [μg/g]	31-Jan-23	09:48	18	9	65	7	20
Mg [µg/g]	31-Jan-23	09:48	2700	7800	7600	4100	3300
Mn [µg/g]	31-Jan-23	09:48	110	70	51	50	130
Mo [μg/g]	31-Jan-23	09:48	0.9	0.3	0.1	0.1	0.9
Na [µg/g]	31-Jan-23	09:48	6700	560	830	550	5200
Ni [μg/g]	31-Jan-23	09:48	14	32	29	13	21
Pb [µg/g]	31-Jan-23	09:48	10	8.0	7.0	17	12
P [µg/g]	31-Jan-23	09:48	260	240	160	7200	300
Sb [µg/g]	31-Jan-23	09:48	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	31-Jan-23	09:48	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7
Si [µg/g]	31-Jan-23	09:48	160000	66000	51000	73000	65000
Sn [µg/g]	31-Jan-23	09:48	5.4	5.8	5.8	4.9	5.2
Sr [µg/g]	31-Jan-23	09:48	89	30	25	130	79
Ti [μg/g]	31-Jan-23	09:48	2400	670	570	520	980
TI [μg/g]	31-Jan-23	09:48	0.47	0.42	0.42	0.17	0.51
U [μg/g]	31-Jan-23	09:48	1.3	0.30	0.99	2.7	1.1
V [μg/g]	31-Jan-23	09:48	54	73	86	95	57
Zn [μg/g]	31-Jan-23	09:48	37	47	32	43	53

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA19223-NOV22

Analysis	10: MW-393 (24-25.5)	11: MW-394 (20.5-22)	12: MW-392 (66-68)
Sample Date & Time	04-Oct-22 16:00	25-Sep-22 16:00	26-Sep-22 12:00
Ag [μg/g]	< 0.05	< 0.05	< 0.05
Al [μg/g]	33000	45000	59000
As [µg/g]	10	9.8	0.9
Ba [µg/g]	300	410	93
Be [µg/g]	0.56	0.83	1.2
B [μg/g]	15	16	53
Bi [μg/g]	0.18	0.27	0.20
Ca [µg/g]	1700	3000	170
Cd [µg/g]	< 0.05	0.11	< 0.05
Co [µg/g]	3.2	5.0	6.4
Cr [µg/g]	24	35	71
Cu [µg/g]	9.9	13	12
Fe [µg/g]	19000	27000	43000
K [μg/g]	12000	14000	17000
Li [μg/g]	13	16	19
Mg [µg/g]	2200	3400	9500
Mn [μg/g]	80	140	47
Mo [μg/g]	0.7	2.7	0.2
Na [µg/g]	5100	7700	490
Ni [µg/g]	13	18	31
Pb [μg/g]	9.1	13	4.1
P [μg/g]	230	460	170
Sb [µg/g]	< 0.8	< 0.8	< 0.8
Se [µg/g]	< 0.7	< 0.7	< 0.7
Si [µg/g]	61000	43000	62000
Sn [µg/g]	4.6	5.2	5.6
Sr [µg/g]	70	110	22
Ti [μg/g]	780	1100	560
TI [μg/g]	0.35	0.50	0.36
U [µg/g]	0.61	1.1	0.097
V [µg/g]	35	57	70
Zn [μg/g]	37	54	48

Fraction 6 Residual metals

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Ramboll Americas Engineering Solutions, Inc.

Attn: Evvan Plank

P.O# Box 4873 Syrascuse, New York 13221-7873, USA

Phone: 315-463-7554

Fax:

28-February-2023

Date Rec.: 24 November 2022
LR Report: CA19224-NOV22
Reference: Baldwon Power Plant

Drilling

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start Ana Date		3: Analysis empleted DateCo	4: Analysis mpleted Time	6: MW-358 (47-49)	7: MW-358 (86-88)	8: MW-392 (80-82)	12: MW-392 (66-68)
Sample Date & Time					06-Oct-22 15:00	08-Oct-22 18:00	26-Sep-22 16:00	26-Sep-22 12:00
Hg MS [ug/g]	09-Dec-22	16:29	12-Dec-22	15:05	< 0.05	< 0.05	< 0.05	< 0.05
As [μg/g]	09-Dec-22	16:29	12-Dec-22	15:05	2.1	11	17	1.0
B [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	11	16	16	13
Ba [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	140	45	40	21
Be [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	0.85	0.67	0.85	0.70
Cd [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	< 0.02	< 0.02	0.36	0.09
Co [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	4.4	23	12	6.2
Cr [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	9.5	12	17	16
Li [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	6	20	8	15
Mo [μg/g]	09-Dec-22	16:29	12-Dec-22	15:05	0.3	0.3	0.3	0.3
Pb [μg/g]	09-Dec-22	16:29	12-Dec-22	15:05	5.7	9.6	17	4.9
Se [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	< 0.7	< 0.7	1.4	< 0.7
TI [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	0.05	0.06	0.04	0.03

Catharine Arnold, B.Sc., C.Chem Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report: CA19224-NOV22

Quantitative X-Ray Diffraction by Rietveld Refinement

Report Prepared for: Environmental Services

Project Number/ LIMS No. Custom XRD/MI4508-DEC22

Sample Receipt: December 7, 2022

Sample Analysis: December 15, 2022

Reporting Date: December 21, 2022

BRUKER AXS D8 Advance Diffractometer Instrument:

Co radiation, 35 kV, 40 mA; Detector: LYNXEYE Test Conditions:

Regular Scanning: Step: 0.02°, Step time: 0.75s, 2θ range: 6-80°

PDF2/PDF4 powder diffraction databases issued by the International Center Interpretations:

for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.

Detection Limit: 0.5-2%. Strongly dependent on crystallinity.

Contents: 1) Method Summary

2) Quantitative XRD Results

3) XRD Pattern(s)

Kim Gibbs, H.B.Sc., P.Geo. Senior Mineralogist

Huyun Zhou, Ph.D., P.Geo. Senior Mineralogist

ACCREDITATION: SGS Natural Resources Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Canada Inc. - Minerals: https://www.scc.ca/en/search/palcan.

Method Summary

The Rietveld Method of Mineral Identification by XRD (ME-LR-MIN-MET-MN-D05) method used by SGS Natural Resources is accredited to the requirements of ISO/IEC 17025.

Mineral Identification and Interpretation:

Mineral identification and interpretation involves matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

Quantitative Rietveld Analysis:

Quantitative Rietveld Analysis is performed by using Topas 4.2 (Bruker AXS), a graphics based profile analysis program built around a non-linear least squares fitting system, to determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the obtained experimental patterns.

Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.05wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

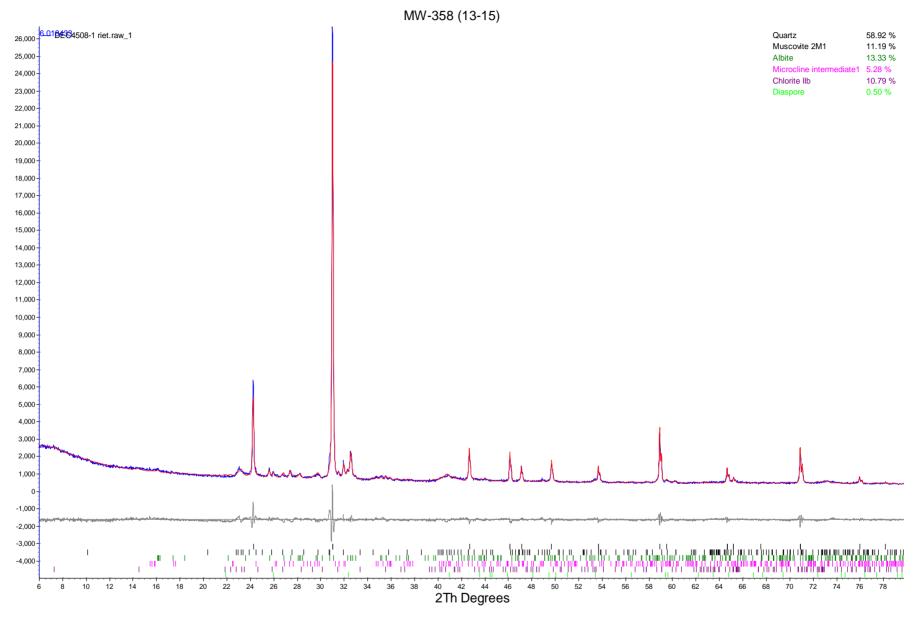
WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

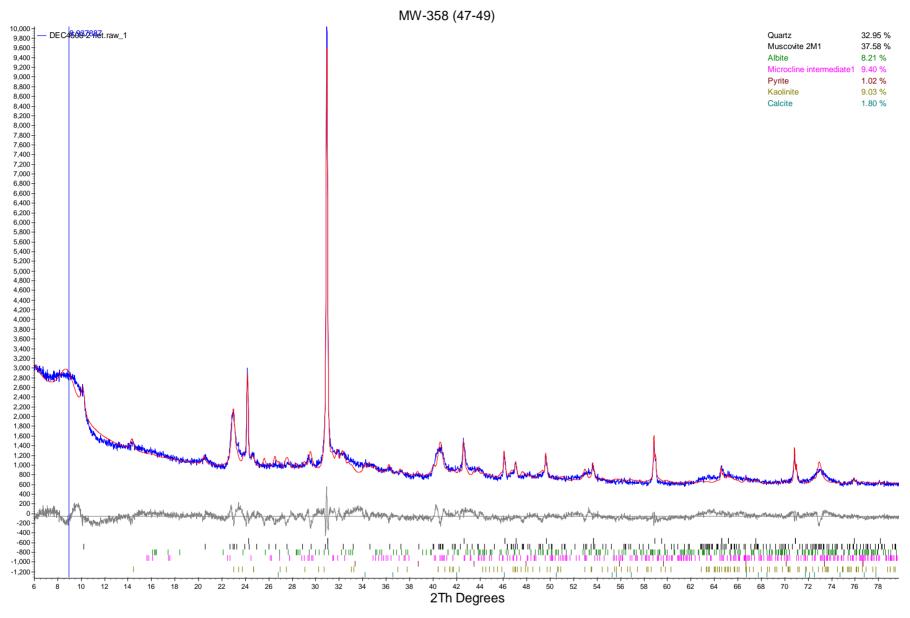
Mineral/Compound	MW-358 (13-15) DEC4508-01	MW-358 (47-49) DEC4508-02	MW-358 (86-88) DEC4508-03	MW-392 (80-82) DEC4508-04
	(wt %)	(wt %)	(wt %)	(wt %)
Quartz	58.9	33.0	34.9	29.1
Muscovite	11.2	37.6	30.5	14.5
Albite	13.3	8.2	3.4	1.0
Microcline	5.3	9.4	8.1	2.9
Chlorite	10.8	-	-	6.8
Diaspore	0.5	-	-	-
Pyrite	-	1.0	0.8	1.2
Kaolinite	-	9.0	18.4	8.2
Calcite	-	1.8	1.7	31.5
Anatase	-	-	2.1	0.4
Leucite	-	-	-	2.4
Siderite	-	-	-	1.9
Dolomite	-	-	-	-
Gypsum	-	-	-	-
Diopside	-	-	-	-
TOTAL	100	100	100	100

Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value. Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample. The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

Mineral/Compound	Formula
Quartz	SiO ₂
Muscovite	$KAl_2(AISi_3O_{10})(OH)_2$
Albite	NaAlSi ₃ O ₈
Microcline	KAISi ₃ O ₈
Chlorite	$(Fe,(Mg,Mn)_5,AI)(Si_3AI)O_{10}(OH)_8$
Diaspore	aAlO.OH
Pyrite	FeS ₂
Kaolinite	$Al_2Si_2O_5(OH)_4$
Calcite	CaCO ₃
Anatase	TiO ₂
Leucite	KAISi ₂ O ₆
Siderite	FeCO ₃
Dolomite	CaMg(CO ₃) ₂
Gypsum	CaSO ₄ ·2H ₂ O
Diopside	CaMgSi ₂ O ₆


Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

	MW-392 (32-33.5)	MW-393 (24-25.5)	MW-394 (20.5-22)	MW-392 (66-68)
Mineral/Compound	DEC4508-05	DEC4508-06	DEC4508-07	DEC4508-08
	(wt %)	(wt %)	(wt %)	(wt %)
Quartz	53.5	68.2	54.9	27.2
Muscovite	13.1	13.0	11.7	29.7
Albite	8.5	7.4	13.1	4.5
Microcline	6.8	9.5	6.7	6.9
Chlorite	7.0	-	7.0	16.3
Diaspore	-	-	-	-
Pyrite	-	0.3	0.3	-
Kaolinite	7.5	-	5.0	-
Calcite	-	-	-	14.8
Anatase	-	-	-	0.7
Leucite	-	-	-	-
Siderite	-	-	-	-
Dolomite	1.2	-	-	-
Gypsum	0.4	-	-	-
Diopside	1.7	1.6	1.4	-
TOTAL	100	100	100	100


Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value. Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample. The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

Mineral/Compound	Formula
Quartz	SiO ₂
Muscovite	$KAI_2(AISi_3O_{10})(OH)_2$
Albite	NaAlSi ₃ O ₈
Microcline	KAISi ₃ O ₈
Chlorite	$(Fe,(Mg,Mn)_5,AI)(Si_3AI)O_{10}(OH)_8$
Diaspore	aAlO.OH
Pyrite	FeS ₂
Kaolinite	$Al_2Si_2O_5(OH)_4$
Calcite	CaCO₃
Anatase	TiO ₂
Leucite	KAISi₂O ₆
Siderite	FeCO ₃
Dolomite	CaMg(CO ₃) ₂
Gypsum	CaSO ₄ ·2H ₂ O
Diopside	CaMgSi₂O ₆

